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@ Motivation @

Suppose you had to plan a Route 1 - Through the Woods

route to some goal, and were
faced with multiple routes. D

- Water Crossing

Each route has different

qualities that make it more or Route 2 -Over theli
less appealing. SigErnion crroe

- In the Sun
- No Water Crossing

Which route would you take?

Route 3 - The Long Way Around

How might you design an. longsDitce
autonomous agent to act in v ot

yO U r p I ace ? - No Water Crossing
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CMM Framework

The Computational Mental Map (CMM)
framework provides a simulation
environment to experiment with different

methods for multiobjective path planning.

Procedurally generated grid world
environments are used to create
scenarios with multiple uncertain
attributes.

These are generic template problems
that can be used as a way to study
various aspects of the decision-making
process.
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@ Example Problem @

* Represent the environment as
a fuzzy weighted graph

(VERY_LONG,
VERY_FLAT)

» Five possible routes from 1 to 5

« Each path edge has a linguistic (SHORT,
description of VERY_FLAT)
— Distance
— Slope

(VERY_SHORT,
Graph: G VERY_STEEP)

Vertex: v € V(G) (SHORT,
Edge: e = (v,,v,) € E(G), where E(G) € V(G) X V(G) STEER)
Path: p = (ey, ..., &) € (E(G))"

P(s,t) is the set of all paths between vertices s and t

(LONG,
VERY_FLAT)
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Fuzzy Numbers

S

- Each attributeis
represented as a linguistic
variable

« The variables may have
different domains such that
the values are not directly

comparable
— Distance in miles
— Slope in percent

« Linguistic values are

represented as triangular
fuzzy numbers

A = Tri(a, b, c)
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1
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Slope
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Fuzzy Operators

S

A decision-maker needs to

know the aggregate value of 1

a feature over a path with

multiple edges 057

Use Zadeh’s extension 0

principle to define fuzzy
operators

We consider two operators:
— Sum of distances
— Maximum slope

Tri(al, bl' Cl) + Tri(az, bz, Cz) = Tr‘i(a1 + a,, b1 + bz, C1 + Cz)

A =Tri(1,2,3)

8

B = Tri(0,4,5)
A+ B =Tri(1,6,8)
max’'(4,B) = Tri(1,4,5)

—A
B
A+B

== max(A,B)
max'(A,B)

max'(Tri(al, by, ¢1), Tri(ay, by, Cz)) = Tri(max(ay, a;), max(bq, b,), max(cy, c;))



@ Fuzzy Ranking @

» For a least-cost path problem, the goal is to find a solution path that
minimizes the objectives

* Fuzzy numbers capture uncertainty in the feature values, but there are
many ways they can be ordered from smallest to largest

* One approach is to compute the weighted centroid:
— For a triangular fuzzy number, the centroid is defined as x = %(a + b+ )

— The optimism/pessimism factor ¢ € [0, 1] is used to interpolate between the
minimum, centroid, and maximum values

3 a+ 26(x —a), § <05
Clalf) = {f +2(—-05)(c—%), §>05



@ Aggregated Path Costs

S

We compute the aggregated path cost as the total
distance and maximum slope for each path

- Features: F(e) = (Fy(e), ..., Fp(e))

- Aggregated path cost: A(p) = (A;(P), .., An(P))
— Summation: 4;(p) = X7, F;(e;)
— Maximization: 4;(p) = jrznﬁ)..(,ln Fi(e)

AGGREGATED FEATURE VALUES OF THE EXAMPLE GRAPH

Path Color Total Distance Max Slope
1-3-5 Red Tri(1,3,10) Tri(0.6,1,1)
1-3-4-5 Yellow Tri(6,16,22) Tri(0.6,1,1)
1-2-3-5 Green Tri(5, 14, 21) Tri(0.3,0.6,0.9)
1-2-3-4-5 Blue Tri(10,27,33) Tri(0.1,0.2,0.4)
1-2-4-5 Purple Tri(11, 21, 25) Tri(0,0,0.3)

Aggregated Fuzzy Path Costs

([M1-3-5
[11-3-4-5
[[1-2-3-5
[1-2-3-4-5
1 [1-2-4-5

> 40
30

0.2 10
Max Slope 0 o Total Distance



B9 Multiobjective Optimization B9

« The Multiobjective Fuzzy Least Cost Path Problem (MO-FLCPP) is
defined as

minimize  A(p) = (4,(P), .., A (D))
subjectto p € P(s,t)

« Typically, the objectives are conflicting such that they cannot all be
minimized simultaneously.

« We say that a path p dominates a path p’ (p < p’) iffif A;(p) < A;(p") for
alli =1,..,mandthere exists a j € {1, ...,m} such that 4;(p) < 4;(p").
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@ Pareto Optimality

If a path is not dominated by any other path, it
IS part of the Pareto optimal set

PS ={p € P(s,t) [{p' € P(s,t) | p' < p} = 0}

In the example problem, the yellow path is
dominated by the red and green paths

We can show how the paths compare by
plotting the weighted centroid values with
different optimism/pessimism weights.

X
12}
Is)
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@ Scalarization @

« The aggregated cost vector of a path A(p) is a multidimensional vector of
fuzzy numbers, where each component can have its own range.

 Anormalized fuzzy vector X is obtained by scaling each dimension to an
output range of [0, 1].

« A scalarization function g(X|4) reduces this multidimensional solution
vector X to a real value using the weight vector A.

« Arepresents the relative importance of each objective to the decision-
maker, with higher weight given to more important objectives.

12
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Choosing a Path

We consider three scalarization methods:

«  Weighted sum

m
9" XI2) = ) AiX,
i=1

»  Tchebycheff
g (X|A) = max A;X;
i=1,..m

*  Ordered Weighted Average (OWA)

m
g°V4(X|4,0) = Z 0;B()

=1

Weighted Sum Scalarization; )\ = (0.5, 0.5); £=0.5

1
0.5{ %\
~
0 | Oﬁ\ ] \.I | |
0 0.1 5 0.6 0.7 0.8 0

0.2 0.3 04 0 . . . 9

Tchebycheff Scalarization; \ = (0.25,0.75); £ =0

1
0.5 ’: /)/‘
0 1 |- " \l 1 e ! ! ! 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.

OWA Scalarization; A\ = (0.9, 0.1); ¢ = (0.7, 0.3); £ =1

9

where B(; is the i*" largest 1, X;.
0 is used to define different operators.
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All Path Options

S

« The Tchebycheff and Weighted
sum aggregations can be
represented as OWA operators

— Weighted sum: 8 = [% %]
— Tchebycheff: @ = [1,0, ...]

« By changing 4, &, and 8 we can
make any Pareto optimal path
have the lowest aggregated cost

« This adaptability of the model
makes it suitable for learning a
decision-maker’s preferences
from examples

BEST PATHS FOUND IN THE EXAMPLE GRAPH

6, = 1 0.75 0.5 25 0

é A g, = 0 0.25 0.5 75 1
0 (0. 1) P P P P _
(0.25,0.75) B P P P P

(0.5, 0.5) G [F P P E
(0.75,0.25) G G R R p

(L, 0) R R R R —

0.5 (0, 1) P P P P —
(0.25,0.75) P P P P R
(0.5,0.5) P [F P P P
(0.75, 0.25) R R R P p

(L, 0) R R R R —

1 (0, 1) P P P P -
(0.25,0.75) P P P P R

(0.5, 0.5) P P P P P
(0.75,0.25) R R R P p

(L, 0) R R R R -
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@ Conclusions and Future Work @

« Adding uncertainty with fuzzy numbers to a multiobjective least-cost path
problem increases the ways that a decision-maker can choose a solution
and allows the model to capture a wide range of agent behaviors.

* We did not discuss how to compute the paths for comparison
— In large graphs, we cannot enumerate all paths

— Instead, we can use a multiobjective evolutionary algorithm to find good paths
» This approach is well-suited to nonlinear aggregation

« The CMM framework can generate many different types of problems for
studying decision-making behavior
— Problems like the traveling salesman with multiple objectives and partial
observability

15
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