

MULTICRITERIA PATHFINDING IN UNCERTAIN

SIMULATED ENVIRONMENTS

A Dissertation

Presented to

The Faculty of the Graduate School

At the University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

By

ANDREW R. BUCK

Dr. James Keller, Dissertation Supervisor

MAY 2018

The undersigned, appointed by the dean of the Graduate School,

have examined the Dissertation entitled

MULTICRITERIA PATHFINDING IN UNCERTAIN

SIMULATED ENVIRONMENTS

presented by Andrew R. Buck,

a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion,

it is worthy of acceptance.

Professor James Keller

Professor Alina Zare

Professor Marjorie Skubic

Professor Mihail Popescu

Dedicated to my parents, family, friends, teachers, mentors,

and everyone who believed I could.

Thank you.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. James Keller for providing the opportunity to

pursue what has become one of the most challenging, enlightening, and rewarding

endeavors I have ever undertaken. Your support, guidance, and encouragement over the

years has pushed me to accomplish more than I ever thought possible. You have helped me

navigate through the uncertainty of academic research, and I am forever grateful to have

learned from your wisdom.

Thanks also to Dr. Popescu, Dr. Skubic, and Dr. Zare for their help during my

graduate career. Our conversations have been insightful and full of valuable advice.

I would also like to thank the National Geospatial-Intelligence Agency and the

Army Research Office with the RDECOM CERDEC Night Vision Electronic Sensors

Directorate for support during my dissertation research.

Finally, thank you to all the students, friends, and teachers who have shared their

thoughts and ideas along the way. I’m glad to have spent time together here at Mizzou.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES ... viii

LIST OF TABLES ... xiv

LIST OF ALGORITHMS ... xv

ABSTRACT ... xviii

1 INTRODUCTION ... 1

1.1 Problem Statement ... 1

1.2 The Computational Mental Map Framework .. 5

1.3 Contributions and Potential Applications .. 9

2 BACKGROUND ... 12

2.1 Wayfinding and Cognitive Mapping ... 12

2.2 Procedural Content Generation .. 15

2.2.1 Cellular Automata ... 16

2.2.2 Fashion-based Cellular Automata ... 18

2.2.3 Fractal Terrain ... 19

2.3 Viewshed Analysis .. 22

2.4 Least-Cost Paths in Fuzzy Weighted Graphs .. 28

2.4.1 Least-Cost Path Problems ... 30

2.4.2 Fuzzy Numbers ... 32

2.4.3 The Multiobjective Fuzzy Least-Cost Path Problem 36

2.5 Multiobjective Optimization .. 38

2.5.1 Multiobjective Optimization Problem Definition 39

iv

2.5.2 Pareto Optimality .. 40

2.5.3 Scalarization .. 42

2.5.4 Method of the Global Criterion ... 44

2.5.5 Method of Weighted Metrics .. 45

2.5.6 Ordered Weighted Average Approach .. 47

2.6 Multiobjective Evolutionary Algorithms ... 49

2.7 Intelligent Agents ... 54

2.8 The Traveling Salesman Problem .. 55

3 CREATING GRID WORLD ENVIRONMENTS .. 57

3.1 Grid Worlds ... 57

3.2 Generating Caverns ... 60

3.3 Region Partitioning .. 65

3.4 Creating a Heightmap .. 76

3.5 Defining Terrain Types .. 81

3.5.1 Binary Terrain Environments .. 81

3.5.2 Trinary Terrain Environments ... 83

3.5.3 Full World Environments .. 86

3.6 Resource Placement ... 89

3.7 Summary .. 93

4 THE MENTAL MAP GRID .. 95

4.1 The Mental Map .. 95

4.1.1 Creating Observations ... 98

4.1.2 Viewshed Computation ... 100

4.1.3 Finalizing the Observation .. 104

v

4.1.4 Updating the Mental Map ... 105

4.2 The Action Graph .. 109

4.3 Crisp Feature Functions ... 111

4.3.1 Distance Feature .. 112

4.3.2 Terrain Type Features ... 112

4.3.3 Terrain Transition Features ... 113

4.3.4 Elevation Features ... 114

4.3.5 Other Features ... 116

4.3.6 Example ... 116

4.4 Fuzzy Feature Functions .. 118

4.4.1 Distance Feature .. 119

4.4.2 Terrain Type Features ... 119

4.4.3 Terrain Transition Features ... 124

4.4.4 Elevation Features ... 129

4.5 Summary .. 138

5 THE REGION GRAPH ... 140

5.1 The Region Graph .. 140

5.1.1 Defining the Local Region .. 142

5.1.2 Creating the Region Boundaries ... 144

5.1.3 Constructing the Region Graph ... 147

5.2 Fuzzy Region Distance .. 151

5.2.1 Computing the Distance Cost Matrix .. 152

5.2.2 Region Distance Feature ... 159

5.2.3 Region Terrain Type Features ... 160

vi

5.2.4 Region Terrain Transition Features ... 164

5.3 General Fuzzy Region Features ... 169

5.3.1 General Framework for Computing Region Features 169

5.3.2 Region Elevation Features .. 177

5.3.3 Unobserved Elevation Costs ... 183

5.3.4 Combining Region Elevation Costs .. 193

5.4 Approximate Fuzzy Region Features .. 200

5.5 Updating the Region Graph ... 208

5.6 Summary .. 219

6 LEAST-COST PATH PROBLEMS .. 221

6.1 Shortest Paths in Grid Worlds ... 221

6.2 The Multiobjective Fuzzy Least-Cost Path Problem 228

6.2.1 Multiobjective Optimization for the MO-FLCPP 229

6.2.2 Scalarization .. 230

6.2.3 Example ... 233

6.3 Decomposition of the MO-FLCPP .. 238

6.3.1 Edge Normalization ... 239

6.3.2 Exponential Scaling ... 240

6.3.3 Pre-scalarized Decomposition ... 243

6.4 MOEA/D for the MO-FLCPP ... 247

6.5 Experiments ... 252

6.5.1 Two Objective Shortest Paths in Binary Terrain Environments ... 253

6.5.2 Two Objective Least-Cost Paths Using Elevation 258

6.5.3 Shortest Paths Using Terrain Transition Features 262

vii

6.5.4 Many-Objective Least-Cost Paths ... 265

6.5.5 Comparing MOEA/D to Pre-scalarized Decomposition 267

6.6 A Greedy Algorithm for the CMM Framework .. 274

6.7 Summary .. 285

7 CONCLUSION .. 287

7.1 Summary of the CMM Framework ... 287

7.2 Future Work ... 289

REFERENCES ... 294

VITA ... 302

viii

LIST OF FIGURES

Figure 1.1 Example environment with three different path options to reach a

goal location .. 2

Figure 1.2 Block diagram of the server/client architecture used in the CMM

framework ... 6

Figure 1.3 Examples of grid world environments from the CMM framework 7

Figure 1.4 An agent’s mental map for an example scenario .. 8

Figure 2.1 Generative model of cognitive mapping ... 14

Figure 2.2 Visualization of the diamond-square algorithm on a 55 grid 20

Figure 2.3 A progression of the diamond-square algorithm generating a fractal

terrain .. 21

Figure 2.4 An example of the successive random additions method for

generating fractal terrain ... 22

Figure 2.5 Example of computing the viewshed of a grid cell 25

Figure 2.6 Summation and maximization of two triangular fuzzy numbers 34

Figure 2.7 Mapping from decision space to objective space in a

multiobjective optimization problem .. 40

Figure 2.8 The mapping of solution vectors from decision space to objective

space shows which solutions belong to the Pareto optimal set in

decision space and the Pareto front in objective space 41

Figure 2.9 Examples of the range of the Pareto front .. 43

Figure 2.10 Different metrics applied in the global criterion method 45

Figure 2.11 Comparison of the weighted sum and Tchebycheff scalarization

approaches... 47

Figure 3.1 Examples of grid world problem domains generated in the CMM

framework ... 59

Figure 3.2 Examples of cavern maps generated using Algorithm 3.1 65

ix

Figure 3.3 Tabu sampling on a 5050 grid with different values for the

separation radius ... 68

Figure 3.4 Results of the region partitioning algorithm on a 5050 grid with

different values for the separation radius .. 75

Figure 3.5 Random noise images at different scales on a 5050 grid with no

cave walls .. 78

Figure 3.6 Random noise images at different scales on a 5050 grid with a

provided cave wall map .. 78

Figure 3.7 Heightmaps generated on a 5050 grid with different values of p

and q using the same random seed .. 80

Figure 3.8 Examples of binary environments containing forest and meadow

terrain types ... 83

Figure 3.9 Examples of the fashion-based cellular automata algorithm for

creating trinary terrain environments .. 86

Figure 3.10 Examples of full world environments generated using Algorithm

3.15.. 89

Figure 3.11 Examples of shortest path problems in a cavern environment using

the tabu sampling approach and the longest path approach 91

Figure 3.12 Examples of traveling salesman problems initialized using the tabu

sampling method in meadow terrain only and using extrema

locations in the elevation .. 92

Figure 3.13 Examples of traveling purchaser problems in full world

environments ... 93

Figure 4.1 Examples of observations in various environments computed using

Algorithm 4.2 and Algorithm 4.3 ... 100

Figure 4.2 Updating the mental map from an observation 106

Figure 4.3 Filling in unreachable areas with walls ... 108

Figure 4.4 Fixing diagonal boundaries ... 109

Figure 4.5 Examples of the action graph for two mental maps 110

Figure 4.6 Plots of the elevation difference features .. 115

x

Figure 4.7 Four examples demonstrating the computation of the feature

functions considered in this work for a single transition between

two grid cells ... 117

Figure 4.8 Four examples demonstrating the computation of the fuzzy terrain

type features for a single transition between two adjacent grid cells 123

Figure 4.9 Four examples demonstrating the computation of the fuzzy terrain

transition features for a single transition between two adjacent grid

cells ... 129

Figure 4.10 Plots of the elevation difference features when one cell is

unobserved .. 132

Figure 4.11 Plots of the expected elevation difference features when only the

first cell or the second cell is observed ... 134

Figure 4.12 Four examples demonstrating the computation of the fuzzy

elevation difference features for a single transition between two

adjacent grid cells ... 138

Figure 5.1 An example of determining the local region... 144

Figure 5.2 Region boundaries computed from the example in Figure 5.1 using

Algorithm 5.3, and the region graph defined from the region labels 147

Figure 5.3 An example of two regions used to demonstrate the computation of

fuzzy region features ... 152

Figure 5.4 Composite distance grids for each of the three boundary edges for

the example in Figure 5.3.. 158

Figure 5.5 Individual region and overall distance cost matrices for the

example in Figure 5.4, given as the output of Algorithm 5.6. 158

Figure 5.6 Elevation edge costs computed for the example in Figure 5.3 176

Figure 5.7 Composite distance grids computed using Algorithm 5.13 for the

example in Figure 5.3 using the maximum aggregation method 182

Figure 5.8 Composite distance grids computed using Algorithm 5.13 for the

example in Figure 5.3 using the summation aggregation method 182

Figure 5.9 Plots of the elevation difference features over the unit square, with

a shaded region showing the area where the function is less than a

value 𝑥 ... 186

xi

Figure 5.10 Plots of the cumulative distribution functions of the elevation

difference features ... 187

Figure 5.11 CDFs of the maximum of 𝑛 elevation difference feature values 188

Figure 5.12 PDFs of the maximum of 𝑛 elevation difference feature values 189

Figure 5.13 Expected values of 𝑌𝑛
absand 𝑌𝑛

dir for 𝑛 in 1,… ,100 192

Figure 5.14 Approximation of the region distances using the region centroids

for the example in Figure 5.3 .. 203

Figure 5.15 Approximation of the region distance cost matrices for the

example in Figure 5.14. .. 203

Figure 5.16 Elevation feature edge sets used to approximate the elevation

difference features for the example in Figure 5.14 206

Figure 5.17 Step-by-step example of determining new regions 211

Figure 6.1 Example of the selection bias problem for choosing paths in grid-

world domains ... 223

Figure 6.2 Examples of shortest paths chosen between opposite corners of an

open grid world ... 226

Figure 6.3 An example fuzzy weighted graph with two features per edge,

distance and slope, represented as triangular fuzzy numbers given

in Figure 6.4 .. 234

Figure 6.4 Triangular fuzzy numbers used to represent the distance and slope

features for the example graph in Figure 6.3 .. 235

Figure 6.5 Plots of the two-dimensional aggregated fuzzy cost vectors for

each path in the example graph from Figure 6.3 236

Figure 6.6 The aggregated fuzzy cost vectors from Figure 6.5 are normalized

using the nadir vector and defuzzified using weighted centroid

defuzzification... 237

Figure 6.7 Examples of different scalarization methods applied to the

aggregated fuzzy cost vectors given in Table 6.1 238

Figure 6.8 Exponential scaling of a normalized edge cost 𝑥.................................... 242

Figure 6.9 Example of crossover and mutation on paths ... 251

xii

Figure 6.10 Shortest paths found by the MOEA/D algorithm for the MO-

FLCPP in a binary terrain environment using the weighted sum

scalarization method to minimize 𝑓𝑡(1) and 𝑓𝑡(2) 254

Figure 6.11 Shortest paths found by the MOEA/D algorithm for the MO-

FLCPP in a binary terrain environment using the Tchebycheff

scalarization method to minimize 𝑓𝑡(1) and 𝑓𝑡(2) 256

Figure 6.12 Shortest paths found by the MOEA/D algorithm for the MO-

FLCPP in a binary terrain environment using the ordered weighted

average (OWA) scalarization method with weight vector

𝜽 = 0.67, 0.33 to minimize 𝑓𝑡(1) and 𝑓𝑡(2) ... 258

Figure 6.13 Least-cost paths found by the MOEA/D algorithm for the MO-

FLCPP in a hilly environment using the ordered weighted average

(OWA) scalarization method with weight vector 𝜽 = 0.67, 0.33 to

minimize 𝑓𝑑and 𝑓ℎ_max .. 259

Figure 6.14 Least-cost paths to the nearest goal found by the MOEA/D

algorithm for the MO-FLCPP in a hilly environment using the

ordered weighted average (OWA) scalarization method with

weight vector 𝜽 = 0.67, 0.33 to minimize 𝑓𝑑and 𝑓ℎ_max........................ 260

Figure 6.15 Least-cost paths to the nearest goal found by the MOEA/D

algorithm for the MO-FLCPP in a hilly environment with no

region clustering using the ordered weighted average (OWA)

scalarization method with weight vector 𝜽 = 0.67, 0.33 262

Figure 6.16 Shortest paths found using terrain transition features 263

Figure 6.17 Pareto optimal least-cost paths found by the MOEA/D algorithm

for the MO-FLCPP in many-objective environments 265

Figure 6.18 Environment types used to evaluate the MOEA/D algorithm for the

MO-FLCPP ... 268

Figure 6.19 An agent solving a TPP in the CMM framework with no region

clustering ... 280

Figure 6.20 An agent solving a TPP in the CMM framework using a small

local region with no memory and region clustering in all areas 281

Figure 6.21 An agent solving a TPP in the CMM framework using a small

local region with memory and region clustering in all areas 282

xiii

Figure 6.22 An agent solving a TPP in the CMM framework using region

clustering only for unobserved regions and no region clustering

elsewhere... 283

Figure 7.1 Some selected moments from the greedy policy’s solution for the

PO-TSP ... 291

Figure 7.2 Some selected moments from the MMC policy’s solution to the

same PO-TSP environment used in Figure 7.1 292

xiv

LIST OF TABLES

Table 4.1 Crisp terrain type and terrain transition features..................................... 114

Table 4.2 Example of the fuzzy terrain type feature ... 122

Table 4.3 Example of the fuzzy symmetric terrain transition feature 127

Table 4.4 Example of the fuzzy directional terrain transition feature 127

Table 5.1 Expected values of 𝑌𝑛
abs and 𝑌𝑛

dir for various values of 𝑛 190

Table 5.2 Original and approximate region features with both regions either

observed or unobserved ...207

Table 5.3 Original and approximate region features with only one region

observed .. 208

Table 6.1 Aggregated feature values of the example graph in Figure 6.3 235

Table 6.2 Best paths found in the example graph in Figure 6.3 246

Table 6.3 Summary of problem types used to compare MOEA/D to pre-

scalarized decomposition .. 269

Table 6.4 Average percent improvement of MOEA/D over pre-scalarization

(region cluster size = 3) .. 272

Table 6.5 Average percent improvement of MOEA/D over pre-scalarization

(no region clustering) .. 274

Table 6.6 Average percent improvement of MOEA/D over pre-scalarization

(region cluster size = 10) .. 274

Table 6.7 Feature weights for the example greedy agent 277

Table 6.8 Solution costs of the example greedy agent .. 279

xv

LIST OF ALGORITHMS

Algorithm 2.1 Viewshed Analysis.. 23

Algorithm 2.2 Amanatides and Woo Line Traversal for Visibility 28

Algorithm 2.3 MOEA/D ... 53

Algorithm 3.1 Cave Environment Generation .. 62

Algorithm 3.2 Cellular Automata ... 63

Algorithm 3.3 Remove Diagonal Passages .. 64

Algorithm 3.4 Region Partitioning ... 66

Algorithm 3.5 Tabu Sampling .. 67

Algorithm 3.6 Grid Distance .. 69

Algorithm 3.7 Adjust Cluster Centers .. 70

Algorithm 3.8 Assign Cells to Clusters .. 72

Algorithm 3.9 Get Region Centers ... 74

Algorithm 3.10 Fix Orphans ... 76

Algorithm 3.11 Heightmap Generation .. 79

Algorithm 3.12 Generate Binary Terrain ... 82

Algorithm 3.13 Generate Trinary Terrain .. 84

Algorithm 3.14 Fashion-Based Cellular Automata .. 85

Algorithm 3.15 Generate Full World Environment.. 88

Algorithm 4.1 Initialize the Mental Map .. 97

Algorithm 4.2 Get Observation .. 99

Algorithm 4.3 Get Viewshed .. 103

Algorithm 4.4 Update Mental Map .. 106

xvi

Algorithm 4.5 Cave Wall Heuristics .. 107

Algorithm 5.1 Create the Initial Region Graph .. 142

Algorithm 5.2 Get the Local Region .. 143

Algorithm 5.3 Create the Initial Mental Map Regions ... 146

Algorithm 5.4 Update Region Map .. 147

Algorithm 5.5 Create Region Graph... 150

Algorithm 5.6 Get Fuzzy Distance Cost Matrices for Two Regions........................ 156

Algorithm 5.7 Get Region Indices .. 157

Algorithm 5.8 Get Boundary Edges ... 157

Algorithm 5.9 Create Region Edge Sets ... 170

Algorithm 5.10 Compute Region Features ... 172

Algorithm 5.11 Get Elevation Edge Costs ... 174

Algorithm 5.12 Elevation Feature .. 178

Algorithm 5.13 Bellman-Ford Grid Distance ... 180

Algorithm 5.14 Unobserved Elevation Costs ... 193

Algorithm 5.15 Combine Elevation Costs .. 197

Algorithm 5.16 Update Mental Map Regions .. 210

Algorithm 5.17 Get the Region Clustering Mask ... 213

Algorithm 5.18 Merge Region Labels .. 214

Algorithm 5.19 Update Region Graph ... 216

Algorithm 5.20 Update Region Graph Vertices ... 217

Algorithm 5.21 Update Region Graph Edges ... 219

Algorithm 6.1 Normalized Grid Distance .. 225

Algorithm 6.2 Pre-scalarized Decomposition of the MO-FLCPP 244

xvii

Algorithm 6.3 MOEA/D for the MO-FLCPP ... 248

Algorithm 6.4 A Greedy Algorithm for the CMM Framework 276

xviii

ABSTRACT

Multicriteria decision-making problems arise in all aspects of daily life and form

the basis upon which high-level models of thought and behavior are built. These problems

present various alternatives to a decision-maker, who must evaluate the trade-offs between

each one and choose a course of action. In a sequential decision-making problem, each

choice can influence which alternatives are available for subsequent actions, requiring the

decision-maker to plan ahead in order to satisfy a set of objectives. These problems become

more difficult, but more realistic, when information is restricted, either through partial

observability or by approximate representations.

Pathfinding in partially observable environments is one significant context in which

a decision-making agent must develop a plan of action that satisfies multiple criteria. In

general, the partially observable multiobjective pathfinding problem requires an agent to

navigate to certain goal locations in an environment with various attributes that may be

partially hidden, while minimizing a set of objective functions. To solve these types of

problems, we create agent models based on the concept of a mental map that represents the

agent's most recent spatial knowledge of the environment, using fuzzy numbers to

represent uncertainty. We develop a simulation framework that facilitates the creation and

deployment of a wide variety of environment types, problem definitions, and agent models.

This computational mental map (CMM) framework is shown to be suitable for studying

various types of sequential multicriteria decision-making problems, such as the shortest

path problem, the traveling salesman problem, and the traveling purchaser problem in

multiobjective and partially observable configurations.

1

1 INTRODUCTION

The partially observable multicriteria pathfinding problem is well-suited for

studying models of agent behavior. In this introductory chapter, we present the motivation

for investigating these types of problems and give an overview of the simulation framework

developed for this work. We list some of the major contributions of this work and provide

some potential applications.

1.1 Problem Statement

Imagine a scenario in which you are tasked with finding the best route through an

environment to some goal location. Perhaps there are multiple paths to consider, each with

different attributes that make them more or less desirable according to your particular

preferences. Figure 1.1 shows an example scene with three different routes to choose from.

The shortest route goes directly over a hill, but it is steep and unpaved. The next shortest

route goes through a forest that provides shade and has only a mild elevation change, but

the route is still unpaved and has a stream crossing with no bridge. The last route is the

longest, but it is completely paved and has almost no elevation change. Depending on how

you value factors such as the path length, steepness, and path quality, any one of these

paths could be considered the best choice. Once you begin down one of the paths, you may

discover some new information that causes you to reevaluate your situation and develop a

new plan. For example, if you started down the forested path and found that the stream

crossing was flooded, you might choose to turn around and go a different way.

2

Now consider an autonomous agent faced with a similar scenario. This could be a

robot or drone that needs to navigate through an unknown environment to a goal location

while minimizing some set of objective functions such as distance, travel time, and risk.

The agent uses various sensors to observe the world around it and constructs an internal

representation of the environment in the form of a map. It uses this map to plan a course of

action that best satisfies the predetermined criteria and begins to execute the plan. After

each movement action, the agent receives a new observation and updates its internal map.

If the original plan becomes invalid or a better route is discovered, the agent develops a

new plan and responds accordingly.

Figure 1.1 Example environment with three different path options to reach a goal location.

3

Although the problem domain in this example is navigating through a physical

environment, these types of partially observable sequential multicriteria decision-making

problems occur in many additional real-world contexts. These include optimal packet

routing through a computer network with uncertain loads, making long-term business

decisions based on variable market factors, and designing optimal strategies for games with

hidden information. These are all problems that are addressed by a decision-making agent

(or agents) with a given set of goals and criteria. When the problem needs to be solved

autonomously, such as with a self-guided robot or a recommendation system, the agent

behavior should be defined in a structured and explainable way that responds appropriately

for a wide variety of possible inputs.

Designing the desired agent behaviors can be a challenging problem. Good training

data may not be available and what is available may be limited or incomplete. For many

applications, it is often preferable to simulate the problem domain to give the designer

complete control over the model. These results can then be applied in real-world contexts

for final evaluation. Using a simulated environment allows for the creation of a virtually

unlimited number of problem scenarios, each fine-tuned to study only the relevant aspects

of the problem. It also allows the agent to easily internalize a representation of the problem

domain, which can then be used to plan future actions.

The navigation problem is an ideal domain to study partially observable sequential

multicriteria decision-making strategies. It is easy to visualize and understand the agent

objectives and to develop interpretable problem scenarios. These can be thought of as

proxy problems for other domains that may not be as straightforward to study. The agent’s

internal model of the environment is represented intuitively as a mental map, providing a

4

sense of spatial awareness that can help with planning. Spatial problem solving has also

been studied extensively within the fields of mobile robotics and environmental

psychology. We can build upon these existing models of wayfinding behavior to create

simulations of autonomous agents for the navigation problem domain.

The primary focus of this work is the definition and development of the

computational mental map (CMM) simulation framework. This framework allows for the

creation of pathfinding scenarios that test different agent strategies in multiobjective and

partially observable problems. We design these problems as a type of resource collecting

game, where the agent moves within a grid world environment seeking out resources that

may not be initially visible, all while working to minimize a set of objective functions. We

show how the CMM framework can be used to study shortest path problems, the traveling

salesman problem, and the traveling purchaser problem with various agent profiles. The

result of each problem simulation is the path chosen by the agent for that scenario. Just as

there may not be a “correct” answer for the three-route problem in Figure 1.1, solutions to

problems in the CMM framework can only be evaluated using some established scoring

metric. For some applications, the solution paths themselves are a useful dataset that can

be used to anticipate how a given agent might act in a new situation.

The rest of this chapter provides an overview of the CMM framework and details

some of the major contributions and potential applications of this work. Chapter 2 provides

a literature review of the background material that this work builds upon. Chapter 3

describes the process for creating the grid world environments used to define the

pathfinding problems. Chapter 4 introduces the concept of the mental map, used by the

agent to represent the observed environment. Chapter 5 defines the region graph, which is

5

used to summarize the spatial properties of the mental map as a fuzzy weighted graph.

Chapter 6 shows how this graph can be used to solve least-cost path problems in gridded

domains and presents a greedy agent algorithm. Finally, Chapter 7 concludes this work by

summarizing the capabilities of the CMM framework and proposing extensions of the

greedy algorithm for improved agent strategies on more complex problems.

1.2 The Computational Mental Map Framework

The computational mental map (CMM) simulation architecture consists of two

main components: an environment problem server and an agent program that interacts with

the server to solve a specified problem. An overview of the server/client model is shown

in Figure 1.2. The server component is responsible for defining the environment model ℰ

and implementing the physics of the world by waiting for and implementing the client’s

actions. The client acts as the decision-making agent 𝒜 and receives information about the

environment in the form of observations 𝒪 from the server. The agent uses these

observations to construct and update a mental map representation of the environment ℳ,

which may be incomplete or contain other types of uncertainty or imprecision. The agent’s

goal is to move through the environment and collect a certain number of predefined

resources while minimizing a set of objective functions. Using the information in the

mental map, the agent develops a plan that brings it closer to satisfying the goal conditions

and sends the appropriate sequence of actions to the server.

6

The environments are procedurally generated grid worlds with various terrain types

and elevation. In some environments, a maze-like cavern map is generated to create walls

and passageways that reduce visibility. Some example environments are shown in Figure

1.3. The CMM server maintains the location of the agent within the environment and

defines the locations of the resources. In shortest path problems, there may only be a single

resource (goal) location, whereas multiple resource locations are defined for the traveling

salesman and traveling purchaser problems. In the traveling salesman problem, each

resource is the same type, whereas in the traveling purchaser problem, there are different

types of resources that the agent can choose from. Details regarding the creation of the grid

world environments are given in Chapter 3.

Figure 1.2 Block diagram of the server/client architecture used in the CMM framework.

Create

Environment

Provide

Observation

Get

Observation

Update

Mental Map

Initialize

Mental Map

Decide

Action

Wait for

Action

Apply

Action

SERVER

CLIENT (AGENT)

Agent

Preferences

7

The agent can move through the environment in discrete steps to adjacent grid cells.

Each step has multiple costs associated with it, defined by the environment attributes:

terrain type, elevation, and observability. The agent specifies to the server a direction to

move in and the server responds with an observation of the visible part of the environment

from the agent’s new location. The agent uses these observations to form a mental map

image of the grid world, showing where resources and environmental features are located.

Chapter 4 describes how observations are computed in the grid world domain and

introduces the action graph, which is a fuzzy weighted graph that represents the movement

actions available to the agent and their costs. Figure 1.4 (a) shows an example of a mental

map and action graph where only part of the environment is observable.

Figure 1.3 Examples of grid world environments from the CMM framework.

8

For some planning algorithms in large environments the action graph contains too

much information to process quickly. To simplify the action graph and to provide a model

that more closely resembles human models of spatial reasoning, we develop an approach

to group adjacent grid cells into regions and define a region graph that can be used for high-

level planning. Figure 1.4 (b) shows an example of a region graph, where each node

represents multiple adjacent grid cells. As the agent moves, new parts of the environment

are observed and the region graph is recomputed. Chapter 5 discusses the process for

initializing and updating the region graph in the CMM framework.

We generalize the various pathfinding problem types as a resource collecting game.

The agent is initialized with a list of demanded resources and the agent's goal is to plan a

route through the environment that will collect enough of each resource type. When the

 (a) (b)

Figure 1.4 An agent’s mental map for an example scenario showing the action graph (a) and the region graph

(b). The action graph shows where the agent can move and the region graph summarizes this information for

high-level planning.

9

full environment is observable, the agent can develop a complete plan before actually

moving. However, if there are parts of the environment that cannot be seen initially, then

the agent may only be able to produce a partial plan that is updated as new information is

discovered. Finding the least-cost path between two grid cells in an environment is the

fundamental component of nearly all agent strategies. Chapter 6 describes how an agent

can find a least-cost path in a fuzzy weighted graph with multiple objectives. We consider

both gridded environments and general graphs and present a greedy agent strategy for

solving generic resource collecting problems in the CMM framework.

There are many variations that can be applied within the CMM framework to focus

on different aspects of the overall planning and optimization process. In general, these can

be divided into the parameters that control how the environment is created and those that

govern the behavior of the agent. While this work focuses mainly on environment

generation parameters and a generic greedy approach for solving least-cost path problems,

there are many additional potential applications. Chapter 7 concludes with a summary of

the capabilities of the CMM framework and discusses some possible directions for future

work with more advanced agent behaviors. These include strategies based on ant colony

optimization and Markov decision processes.

1.3 Contributions and Potential Applications

Two of the major themes of this work are multiobjective optimization and planning

under uncertainty. Both areas have seen significant research interest for a variety of

applications. Multiobjective optimization is used for designing products and systems,

making strategic decisions in economic and business settings, and managing limited

10

resources and conflicting objectives. Likewise, planning in partially observable

environments is a critical capability for mobile robots and decision-making agents.

Multiple methods and techniques have been developed to assess multiobjective problems

and to help a decision-maker choose an appropriate solution. The vast majority of

multiobjective optimization methods are used to address problems with no uncertainty.

Also, most planning techniques are designed with a single objective or reward in mind,

reducing multiple costs to a single value before optimizing. A major goal of this work is to

develop tools and methods that can be used to study multiobjective decision-making and

planning under uncertainty.

The CMM framework is designed to be a benchmark and simulation tool that can

model the behavior of a decision-making agent in various configurable scenarios. The

problem domain uses pathfinding in partially observable grid world environments to

provide a goal for each agent to pursue. While this allows for an interpretable explanation

of each example, these problems can also be used as generic templates for other

applications. For instance, the environment creation process could be modified to produce

a specific type of fuzzy weighted graph that matches a real-world problem requiring a least-

cost path solution. This could occur in the development of personalized navigation systems

or robot navigation. Many of the methods presented in this work can likewise be extended

to other problem domains. For example, the process of computing a region graph of a grid

world environment could be used to develop image features for classification or analysis.

One potential application of this work is to provide an unlimited number of training

and testing examples of simulated agent behavior. This can be used to develop techniques

for performing anticipatory analysis, which is a desirable capability in the intelligence

11

community. Human behavior is difficult to predict, but an approximate model of behavior

can be learned by observing the responses of a decision-maker in many different situations.

A richly attributed environment with many feature values can help to make sure that a

given agent’s choices are unique and distinguishable from other agents. In the context of a

game environment, player modeling allows an opponent to anticipate the player’s next

actions and develop a more effective plan.

The CMM framework presented in this work is a starting point for developing more

complex models of agent behavior. We build upon existing models of cognitive mapping

and wayfinding, and begin with a foundation in procedurally generated environments,

fuzzy methods, and multiobjective optimization. These are introduced along with other

background concepts in the next chapter.

12

2 BACKGROUND

The CMM framework developed in this work draws upon many diverse

backgrounds. We begin this chapter with a review of cognitive mapping and its origins for

creating models of human wayfinding behavior. We next introduce fuzzy numbers and the

fuzzy weighted graph representation. Then, we discuss methods of procedural content

generation used to create the grid world environments. We continue with a comprehensive

background on multiobjective optimization and end with a discussion on agent-based

models.

2.1 Wayfinding and Cognitive Mapping

Wayfinding can be described as the process of spatial problem solving. In the

wayfinding problem, a decision-making agent orients itself in an environment and

navigates to some destination. It uses landmarks and cues to determine its position and to

determine the best route to take. As the agent moves, it continues to update its plan using

any new information that is acquired. Humans and animals routinely solve wayfinding

problems in their everyday lives as they move about their environments, working to satisfy

their goals and objectives. Autonomous agents are also being used increasingly to assist

people in making navigation decisions and to carry out actions without human input. Self-

driving cars, unmanned aerial vehicles, and other mobile robots are just a few examples of

machines that must think on their own about how to solve problems of spatial navigation.

In general, wayfinding is a challenging computational problem that can be

compounded by a lack of knowledge or perfect information. Furthermore, a decision-maker

13

may have multiple conflicting objectives that cannot all be optimized simultaneously.

Within these partially observable multi-objective environments, an agent must decide how

best to navigate using only the information that is available. For humans, this process is

called cognitive mapping and it results in an information structure known as a mental map.

Although humans may not be optimal problem solvers from a computational point of view,

the concept of the mental map has proven to be a useful way to represent imprecise spatial

knowledge and develop navigation plans.

The CMM framework is inspired by the study of how a person might make

navigation decisions in an unfamiliar environment. The notion of using a cognitive map to

represent spatial information dates as far back as the seminal work of Tolman (Tolman

1948), who established the now famous paradigm of studying decision-making behavior

by observing how rats move through mazes. His work helped establish the fields of

cognitive psychology and decision theory. Since these early studies, dozens of researchers

have proposed behavioral models to explain the way humans make decisions in physical

environments (Kitchin and Blades 2002). Error! Reference source not found. shows an

example diagram of the general cognitive mapping process. An individual acting in an

unknown environment maintains a set of beliefs about the world that influence the values

or goals he or she wishes to achieve. These are combined with the most recent observation

of the world to form a spatial image of the environment in working memory. This image is

stored for later use and also updates the individual’s beliefs about the world. A set of

physical constraints are evaluated with the image to form a decision of the next immediate

action to take. When applied in the environment, this action produces a behavior that can

be observed in the real world and results in some new information presented to the

14

individual. The cycle repeats indefinitely, with the individual’s desires and beliefs

changing over time. Many variations of this general framework have been developed for

use in various problem domains.

A mental map is the manifestation of an individual’s spatial knowledge and beliefs

into a geospatial context. Mental maps are often studied by asking a person to draw a map

of their environment, or to relate spatial quantities such as the distance between two

landmarks (Gould and White 1992). For instance, a mental map of an urban environment

could be represented as a hierarchical structure consisting of paths, edges, districts,

landmarks, and nodes (Lynch 1960). The cognitive distances within a mental map are

unique to each individual and can be based on a variety of factors, including the amount of

expected energy required to move along a route, patterns in the environment, and symbolic

representations such as maps and road signs (Briggs 1973). These individual differences

Figure 2.1 Generative model of cognitive mapping adapted from (Kitchin and Blades 2002). An individual

observes the environment and constructs a mental image. This image is combined with other knowledge to

produce a decision in the environment.

15

lead to distortions in the map that may not necessarily align with ground truth data

(Coucleis et al. 1987).

In general, mental maps may contain additional types of knowledge and reasoning

processes besides just spatial information. Rules that govern an individual’s behavior

dictate important spatial decisions, such as the decision to move or not move, where to go,

which route to take, and the method of transportation (Cadwallader 1976; Gärling, Book,

and Lindberg 1985). In order to use a mental map for navigation, a person must first orient

and conflate his or her mental map with the real world, identify an objective, and choose a

route to follow (Downs and Stea 1977). The PLAN model (Prototypes, Location, and

Associative Networks) (Chown, Kaplan, and Kortenkamp 1995) is an example method that

implements this wayfinding process. In this model, the visual recognition of “what” is in

the scene is combined with the spatial knowledge of “where” the visual landmarks appear.

The landmarks are related to each other with a spatial relational graph that describes their

relative positions. This attributed graph can then be used to represent the individual’s

mental map.

2.2 Procedural Content Generation

The study of wayfinding problems is often hampered by the difficulty of conducting

controlled research experiments. Studies involving human subjects are limited by available

time and resources, and usually consist of a relatively small number of data samples.

Designing appropriate problems to solve can be a challenging and time-consuming task for

a researcher, who may seek to use some automated methods for assistance. Using a game

16

engine as a synthetic problem domain to study wayfinding problems allows for the creation

of a nearly infinite number of environments and scenarios.

Procedural Content Generation (PCG) for games can be defined as “the algorithmic

creation of game content with limited or indirect user input” (Togelius et al. 2011). PCG is

often used to produce content for games such as levels, maps, items, game rules, etc. A

“game” in this context may refer to videogames, board games, puzzles, or any sort of

interactive experience that is in some way “playable.” The value of using PCG over manual

content creation is that PCG allows a computer algorithm to perform a task that might take

a long time for a human designer. Furthermore, PCG can be parameterized in such a way

that the generated content exhibits a desired set of properties. A designer can use PCG to

enhance their own creativity by creating novel and unexpected solutions to content

generation problems (Shaker, Togelius, and Nelson 2016).

There are many different approaches to PCG that can be used to create specific

types of content. In this work, we use PCG to create environment maps that exhibit

desirable characteristics for the problems we wish to study. We focus mainly on two

common approaches: cellular automata and fractal terrain. For cellular automata, we

consider both traditional and fashion-based update rules. These are described in the

following sections.

2.2.1 Cellular Automata

A cellular automation is an iterative computational model that operates over a

discrete domain. Perhaps the most famous example is Conway’s Game of Life (Gardner

1970) that simulates a grid of cells that can evolve into complex patterns demonstrating

17

emergent behavior and self-organization. In the Game of Life, the domain is a flat grid of

cells that each can be in one of two states: alive or dead. We define a neighborhood for

each cell, consisting of the eight neighboring cells, including those diagonally adjacent.

This is called the Moore neighborhood and is just one of many possible neighborhood

definitions. (Another possibility is the von Neumann neighborhood, which consists of only

the four orthogonally adjacent cells.)

A simulation of a cellular automation iterates through a sequence of states 𝑠𝑡, where

𝑡 ≥ 0 indicates the time step. The initial state 𝑠0 defines the starting state of each grid cell

as either alive or dead. For each subsequent time step, the new state of a cell 𝑥(𝑖,𝑗) is defined

by the current states of the cells in its neighborhood. A transition rule can be defined as a

lookup table over all possible neighborhood configurations, or more commonly as a

function of the proportion of neighboring cells that are in each state. Each rule gives rise

to a unique behavior that can be classified based on whether it converges to a stable or

periodic state, or if it exhibits chaotic non-repeating behavior (Packard and Wolfram 1985).

In the Game of Life, the transition rule is specified using the following conditions:

1. A living cell that has two or three living neighbors survives to the next generation.

2. A living cell with more than three living neighbors dies from overpopulation.

3. A living cell that has fewer than two living neighbors dies from isolation.

4. A dead cell that has exactly three living neighbors becomes alive as through

reproduction.

5. A dead cell with any number other than three living neighbors remains dead.

18

These rules are applied to each cell simultaneously to produce the next generation. The

initial configuration of the cell states defines how the simulation will evolve. Various

patterns have been discovered that result in fascinatingly complex configurations, such as

blinkers, gliders, spaceships, and pulsars (Berlekamp, Conway, and Guy 1982). The Game

of Life can even be configured as a universal Turing machine that (given enough time and

space) is theoretically as powerful as any computer (Chapman 2002)!

Various types of cellular automata have been shown to be useful for procedural

content generation. One example by Johnson et al. uses a cellular automation to generate

two-dimensional cave-like mazes in real-time for an infinite game map (Johnson,

Yannakakis, and Togelius 2010). In this approach, the two cell states represent floor and

rock. The grid is initialized to some random state where each cell has an equal likelihood

of being either floor or rock. The eight cells in the Moore neighborhood are evaluated for

each cell and if there are five or more neighbor cells that are rock, the cell is set to rock.

Otherwise the cell is set to floor. This single rule is applied simultaneously 𝑛 times to

generate the cave map. For aesthetic reasons, rock cells that border a floor cell are labeled

as walls and contiguous rock regions are assigned unique labels. By varying the size of the

Moore neighborhood, the rock threshold value, and the number of iterations, various types

of maps can be generated.

2.2.2 Fashion-based Cellular Automata

A cellular automation can be defined with more than just two states for each cell.

One way of modeling this is with the use of fashion-based cellular automata (Ashlock

2015). In this approach, we use the von Neumann neighborhood containing the four

19

orthogonally adjacent cells and a 𝑘 × 𝑘 real valued rule matrix 𝑅, where 𝑘 is the number

of states. The entry 𝑅𝑖,𝑗 in the rule matrix specifies the score that a cell of type 𝑖 receives if

it has a neighbor in state 𝑗. Each generation the cells are all updated simultaneously and the

total score of each cell is evaluated using the rule matrix. If the score of a cell is at least as

high as its neighbors, it remains in the same state, otherwise it adopts the state of the

neighboring cell with the highest score. This causes cells to “follow the fashion” of the

neighborhood and results in large homogeneous regions that are well-suited for

representing environment maps.

2.2.3 Fractal Terrain

While cellular automata are well suited for generating discrete environments

consisting of a finite number of states, we often require the terrain to consist of real values

to represent features such as elevation. A real-valued grid used to represent elevation is

called a heightmap and is commonly used as a basis for artificial terrain. Random

heightmaps can be generated via several different methods including value- or gradient-

based interpolation such as Perlin noise (Perlin 1985), or using ideas from fractal

mathematics to mimic the multiple scales of repeating patterns found in nature (Mandelbrot

1983). Fractional Brownian noise (Mandelbrot and Van Ness 1968) provides the basis for

a random function that is useful for modeling naturally occurring time series and surfaces.

The diamond-square algorithm (Fournier, Fussell, and Carpenter 1982) is a

computationally efficient method for approximating fractional Brownian motion to

produce a two-dimensional heightmap. The resulting fractal terrain exhibits random

20

variations at multiple scales with large hills and valleys as well as small undulations on the

surface.

Figure 2.2 shows an overview of the diamond-square algorithm on a 55 grid. The

algorithm begins by sampling random values for the four corner cells (a). The diamond

step then sets the center point of these cells to the average of the four corners plus an

additional random value (b). The magnitude of the random value is called the roughness

and determines the texture of the terrain. Next, the square step interpolates the midpoints

of the cells from the previous two steps and adds a random value proportional to the

roughness (c). The original four cells defining a square have now been subdivided into four

smaller squares. The diamond (d) and square steps (e) are then applied to each of the newly

formed squares recursively using a smaller roughness value (typically half of the previous

amount). These two steps repeat until the entire grid has been set. Note that the original

grid should be square with 2𝑛 + 1 pixels on each side. Figure 2.3 shows an example of the

diamond-square algorithm progression on a 257257 grid. Note that basic terrain features

are defined in the first few steps of the algorithm, with later steps serving to refine the

terrain and add details.

 (a) (b) (c) (d) (e)

Figure 2.2 Visualization of the diamond-square algorithm on a 55 grid.

21

As an alternative to midpoint displacement algorithms such as the diamond-square

algorithm, successive random additions can also be used to generate fractal terrain with

similar characteristics (Musgrave, Kolb, and Mace 1989). In this approach, several noise

functions are generated at multiple levels of detail. These are then summed together using

a weight that is inversely proportional to the level of detail. Figure 2.4 shows an example

using multiple octaves of white noise, scaled to match the output size of the terrain. Each

octave 𝑛 is generated by creating an image with 2𝑛+1 pixels in each dimension containing

random values. These images are scaled to the size of the final output using bilinear

interpolation and summed together using a weight of
1

2𝑛−1
 for each octave to produce the

combined noise function. The resulting image can represent a heightmap that is

qualitatively similar to the terrain generated using the diamond-square algorithm. The

method of successive random additions is simple to implement and allows for additional

control over the characteristics of the noise function at each scale.

Figure 2.3 A progression of the diamond-square algorithm generating a fractal terrain.

22

2.3 Viewshed Analysis

Problems of visibility arise in many application domains, including computer

graphics, robotics, and computational geometry (Durand 2000). In geographic information

systems (GIS), the visibility problem is expressed as determining the viewshed of a region

from a given location. For an elevation model represented as a regular square grid,

viewshed analysis is used to find the grid cells that have a direct line of sight (LOS) from

a specified observation point. These cells comprise the viewshed region and can be used

for many applications including planning the placement of communication towers or

watchtowers, path planning, and strategic defense (Franklin and Ray 1994; Floriani and

Magillo 1994).

Figure 2.4 An example of the successive random additions method for generating fractal terrain.

23

The viewshed region for a given point p in a raster grid elevation model E consists

of all points v where a straight line can be drawn from p to v that is entirely above the

terrain in E. Many algorithms have been proposed to compute the viewshed region, most

based on sweeping rays (Kreveld 1996; Fishman, Haverkort, and Toma 2009; Haverkort,

Toma, and Zhuang 2009) or parallel processing approaches (Zhao, Padmanabhan, and

Wang 2013). Algorithm 2.1 gives an overview of an unoptimized approach for computing

the viewshed called R3 that evaluates all grid cells independently. If r is the radius of the

viewshed, then this method takes O(r3) time to evaluate each grid cell sequentially, but it

can be implemented in parallel to reduce the computation time. Our own algorithm is

detailed in Section 4.1 and builds upon the method presented here.

Algorithm 2.1 Viewshed Analysis

GET_VIEWSHED_R3(E, x1, y1, h)

/* Precompute the elevation angle to each grid cell */

1: (n, m) ← size of E

2: A ← n  m grid initalized to 0

3: for each (x2, y2) {(x2, y2) | 1 ≤ y2 ≤ n  1 ≤ x2 ≤ m  (x1, y1) ≠ (x2, y2)}

4: A[y2, x2] ← tan−1 (
𝐸[𝑦2,𝑥2]−𝐸[𝑦1,𝑥1]−ℎ

√(𝑥2−𝑥1)2+(𝑦2−𝑦1)2
)

/* Evaluate the visibility of each grid cell */

5: V ← n  m grid initalized to 0

6: for each (x2, y2) {(x2, y2) | 1 ≤ y2 ≤ n  1 ≤ x2 ≤ m}

7: v ← CHECK_VISIBILITY(A, x1, y1, x2, y2) // Algorithm 2.2

8: V[y2, x2] ← [v > 0]

9: return V

24

The algorithm begins by precomputing the elevation angle from the observation

point to each grid cell in the terrain (lines 1-4). We assume that the elevation of a grid cell

is represented by its center point and that the observer is standing at height h above the

observation point p = (x1, y1). The horizontal distance to a grid cell v = (x2, y2) is computed

as

 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2, (2.1)

and the vertical elevation difference is

 𝑒 = 𝐸[𝑦2, 𝑥2] − 𝐸[𝑦1, 𝑥1] − ℎ. (2.2)

From this we compute the elevation angle as

 𝑎 = tan−1
𝑒

𝑑
. (2.3)

For a grid cell v to be visible from the observation point p, the elevation angle from p to v

must be greater than the elevation angle from p to any grid cell on a line from p to v (see

Figure 2.5). Most viewshed algorithms that operate on discrete grid elevation models,

including R3, are approximate in the sense that there is no notion of partial visibility for a

grid cell. (A cell is either entirely visible or entirely hidden.) We use a raytracing algorithm

to identify the grid cells that intersect the line from p to v and consider only the elevation

angles to these cells when determining visibility. The commonly used Bresenham line

drawing algorithm (Bresenham 1965) is unacceptable here because it does not return all

cells that intersect the line. Instead, we use the Amanatides and Woo algorithm

(Amanatides and Woo 1987), which is given in Algorithm 2.2. The CHECK_VISIBILITY

function that implements this algorithm is applied to all grid cells in the environment and

25

used to construct the final viewshed (lines 5-8 in Algorithm 2.1). All points with a visibility

greater than 0 are marked as visible in the viewshed.

Given the vectors p and v from the origin to the points p = (x1, y1) and v = (x2, y2),

the vector representation of the line going from p to v is defined as p + tu, where u = v – p.

The Amanatides and Woo algorithm works by increasing t from 0 to 1 and identifying all

the grid cell boundary crossings of this vector. These occur at the regular intervals tDeltaX

and tDeltaY. tDeltaX represents the amount that t increases between vertical cell boundary

crossings and is computed as

 𝑡𝐷𝑒𝑙𝑡𝑎𝑋 = √(
𝑑𝑦

𝑑𝑥
)

2

+ 1, (2.4)

 (a) (b)

Figure 2.5 Viewshed analysis of the grid cell v = (x2, y2) from the observation point p = (x1, y1). (a) shows a

line drawn from p to v and all grid cells that the line intersects (shaded). These cells are evaluated to see if

any obstruct the line of sight (LOS). The variables tX, tY, tDeltaX and tDeltaY are used by the Amanatides

and Woo line traversal algorithm in Algorithm 2.2. (b) shows the elevation profile of the shaded grid cells in

(a). For a grid cell v to be visible from p, it must have a clear LOS from the observation point, set at a height

h above the elevation of p. If the elevation angle of any grid cell between p and v is greater than the elevation

angle from p to v, then the LOS is obstructed and the cell is not visible. The striped cells are not visible in

this example.

26

where 𝑑𝑥 = 𝑥2 − 𝑥1 and 𝑑𝑦 = 𝑦2 − 𝑦1. Likewise, tDeltaY represents the amount that t

increases between horizontal cell boundary crossings and is computed as

 𝑡𝐷𝑒𝑙𝑡𝑎𝑌 = √(
𝑑𝑥
𝑑𝑦
)

2

+ 1. (2.5)

These values are computed in lines 1-4 of Algorithm 2.2. Line 5 computes the value of t at

the first vertical crossing as

 𝑡𝑋 = √(
𝑑𝑦

2𝑑𝑥
)

2

+ (
1

2
)
2

. (2.6)

This variable will be updated to always store the value of t at the next vertical crossing.

Line 6 computes the value of t at the first horizontal crossing as

 𝑡𝑌 = √(
𝑑𝑥
2𝑑𝑦

)

2

+ (
1

2
)
2

. (2.7)

This variable will also be updated to store the value of t at the next horizontal crossing.

Lines 7-8 determine the signs of dx and dy (+1, –1) and save these as stepX and stepY

respectively. These values will be used to increment the current cell location, saved as X

and Y, and initialized to x1 and y1 on lines 9-10. The main loop (lines 11-19) of the algorithm

repeats until (X, Y) is equal to (x2, y2). Each iteration, the variables tX and tY are compared

to see if the next boundary crossing is horizontal or vertical. If tX is less than tY, then the

next crossing is a vertical boundary so tX is incremented by tDeltaX and X is incremented

by stepX (lines 13-14). Otherwise, the next crossing is a horizontal boundary, so tY is

incremented by tDeltaY and Y is incremented by stepY (lines 16-17). If at any time the

current grid cell (X, Y) has an elevation angle from the observation point (x1, y1) that is

27

greater than the elevation angle of the target point (x2, y2), then the target point does not

have a clear line of sight from the observation point and the algorithm returns 0 (lines 20-

21). Lines 18-19 handle an edge case where there is an infinite wall obstructing the line of

sight. If such a wall is detected, the algorithm returns –1, which is handled as a special case

in our own algorithm in Section 4.1. If the target point is reached, then that indicates that

there were no grid cells along the path that obstruct the view from the observation point,

so the algorithm returns 1 (line 22).

28

2.4 Least-Cost Paths in Fuzzy Weighted Graphs

The shortest path problem is one of the fundamental problems in graph theory that

finds use in countless applications. These include finding the optimal path between two

Algorithm 2.2 Amanatides and Woo Line Traversal for Visibility

CHECK_VISIBILITY(A, x1, y1, x2, y2)

1: dx ← x2 − x1

2: dy ← y2 − y1

3: tDeltaX ← √(
𝑑𝑦

𝑑𝑥
)
2

+ 1

4: tDeltaY ← √(
𝑑𝑥

𝑑𝑦
)
2

+ 1

5: tX ← √(
𝑑𝑦

2𝑑𝑥
)
2

+ (
1

2
)
2

6: tY ← √(
𝑑𝑥

2𝑑𝑦
)
2

+ (
1

2
)
2

7: stepX ← sign(dx)

8: stepY ← sign(dy)

9: X ← x1

10: Y ← y1

11: while (X, Y) ≠ (x2, y2)

12: if tX < tY

13: tX ← tX + tDeltaX

14: X ← X + stepX

15: else

16: tY ← tY + tDeltaY

17: Y ← Y + stepY

18: if A[Y, X] = NIL

19: return −1

20: if A[Y, X] > A[y2, x2]

21: return 0

22: return 1

29

points on a map, routing information through a computer network, and determining a series

of actions that can solve a sequential decision problem. In general, solutions to these

problems minimize some notion of the cost that is associated with each possible option. In

many cases, the true cost of each solution component is unknown, or is dependent on

multiple factors. For instance, when choosing a route between two locations in an

environment, a decision-maker may have various objectives to satisfy such as minimizing

the total distance and the maximum slope. The lengths and inclinations of each path

segment may only be partially known due to limited visibility, leading to some uncertainty

as to which path to choose. In these situations, it can be useful to model the problem using

fuzzy cost values and a multiobjective framework (Buck, Keller, and Popescu 2014).

To represent an agent's mental map, we use a graph structure that models the spatial

and semantic attributes of the environment. We define the structural component as a graph

𝐺 with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). Each vertex 𝑣 ∈ 𝑉(𝐺) represents a location or

state, and edges represent possible actions or movements between locations. In a directed

graph, the edge set 𝐸(𝐺) ⊆ 𝑉(𝐺) × 𝑉(𝐺) consists of all ordered pairs of vertices (𝑣𝑠, 𝑣𝑡)

that are connected by an edge. An edge 𝑒 ∈ 𝐸(𝐺) has both a starting vertex 𝑣𝑠 = START(𝑒)

and an ending vertex 𝑣𝑡 = END(𝑒). A path 𝑝 through the graph is represented as an 𝑛-tuple

(𝑒1, … , 𝑒𝑛) ∈ (𝐸(𝐺))
𝑛

 where END(𝑒𝑖) = START(𝑒𝑖+1) for 𝑖 = 1,… , 𝑛 − 1. The starting and

ending vertices of the path are denoted as 𝑠 = START(𝑒1) and 𝑡 = END(𝑒𝑛) respectively.

The set 𝑃(𝑠, 𝑡) is defined as the set of all paths between vertices 𝑠 and 𝑡. Each edge is

assigned a feature vector that represents the attributes of the environment. A multiobjective

problem can have many feature dimensions, whereas a single-objective problem will only

30

have one dimensional features. The feature values are crisp numbers when the environment

is fully observable, but fuzzy numbers are used in partially observable environments to

represent uncertainty.

2.4.1 Least-Cost Path Problems

A standard weighted graph assigns a real-valued weight 𝑤𝑖 to each edge 𝑒𝑖 ∈ 𝐸(𝐺).

The meaning of the weight value is arbitrary, although it typically represents some measure

of the edge length or cost associated with including the edge in a path. The shortest path

problem is defined as finding the path (𝑒1, … , 𝑒𝑛) ∈ 𝑃(𝑠, 𝑡) between two vertices 𝑠 and 𝑡

in a graph 𝐺 such that the sum ∑ 𝑤𝑖
𝑛
𝑖=1 is minimized. There are several algorithms that are

commonly used to solve shortest path problems.

Dijkstra's algorithm (Dijkstra 1959) can be used in graphs with non-negative

weights to find a single-pair shortest path, or a tree of shortest paths to all vertices from a

single source, known as the single-source shortest path problem. The algorithm works by

expanding a search tree from the source vertex, always adding the edge with the minimum

weight. A naïve implementation operates in 𝑂(|𝑉|2) (where |𝑉| is the number of nodes),

but this can be improved to 𝑂(|𝐸| + |𝑉| log|𝑉|) (where |𝐸| is the number of edges) by

using a min-priority queue such as a Fibonacci heap (Fredman and Tarjan 1984; Fredman

and Tarjan 1987). If an admissible heuristic is available (Russell and Norvig 2009), the

algorithm can be improved to select edges that minimize the sum of the edge weight and

the estimated remaining distance to the goal. This algorithm is called A* (Hart, Nilsson,

and Raphael 1968) and is commonly used to solve pathfinding problems where the path

weight corresponds to total distance.

31

 If the graph contains negative edge weights, the Bellman-Ford algorithm (also

sometimes called the Bellman-Ford-Moore algorithm) (Ford Jr. 1956; Bellman 1958;

Moore 1957) can be used to construct the shortest path tree from a single source and can

detect negative cycles (path loops that have negative total weight thereby removing a lower

bound on the minimum cost of a path). The Bellman-Ford algorithm operates by iteratively

relaxing an upper bound on the cost to reach each vertex from the source. In the worst case,

it operates in 𝑂(|𝑉||𝐸|), but it can terminate early if no changes are detected.

For some applications, we may need to find the shortest paths between all pairs of

vertices. This is called the all-pairs shortest path problem and it can be solved by finding a

shortest path tree from each vertex using one of the above algorithms. Alternatively, the

Floyd-Warshall algorithm (Floyd 1962; Warshall 1962) is specifically designed to solve

this problem and does so by iteratively relaxing a |𝑉| × |𝑉| matrix containing the shortest

path distances between each pair of vertices (and optionally a second matrix containing the

predecessor of each vertex). The Floyd-Warshall algorithm runs in 𝑂(|𝑉|3) and recursively

computes for each triplet (𝑖, 𝑗, 𝑘) ∈ |𝑉|3 the shortest path between 𝑖 and 𝑗 using only

vertices 1,… , 𝑘.

The optimal path in some contexts is not always the shortest path. For instance, to

optimize traffic flow in transportation and computer networks, it can be useful to identify

the maximum capacity route (Hu 1961; Pollack 1960) (sometimes called the bottleneck

shortest path) that maximizes the minimum-weight edge in the path. A related problem that

we consider is finding the minimax path (Berman and Handler 1987), which minimizes the

maximum-weight edge in the path. This can be used to find paths that avoid certain high-

32

cost areas. In general, a least-cost path is a path that minimizes some measure of the path

cost and may refer to either a shortest path or a minimax path.

2.4.2 Fuzzy Numbers

Partially observable environments introduce uncertainty into the wayfinding

problem. Fuzzy sets (Zadeh 1965) are a way to model certain types of uncertainty that arise

in the representation of partially observable environment features. A fuzzy number 𝐴 ⊆ ℝ

is a normalized convex fuzzy set with a membership function 𝜇𝐴: 𝐴 → [0, 1] that specifies

the degree to which a real number 𝑥 ∈ ℝ is included in the set 𝐴. Fuzzy numbers provide

a way to represent uncertainty in the true value of a number and to express linguistic

approximations such as “about 3” or “nearly 10.” Some common representations for fuzzy

numbers include triangular and trapezoidal membership functions, which are defined by 3

or 4 parameters respectively. We use triangular fuzzy numbers throughout this work to

demonstrate our approach, but other representations (such as trapezoidal membership

functions or a list of alpha-cut endpoints) could be used when deemed appropriate by the

problem domain. A triangular fuzzy number 𝐴 is defined by a 3-tuple Tri(𝑎, 𝑏, 𝑐), where

the interval [𝑎, 𝑐] is the support for which 𝜇𝐴(𝑥) > 0 and 𝑏 is the single point where

𝜇𝐴(𝑥) = 1. Its membership function is defined as

 𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) =

{

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 < 𝑏

1, 𝑥 = 𝑏
𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 < 𝑐

0, 𝑥 ≥ 𝑐 .

 (2.8)

33

The arithmetic operators (+, –, , ), as well as other functions such as

minimization and maximization, can be defined for fuzzy numbers using Zadeh’s extension

principle (Zadeh 1975a; Zadeh 1975b). The result of a function 𝑓(𝐴, 𝐵) operating on two

fuzzy numbers 𝐴 and 𝐵 is given as

 𝜇𝑓(𝐴,𝐵)(𝑧) = sup
𝑧=𝑓(𝑥,𝑦)

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)). (2.9)

In this work, we focus mainly on the summation and maximization operators for triangular

fuzzy numbers. The summation of two triangular fuzzy numbers is derived from Equation

2.9 as

 Tri(𝑎1, 𝑏1, 𝑐1) + Tri(𝑎2, 𝑏2, 𝑐2) = Tri(𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2). (2.10)

The summation of two triangular fuzzy numbers will always result in a new triangular

fuzzy number. However, because maximization is a nonlinear operator, the maximum of

two triangular fuzzy numbers may not be triangular (see Figure 2.6). To keep the practical

requirements of the CMM framework simple, we seek to maintain a consistent

representation for all fuzzy numbers. Therefore, we define an approximate maximization

operator that gives a triangular fuzzy number,

max′(Tri(𝑎1, 𝑏1, 𝑐1), Tri(𝑎2, 𝑏2, 𝑐2))

= Tri(max(𝑎1, 𝑎2) ,max(𝑏1, 𝑏2) ,max(𝑐1, 𝑐2)).

(2.11)

This approach maintains the true definition at the endpoints and peak of the fuzzy number,

but may produce different values at the intermediate points.

34

In a least-cost path problem, the goal is to find a solution that minimizes some set

of objectives. By representing the value of a solution as a fuzzy number, we can capture

some of the uncertainty in a solution’s true value. However, this uncertainty makes it

difficult to assess whether one solution is better than another. While there is no universal

definition for the ordering of fuzzy numbers that proves satisfactory for all cases (see for

instance (Wang and Kerre 2001a; Wang and Kerre 2001b)), we adopt the following

intuitive definitions.

Definition 2.1. Let 𝐴1 = Tri(𝑎1, 𝑏1, 𝑐1) and 𝐴2 = Tri(𝑎2, 𝑏2, 𝑐2) be two triangular

fuzzy numbers. We say that 𝐴1 is less than or equal to 𝐴2 (𝐴1 ≤ 𝐴2) if and only if

(𝑎1 ≤ 𝑎2 and 𝑏1 ≤ 𝑏2 and 𝑐1 ≤ 𝑐2).

Definition 2.2. Let 𝐴1 = Tri(𝑎1, 𝑏1, 𝑐1) and 𝐴2 = Tri(𝑎2, 𝑏2, 𝑐2) be two triangular

fuzzy numbers. We say that 𝐴1 is strictly less than 𝐴2 (𝐴1 < 𝐴2) if and only if 𝐴1 ≤

𝐴2 and (𝑎1 < 𝑎2 or 𝑏1 < 𝑏2 or 𝑐1 < 𝑐2).

Figure 2.6 The summation of two triangular fuzzy numbers 𝐴 = Tri(1, 2, 3) and 𝐵 = Tri(0, 4, 5) is shown

as Tri(1, 6, 8). The true maximum of 𝐴 and 𝐵 is not a triangular fuzzy number, but can be approximated as

Tri(1, 4, 5).

35

There may be many solutions for a given problem with no single solution that is

less than all others. If 𝐴1 ≮ 𝐴2 and 𝐴2 ≮ 𝐴1, then it is not clear which of the two fuzzy

numbers should be preferred (assuming 𝐴1 ≠ 𝐴2). When a decision-maker is required to

choose one of these, we can employ a weighted centroid defuzzification scheme to produce

a crisp value for each solution that can be ranked directly. The centroid of a fuzzy number

𝐴 is defined as

 𝑥̅ =
∫ 𝑥𝜇𝐴(𝑥) 𝑑𝑥

∫ 𝜇𝐴(𝑥) 𝑑𝑥
. (2.12)

For a triangular fuzzy number Tri(𝑎, 𝑏, 𝑐), this evaluates to

 𝑥̅ =
1

3
(𝑎 + 𝑏 + 𝑐). (2.13)

The weighted centroid is defined by a control parameter 𝜉 ∈ [0, 1] that specifies the

optimism/pessimism of the decision-maker. A value of 𝜉 = 0 indicates extreme optimism,

in which the fuzzy number is defuzzified to the smallest possible value, 𝑎. A value of 𝜉 = 1

indicates extreme pessimism, where defuzzification results in the largest possible value, 𝑐.

A value of 𝜉 = 0.5 gives a balanced approach using the centroid, 𝑥̅. The crisp weighted

centroid value is linearly interpolated between these points as

 𝐶(𝐴|𝜉) = {
𝑎 + 2𝜉(𝑥̅ − 𝑎), 𝜉 ≤ 0.5

𝑥̅ + 2(𝜉 − 0.5)(𝑐 − 𝑥̅), 𝜉 > 0.5 .
 (2.14)

Using a constant value for 𝜉, a decision-maker can defuzzify multiple fuzzy numbers using

the weighted centroid approach and compare the resulting crisp values. If two fuzzy

numbers result in the same crisp value when defuzzified, they are considered equivalent.

36

2.4.3 The Multiobjective Fuzzy Least-Cost Path Problem

The fuzzy shortest path problem (FSPP) was first analyzed by Dubois and Prade

(Dubois and Prade 1980), who extended the classic Floyd-Warshall and Bellman-Ford

algorithms for graphs with a single fuzzy weight assigned to each edge. A drawback of this

early approach, however, was that a fuzzy cost could be obtained without an associated

path to go with it. Many papers have since been written on the topic with improved

algorithms for specific variations of the FSPP (e.g. (Klein 1991; Okada and Soper 2000;

Cornelis, De Kesel, and Kerre 2004; Moazeni 2006; Hernandes et al. 2007)) with improved

algorithms for specific variations of the FSPP. Typically, the problem is treated as a single

objective optimization, although due to its fuzzy nature, there may be multiple non-

dominated solutions. A defuzzification method is usually required to provide some

recommendation to a decision-maker.

The multiobjective shortest path problem (MO-SPP) likewise has received

considerable attention in the optimization literature (e.g. (Martins 1984; Loui 1983;

Guerriero and Musmanno 2001; Tarapata 2007)). One of the common applications of the

MO-SPP is in designing and using transportation networks, where travel time, distance,

and other criteria may dictate which routes are considered optimal. These objectives are

typically in conflict such that there is no single solution that outperforms all others. In this

case, multiobjective decision-making techniques should be used to help the decision-maker

choose a solution.

We define a general fuzzy weighted graph as a graph 𝐺 that has a weight vector of

fuzzy numbers assigned to each edge. For each edge 𝑒 ∈ 𝐸(𝐺), we define a feature vector

37

𝑭(𝑒) = (𝐹1(𝑒),… , 𝐹𝑚(𝑒)), where each 𝐹𝑖(𝑒) is a fuzzy number that represents a feature

attribute of that edge and 𝑚 is the total number of features. Features are defined as

components of a multiobjective cost function that are intended to be minimized. For

instance, a vector might have one feature that represents distance and another that

represents slope or travel time. In the CMM framework, each feature is assumed to be non-

negative with zero being the minimum possible value. By using a vector of fuzzy numbers

to represent edge weights, a fuzzy weighted graph can model different degrees of

uncertainty for each component of the multiobjective cost function. When there is no

uncertainty, the fuzzy numbers are reduced to crisp values.

A path 𝑝 = (𝑒1, … , 𝑒𝑛) in a fuzzy weighted graph is a sequence of 𝑛 edges, each

with an associated weight vector given as 𝑭(𝑒𝑖). We compute an aggregated cost vector

𝑨(𝑝) = (𝐴1(𝑝),… , 𝐴𝑚(𝑝)) for the path by either summing or taking the maximum value

of the feature components of each edge. Let 𝜸 = (𝛾1, … , 𝛾𝑚) be an indicator vector where

𝛾𝑖 = 0 if feature 𝑖 should be aggregated by summation and 𝛾𝑖 = 1 if feature 𝑖 should be

aggregated using maximization. For features where the decision-maker considers the total

feature value (𝛾𝑖 = 0), the aggregated value of feature 𝑖 is

 𝐴𝑖(𝑝) =∑ 𝐹𝑖(𝑒𝑗)
𝑛

𝑗=1
. (2.15)

For features where the decision-maker considers the maximum feature value (𝛾𝑖 = 1), the

aggregated value of feature 𝑖 is

 𝐴𝑖(𝑝) = max′
𝑗=1,…,𝑛

𝐹𝑖(𝑒𝑗). (2.16)

38

Note that the aggregation method may be different for each feature. For instance, a feature

measuring the total distance traveled would be aggregated using summation, whereas a

feature measuring the steepest slope segment along a path would be aggregated using

maximization.

Given a fuzzy weighted graph 𝐺 with a starting vertex 𝑠 ∈ 𝑉(𝐺) and an ending

vertex 𝑡 ∈ 𝑉(𝐺) where 𝑠 ≠ 𝑡, the multiobjective fuzzy least-cost path problem (MO-

FLCPP) is defined as finding a path 𝑝 ∈ 𝑃(𝑠, 𝑡) that minimizes the aggregated cost vector

𝑨(𝑝). When the summation operator is used for aggregation, this is called the shortest path

problem. When the max operator is used, it may be called the minimax path problem. We

use the term least-cost path to refer to the general case that may have mixed aggregation

methods. The MO-FLCPP may not have a single solution that minimizes each cost

component 𝐴𝑖(𝑝) simultaneously for 𝑖 = 1,… ,𝑚. Multiobjective optimization techniques

should therefore be used to help the decision-maker choose a solution.

2.5 Multiobjective Optimization

Many real-world problems involve several criteria that influence the decision-

making process. In these problems, a decision-maker must optimize multiple objectives

simultaneously. Typically, the objectives conflict in some nontrivial way, forcing the

decision-maker to make some tradeoff between various possible solutions. Multiobjective

optimization is the study of decision problems with more than one objective. This section

presents an overview of the multiobjective problem setting and defines several methods

that allow a decision-maker to select an optimal solution.

39

2.5.1 Multiobjective Optimization Problem Definition

Formally, a multiobjective optimization problem (MOP) is defined as

minimize 𝐟(𝐱) = (𝑓1(𝐱),… , 𝑓𝑘(𝐱))

subject to 𝐱 ∈ Ω,
 (2.17)

where we have 𝑘 (≥ 2) real-valued objective functions 𝑓𝑖: ℝ
𝑛 → ℝ that are to be

minimized (Miettinen 1999). A decision vector 𝐱 = (𝑥1, … , 𝑥𝑛) represents a potential

solution to the MOP and Ω ⊆ ℝ𝑛 is the feasible region defined by the problem constraints.

We sometimes use the terms decision vector and solution interchangeably. A decision

variable 𝑥𝑖 may represent some characteristic attribute of the solution, or some component

of a complete solution. For example, a complete solution to the multiobjective path-

planning problem is some path through an environment space and the decision variables

represent the various path components1.

We assume that no single solution 𝐱 minimizes all objective functions

simultaneously, otherwise there would be no conflict between the objectives and the

problem could be solved using traditional single-objective methods. In the usual case with

multiple conflicting objectives, we cannot determine a single optimal solution and are

required to examine the tradeoffs between solutions in the objective space, ℝ𝑘. The subset

of the objective space that forms the image of the feasible region Ω is called the feasible

objective region and is denoted as Λ = 𝐟(Ω). Elements of Λ are called objective vectors

and are denoted by 𝐟(𝐱) or 𝐳 = (𝑧1, … , 𝑧𝑘), where 𝑧𝑖 = 𝑓𝑖(𝐱) for all 𝑖 = 1, … , 𝑘. Each

objective value 𝑧𝑖 represents some quantifiable feature of the decision vector that is to be

1 The details of the decision vector representation for paths will be discussed further in Chapter 6.

40

minimized. Note that a feature that is to be maximized can be represented in this framework

by defining 𝑓𝑖
min(𝐱) = −𝑓𝑖

max(𝐱). Figure 2.7 shows a graphical representation of the

mapping of a solution from decision space to objective space in a MOP.

2.5.2 Pareto Optimality

Consider two solutions, 𝐱1, 𝐱2 ∈ Ω and their corresponding objective vectors,

𝐳1 = 𝐟(𝐱1) and 𝐳2 = 𝐟(𝐱2). If 𝑧𝑖
1 < 𝑧𝑖

2 for some objective 𝑖, then 𝐳1 is the preferred

objective vector (and 𝐱1 is the preferred solution) based solely on objective 𝑖. If 𝑧𝑖
1 ≤ 𝑧𝑖

2

for all 𝑖 = 1,… , 𝑘 and 𝑧𝑗
1 < 𝑧𝑗

2 for at least one index 𝑗, then 𝐳1 is said to dominate 𝐳2

because it is at least as good as 𝐳2 in all objectives and it is better than 𝐳2 in at least one

objective. Similarly, we say that 𝐱1 dominates 𝐱2 if 𝐳1 dominates 𝐳2. A solution that is not

dominated by any other solution in the feasible region is called Pareto optimal, named after

the French-Italian economist and sociologist Vilfredo Pareto, who pioneered the notion of

preference ordering in terms of ordinal utility rather than cardinal utility (Aspers 2001).

Figure 2.7 Mapping from decision space to objective space in a multiobjective optimization problem.

41

Definition 2.3. An objective vector 𝐳∗ ∈ Λ is Pareto optimal if there does not exist

another objective vector 𝐳 ∈ Λ such that 𝑧𝑖 ≤ 𝑧𝑖
∗ for all 𝑖 = 1,… , 𝑘 and 𝑧𝑗 < 𝑧𝑗

∗ for

at least one index 𝑗.

Definition 2.4. A decision vector 𝐱∗ ∈ Ω is Pareto optimal if there does not exist

another decision vector 𝐱 ∈ Ω such that 𝑓𝑖(𝐱) ≤ 𝑓𝑖(𝐱
∗) for all 𝑖 = 1,… , 𝑘 and

𝑓𝑗(𝐱) < 𝑓𝑗(𝐱
∗) for at least one index 𝑗.

The set of all Pareto optimal decision vectors forms the Pareto optimal set 𝑃𝑆, and the set

of all Pareto optimal objective vectors forms the Pareto front 𝑃𝐹. An illustration of the

Pareto optimal set and corresponding Pareto front for a two-objective problem is shown in

Figure 2.8.

Figure 2.8 The mapping of solution vectors from decision space to objective space shows which solutions

belong to the Pareto optimal set in decision space and the Pareto front in objective space.

42

2.5.3 Scalarization

We are not usually satisfied by simply determining the Pareto optimal set of

solutions (or an approximation thereof); most problems require the decision-maker to

actually decide upon a single solution. In general, multiobjective optimization problems

are solved using the method of scalarization, in which a scalarizing function 𝑔: Λ → ℝ≥0 is

defined over the multidimensional objective space that maps any given objective vector

into a single non-negative real value. The decision-maker then chooses the solution from

the feasible region that minimizes the scalarized objective value. We define the resulting

single-objective optimization problem as

minimize 𝑔(𝐟(𝐱))

subject to 𝐱 ∈ Ω.
 (2.18)

Once the problem has been scalarized into a single objective, we can use traditional

optimization techniques to find a solution.

Before scalarizing the objective space, it is usually advisable to normalize the

output range of each objective function into a common range. This helps to ensure that

each objective is treated equally and that the natural scale of the objective values does not

bias the decision toward certain objectives. One common strategy is to normalize the range

of the Pareto front into the unit hypercube. This can be accomplished by defining the ideal

and nadir objective vectors for a given multiobjective problem. The ideal objective vector

is defined as 𝐳⋆ = (𝑧1
⋆, … , 𝑧𝑘

⋆), where 𝑧𝑖
⋆ = min

𝐱∈Ω
𝑓𝑖(𝐱) for 𝑖 = 1,… , 𝑘. This point

represents the best possible objective value in each dimension, although it is almost

certainly outside of the feasible objective region. In contrast to the ideal objective vector,

the nadir objective vector 𝐳nad represents the upper boundary of the Pareto front and may

43

or may not lie within the feasible objective region. While the ideal objective vector is

straightforward to define, the nadir objective vector is often unknown until the problem has

been solved. For a given approximation of the Pareto optimal set 𝑃𝑆′, we define the nadir

objective vector as 𝐳nad = (𝑧1
nad, … , 𝑧𝑘

nad), where 𝑧𝑖
nad = max

𝐱∈𝑃𝑆′
𝑓𝑖(𝐱) for 𝑖 = 1, … , 𝑘. Figure

2.9 shows two examples of the Pareto front and the associated ideal and nadir objective

vectors. Note that the ideal and nadir objective vectors form a bounding box around the

complete Pareto front, which may be disjoint.

Given the range of the Pareto front defined by 𝐳⋆ and 𝐳nad, we normalize the objective

function values into a common range [0, 1] by defining

 𝑧𝑖
′ = 𝑓𝑖

′(𝐱) =
𝑓𝑖(𝐱) − 𝑧𝑖

⋆

𝑧𝑖
nad − 𝑧𝑖

⋆
for 𝑖 = 1,… , 𝑘. (2.19)

The normalized objective vectors are then defined as 𝐳′ = 𝐟′(𝐱) = (𝑧1
′ , … , 𝑧𝑘

′). These

vectors are used in place of the original objective vectors for the scalarization computation,

although the decision-maker may still prefer to be presented with the original units when

comparing alternatives.

Figure 2.9 Examples of the range of the Pareto front. The ideal objective vector represents the minimum

attainable value of each of objective and the nadir objective vector represents the upper boundary of the

Pareto front.

44

2.5.4 Method of the Global Criterion

If the decision-maker considers all criteria to be equally important, we can use the

method of the global criterion, sometimes also called compromise programming (Zeleny

1973). In this method, the decision-maker picks the solution from the Pareto optimal set

that minimizes the distance to some ideal reference point. We use the 𝐿𝑝-metric to measure

the distance from the ideal objective vector and define the scalarization function as

 𝑔𝑝
gc(𝐳′) = (∑(𝑧𝑖

′)𝑝
𝑘

𝑖=1

)

1
𝑝

, (2.20)

where each 𝑧𝑖
′ represents a normalized objective value from Equation 2.19 and 𝑝 > 0.

Because we only need to find the solution that minimizes the scalarized value, the exponent

1

𝑝
 can be dropped without affecting the outcome. Common values of 𝑝 are 1, 2, and ∞. The

𝐿∞-metric is also called the Tchebycheff1 metric, and the equivalent scalarization function

can be expressed as

 𝑔∞
gc(𝐳′) = max

𝑖=1,…,𝑘
𝑧𝑖
′. (2.21)

Figure 2.10 shows the difference between the 𝐿1-, 𝐿2-, and 𝐿∞-metrics. Each metric results

in a different interpretation of the objective space and correspondingly selects a different

solution from the Pareto front.

1 An alternate spelling is the Chebychev metric.

45

2.5.5 Method of Weighted Metrics

A decision-maker will usually wish to express some preference for certain

objectives over others. The method of the global criterion can be extended to include a

weight term for each objective indicating its relative importance. Doing so effectively

scales the objective space so that different points on the Pareto front are measured to be

closer to the ideal objective vector. Assume that the decision-maker has defined a weight

vector 𝛌 = (𝜆1, … , 𝜆𝑘) such that 𝜆𝑖 ≥ 0 for all 𝑖 = 1,… , 𝑘 and ∑ 𝜆𝑖
𝑘
𝑖=1 = 1. We define the

weighted 𝐿𝑝 scalarization function as

 𝑔𝑝
wm(𝐳′|𝛌) = (∑𝜆𝑖(𝑧𝑖

′)𝑝
𝑘

𝑖=1

)

1
𝑝

, (2.22)

Figure 2.10 Different metrics applied in the global criterion method. The decision-maker chooses the

solution on the Pareto front that minimizes the distance to the ideal objective vector 𝐳⋆. The contours of each

𝐿𝑝-metric are shown at the minimum value that intersects the Pareto front.

46

for 𝑝 > 0. If 𝑝 = 1, the scalarization function is equivalent to a weighted sum of the

objective values,

 𝑔ws(𝐳′|𝛌) =∑𝜆𝑖𝑧𝑖
′

𝑘

𝑖=1

. (2.23)

The weighted sum is one of the earliest and most commonly used scalarization methods

for multiobjective problems as it maintains the linearity of the problem if the objective

functions are linear (Gass and Saaty 1955; Zadeh 1963). If 𝑝 = 2, the scalarization function

uses Euclidean distance and becomes the method of least squares,

 𝑔𝑙𝑠(𝐳′|𝛌) = √∑𝜆𝑖(𝑧𝑖
′)2

𝑘

𝑖=1

. (2.24)

When 𝑝 = ∞, the scalarization function is equivalent to the Tchebycheff method,

 𝑔te(𝐳′|𝛌) = max
𝑖=1,…,𝑘

𝜆𝑖𝑧𝑖
′. (2.25)

The Tchebycheff scalarization function favors solutions toward the middle of the

Pareto front, whereas the weighted sum approach tends to result in solutions near the edges.

In fact, if the shape of the Pareto front is concave, the weighted sum approach can only

return solutions at the extrema points of the Pareto front, whereas the Tchebycheff method

can find any Pareto optimal solution with some setting of the weight vector (Bowman

1976). To illustrate this, consider the examples in Figure 2.11. The top row shows a convex

Pareto front that has been scaled with three different weight vectors. The solutions closest

to the origin are indicated for both the weighted sum and Tchebycheff approaches. Note

that the Tchebycheff solution is closer to the midpoint of the Pareto front than the weighted

sum solution, which moves closer to the endpoint with the larger weight value. The bottom

47

row shows another example with a concave Pareto front. In this case, the weighted sum

approach cannot select a solution within the concave region because the endpoints are

always closer to the origin regardless of the scaling applied by the weight vector. In

contrast, the Tchebycheff approach can return solutions within the concave region because

of the way the distance measurement is computed.

2.5.6 Ordered Weighted Average Approach

The final method we consider for scalarizing an objective vector is the ordered

weighted average (OWA) operator (Yager 1988). The OWA operator is a flexible

aggregation function that lies somewhere between the min and max operators. It allows for

Figure 2.11 Comparison of the weighted sum and Tchebycheff scalarization approaches. The weighted sum

can only return extrema points when the Pareto front is concave, whereas the Tchebycheff approach can find

any Pareto optimal solution.

48

a more natural interpretation of the scalarization function by defining the degree to which

each of the criteria need to be satisfied. At one extreme, the max operator acts as the logical

“and,” requiring all criteria to meet some minimum degree of satisfaction. At the other

extreme, the min operator acts as the logical “or,” requiring only one criteria to be satisfied.

The mean operator lies in between these two extremes and optimizes the average

satisfaction of all criteria.

To apply the OWA operator to a normalized objective vector 𝐳′ = (𝑧1
′ , … , 𝑧𝑘

′), we

first apply the criteria preference weights 𝛌 = (𝜆1, … , 𝜆𝑘) and define a scaled objective

vector 𝐚 = (𝑎1, … , 𝑎𝑘) where 𝑎𝑖 = 𝜆𝑖𝑧𝑖
′ for all 𝑖 = 1,… , 𝑘. The elements of 𝐚 are then

sorted in descending order (𝑎(1), … , 𝑎(𝑘)) where 𝑎(𝑖) is the 𝑖th largest of the 𝑎𝑖 values. The

OWA operator is parameterized by an additional weight vector 𝐰 = (𝑤1, … , 𝑤𝑘) where

𝑤𝑖 ≥ 0 for all 𝑖 = 1,… , 𝑘 and ∑ 𝑤𝑖
𝑘
𝑖=1 = 1. The OWA scalarization function is defined as

 𝑔OWA(𝐚|𝐰) =∑𝑤𝑖𝑎(𝑖)

𝑘

𝑖=1

. (2.26)

By changing the OWA weight vector, the OWA operator can be made to represent different

aggregation functions. The following are some notable operators.

• Average: 𝑤𝑖 =
1

𝑘
 for all 𝑖 = 1,… , 𝑘. This method is equivalent to the weighted sum

scalarization approach. All criteria are weighted equally (after scaling).

• Max: 𝑤1 = 1 and 𝑤𝑖 = 0 for all 𝑖 ≠ 1. This method is equivalent to the

Tchebycheff scalarization approach and acts as the logical “and” operator. All

criteria must be satisfied when using this method since the scalarized value is

49

equivalent to the objective value of the least satisfied criteria (the largest of the 𝑎𝑖

values).

• Min: 𝑤𝑘 = 1 and 𝑤𝑖 = 0 for all 𝑖 ≠ 𝑘. This method acts as the logical “or” operator

and requires only a single criterion to be satisfied. The scalarized value is equal to

the most satisfied criteria (the smallest of the 𝑎𝑖 values). In practice, this method is

rarely used for multiobjective optimization because it does not consider the

satisfaction of any other criteria other than the most satisfied criteria.

2.6 Multiobjective Evolutionary Algorithms

Evolutionary algorithms are well suited to solve multiobjective optimization

problems. These algorithms create a population of potential solutions and use genetic

operators such as selection, crossover, and mutation to iteratively improve the best

individuals until a suitable solution is found. In a multiobjective problem, there may not be

a single optimal solution, but rather a set of Pareto optimal solutions. The goal of a

multiobjective evolutionary algorithm (MOEA) is to return a set of solutions that closely

approximates the true Pareto optimal set (Fonseca and Fleming 1995; Zitzler, Laumanns,

and Bleuler 2004; Zhou et al. 2011). There are several strategies that can be employed to

modify an EA for a multiobjective problem. Typically, the algorithm needs to define the

fitness of an individual solution and specify how the selection, crossover, and mutation

operators should work. Whereas a single objective EA returns only a single solution, an

MOEA needs to maintain population diversity so that the solutions are well distributed

over the entire Pareto front. Additionally, there should be enough solutions to provide

adequate coverage of the entire Pareto front. This can become a challenging issue when

50

there are many objectives. Two of the most influential MOEAs are the nondominated

sorting genetic algorithm (NSGA-II) (Deb et al. 2002) and the multiobjective evolutionary

algorithm based on decomposition (MOEA/D) (Qingfu Zhang and Hui Li 2007).

NSGA-II uses a fast non-dominated sorting approach to partition the population of

𝑁 solutions into multiple nondominated fronts such that no solution dominates another

solution in the same front, and each solution in front 𝐹𝑖 is dominated by at least one solution

in front 𝐹𝑖−1 for 𝑖 > 1. The solutions within each front are then sorted based on crowding

distance, so that solutions that are more separated receive a lower (better) rank. Each

generation, a new population is generated using binary tournament selection, and the

combined parents and offspring are sorted using the nondominated sorting approach. The

top 𝑁 individuals survive to the next generation.

The NSGA-II algorithm achieves very good performance on problems with a small

number of objectives, but suffers from the curse of dimensionality in high-dimensional

spaces. Most solutions are nondominated in many-objective optimization problems, which

weakens the selective pressure of the nondominated sorting approach. Furthermore, an

exponentially greater number of solutions are required to model a high-dimensional Pareto

front. These issues have given rise to a class of many-objective evolutionary algorithms

(MaOEAs) (Ishibuchi, Tsukamoto, and Nojima 2008; Li et al. 2015). One of the key

difficulties of MaOEAs is the visualization of the population, which can be used to evaluate

methods and to observe the evolutionary process (He and Yen 2016). Several MaOEA

algorithms have been proposed, including NSGA-III (Jain and Deb 2014), 𝜖-MOEA (Deb,

Mohan, and Mishra 2005), GrEA (Yang et al. 2013), HypE (Bader and Zitzler 2011), and

51

MOEA/D (Qingfu Zhang and Hui Li 2007). Of these, the decomposition strategy of

MOEA/D has proven to be particularly adaptable to many problem domains and

algorithmic variants (Trivedi et al. 2016).

The general MOEA/D approach is outlined in Algorithm 2.3. The method requires

the definition of 𝑁 evenly spread 𝑚-dimensional weight vectors 𝝀1, … , 𝝀𝑁, representing 𝑁

scalarized single-objective problems. The method maintains a population of 𝑁 solutions

𝑥1, … , 𝑥𝑁, where 𝑥𝑖 is the current solution to subproblem 𝑖. A solution 𝑥𝑖 is evaluated as

𝐹(𝑥𝑖) = (𝑓1(𝑥
𝑖), … , 𝑓𝑚(𝑥

𝑖)), where 𝑓𝑗(𝑥
𝑖) represents the value of 𝑥𝑖 against objective 𝑗.

A reference point 𝒛 = (𝑧1, … , 𝑧𝑘) maintains the ideal objective vector discovered so far

and a scalarization function 𝑔(𝑥|𝝀𝑖 , 𝒛) provides a measure of how well solution 𝑥 solves

subproblem 𝑖. The algorithm maintains an external population 𝐸𝑃 that contains the

nondominated solutions found during the search.

The first step of the algorithm creates initial solutions to each of the subproblems

and computes the neighborhood of each weight vector. In the second step, each weight

vector is evaluated and a new solution is created using crossover and mutation operators

on the solutions in the neighborhood. If necessary, a problem-specific repair or heuristic

can be applied to improve the solution. The new solution is then compared with the current

solutions of the neighboring subproblems and it replaces the old solution if the new one is

better. The objective values of the solutions are compared and used to update the external

population of nondominated solutions, which is returned at the end of the search.

The decomposition approach allows MOEA/D to be applied to problems where a

single-objective optimization strategy is readily available. For instance, the multiobjective

52

shortest path problem (MO-SPP) can define several weight vectors to scalarize the problem

as a set of single-objective subproblems, and then use a shortest path algorithm such as

Dijkstra's algorithm to find solutions to these subproblems. The MOEA/D algorithm can

be used to find the Pareto optimal set of solutions to the MO-SPP before requiring a

decision-maker to give any specific preferences.

53

Algorithm 2.3 MOEA/D

Input:

• MOP

• a stopping criterion

• 𝑁: the number of subproblems considered

• 𝝀1, … , 𝝀𝑁: 𝑚-dimensional objective weight vectors

• 𝑇: the size of each weight vector neighborhood

• 𝑔: a scalarization function

Output: 𝐸𝑃

Step 1) Initialization:

Step 1.1) Set 𝐸𝑃 = ∅

Step 1.2) Compute 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇} as the 𝑇 closest weight vectors to each weight

vector 𝝀𝑖 for 𝑖 = 1,… ,𝑁

Step 1.3) Generate an initial population 𝑥1, … , 𝑥𝑁 and set 𝐹𝑉𝑖 = 𝐹(𝑥𝑖)

Step 1.4) Initialize the reference point 𝒛 = (𝑧1, … , 𝑧𝑘)

Step 2) Update:

For 𝑖 = 1, … , 𝑁, do

Step 2.1) Reproduction: Randomly select two indices 𝑘 and 𝑙 from 𝐵(𝑖) and generate a

new solution 𝑦 from 𝑥𝑘 and 𝑥𝑙

Step 2.2) Improvement: Use a problem-specific heuristic on 𝑦 to produce 𝑦′

Step 2.3) Update 𝒛: Set 𝑧𝑗 = min{𝑧𝑗 , 𝑓𝑗(𝑦
′)} for 𝑗 = 1,… ,𝑚

Step 2.4) Update neighbors: For each index 𝑗 ∈ 𝐵(𝑖), if 𝑔(𝑦′|𝝀𝑗 , 𝒛) ≤ 𝑔(𝑥𝑗|𝝀𝑗 , 𝒛),

then set 𝑥𝑗 = 𝑦′ and 𝐹𝑉𝑗 = 𝐹(𝑦′)

Step 2.5) Update 𝑬𝑷:

Step 2.5.1) Remove all vectors from 𝐸𝑃 that are dominated by 𝐹(𝑦′)

Step 2.5.2) Add 𝐹(𝑦′) to 𝐸𝑃 if no vectors in 𝐸𝑃 dominate 𝐹(𝑦′).

Step 3) Stopping criteria: If the stopping criteria has been satisfied, then stop and output

𝐸𝑃. Otherwise repeat Step 2.

54

2.7 Intelligent Agents

A software agent that acts with purposeful behavior in a problem domain may be

described as intelligent to some degree. As environmental psychologists developed models

that could be used to explain human and animal behavior in real world environments,

computer scientists worked to implement analogous models that could be used in simulated

environments. The field of artificial intelligence grew around the concept of developing

intelligent agents that behave autonomously to maximize some notion of success (Russell

and Norvig 2009). There are several classes of intelligent agents, ranging from the simple

reflex agents used in multi-agent models, to learning agents that can operate in unknown

environments. The general agent model is very similar to the cognitive model used in

Figure 2.1Error! Reference source not found.. Agents have a set of actuators that define

the actions they can perform and a set of sensors that receive percepts from the

environment. The agent’s actions are defined by the agent function, which maps percepts

into actions and can be realized in various ways. For example, the agent function might use

a lookup table or fuzzy rule base to decide which action to take. More complex agents can

maintain some notion of the current state, and may be implemented as a finite state

machine. The most advanced agents can adapt to unforeseen events and can learn the

utilities of their actions.

In the physical world, intelligent agents have been designed to control mobile

robots using a variety of cognitive models (Luke et al. 2005; Eliashberg 2002; Busch et al.

2007; Blisard and Skubic 2005; Phillips and Noelle 2005; Skubic et al. 2004). In some

instances, the environment is not known completely and the robot must construct a map of

its surroundings as it explores (Thrun 2002). The simultaneous localization and mapping

55

(SLAM) problem can be defined as determining the robot’s location 𝑥𝑡 and the

environment map 𝑚𝑡 from a sequence of observations 𝑜1:𝑡. SLAM has been typically

treated as a probabilistic problem that uses Bayes rule to maximize the posterior

distribution 𝑃(𝑚𝑡, 𝑥𝑡|𝑜1:𝑡) given sequentially defined updates for the location

𝑃(𝑥𝑡|𝑜1:𝑡, 𝑚𝑡) and the map 𝑃(𝑚𝑡|𝑥𝑡 , 𝑜1:𝑡).

2.8 The Traveling Salesman Problem

The traveling salesman problem (TSP) is a combinatorial optimization problem that

has received wide attention in the fields of operations research and theoretical computer

science as a benchmark for exploring issues of computational complexity (Applegate et al.

2007). In its canonical form, the problem is to find the order in which an agent should visit

a set of cities separated by known distances so as to minimize the total distance traveled.

Several variations of the TSP have been proposed (Gutin and Punnen 2007) including the

probabilistic TSP (Jaillet 1985), physical TSP (Perez, Rohlfshagen, and Lucas 2012),

partially observable TSP (Buck and Keller 2016), and the traveling purchaser problem

(TPP) (Boctor, Laporte, and Renaud 2003; Riera-Ledesma and Salazar-González 2005).

The TPP can be considered a generalization of the TSP, where an agent must visit a set of

known market locations with various prices for goods in an order that allows it to purchase

a given list of items at the lowest price while also accounting for the cost of travel. This

form of the problem can be parameterized in many ways to create simpler problem types

such as the resource collecting TPP. In this variation, each market offers a single type of

resource and the agent needs to collect a set number of each resource type by visiting the

appropriate markets in the shortest distance possible. An even simpler variation that can be

56

expressed in this form is the k-TSP in which the agent only needs to visit k of the market

locations.

One application of the TSP and the TPP is to create problems that can be solved by

agent-based systems. Computer simulations have been used in many domains to study the

complex problems that often arise as the result of physical processes or agent interaction.

The latter case is the subject of study in agent-based modeling, which seeks to explain the

collective behavior of a population of autonomous agents that model natural systems by

obeying simple rules (Bonabeau 2002). By using agents to represent individual decision-

makers, complex systems can be created that show emergent behavior (Holland and Miller

1991). In the context of human geography, agent-based models have been used to study

evacuation scenarios in disaster situations (Keller, Popescu, and Gibeson 2012), and

utilized concepts such as bounded rationality to guide agent behavior (Popescu and Keller

2012) and rumor spreading models based on social networks (Zare et al. 2012). A related

field is that of multi-agent systems, which focuses on using an interacting group of

intelligent agents to model problems that are too complex for an individual agent (Niazi

and Hussain 2011). In the area of computational intelligence, agent-based models have

been used to solve optimization problems using techniques such as ant colony optimization

(Dorigo, Maniezzo, and Colorni 1996) and particle swarms (Kennedy and Eberhart 1995).

57

3 CREATING GRID WORLD ENVIRONMENTS

In this chapter, we introduce the grid world environments used in the CMM

framework. The environments contain various attributes and are constructed using several

different methods. These environments provide the problem structure for studying various

aspects of multicriteria and partially observable decision-making in later chapters.

3.1 Grid Worlds

The CMM framework presented in this work uses grid worlds exclusively as the

problem domain. A gridded environment provides structure and regularity that simplifies

many of the practical issues of representing a physical environment. In a grid world

problem, the environment space ℰ is discretized into a regular grid of cells so that cell

𝑐(𝑖,𝑗) ∈ ℰ is the cell in row 𝑖 and column 𝑗. The world contains a single decision-making

agent located in cell 𝑐(𝑎𝑖,𝑎𝑗). The agent can move to adjacent cells 𝑐(𝑎𝑖−1,𝑎𝑗), 𝑐(𝑎𝑖+1,𝑎𝑗),

𝑐(𝑎𝑖,𝑎𝑗−1), or 𝑐(𝑎𝑖,𝑎𝑗+1) by travelling up, down, left, or right respectively, so long as the

adjacent cell is traversable. We restrict the agent’s movement to these four directions to

ensure that each step is of equal length, which simplifies the resulting analysis. Each cell

has a set of attributes that describe the local state of the environment. In the CMM

framework, we define the following attributes for each grid cell 𝑐 ∈ ℰ:

• OPEN(𝑐) ∈ {0, 1} indicates if the cell is traversable. A value of 0 indicates that the

cell contains a wall, whereas 1 indicates that the cell is open and the agent can move

into it.

58

• TERRAIN(𝑐) ∈ 𝒯 indicates the type of terrain in the cell, where 𝒯 is the set of all

terrain types1. In simple environments, there may only be a single terrain type (e.g.

𝒯 = {open_space}). However, we can model more complex environments by

including additional types of terrain such as snow, rock, meadow, forest, water,

etc.

• ELEVATION(𝑐) ∈ [0,1] is a continuous-valued attribute that indicates the height of

the grid cell. In our work, the domain is restricted to the unit interval.

• RESOURCES(𝑐) ∈ ℛ ∪ ∅ indicates which resource type, if any, is present in the cell,

where ℛ is the set of all resource types. It may be preferable to associate a single

resource type with each type of terrain, although this is not a strict requirement.

Note that in our work we assume that each grid cell can have a maximum of one

resource type.

In the following sections, these attributes are generated independently as a set of n  m

matrices, where each grid cell 𝑐(𝑖,𝑗) references the corresponding matrix index [𝑖, 𝑗] and

1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. In practice, these matrices are used to look up the attribute

values of any grid cell in the environment.

1 We could implicitly include cells that contain walls as an additional type of terrain, however we separate

them in our notation to better indicate where the agent can travel and to aid in the computation of visibility.

59

The grid world environment model is a flexible problem domain that can be adapted

to create many interesting scenarios. Some examples of grid world problems generated in

the CMM framework are shown in Figure 3.1. Simple occupancy grid environments can

(a) (b)

(b) (d)

Figure 3.1 Examples of grid world problem domains generated in the CMM framework. (a) A cave-like

occupancy grid environment with a single resource. (b) An environment with three different terrain types

and multiple resources of the same type. (c) An environment with a real-valued elevation heightmap and

multiple resources of the same type. (d) A synthetic world environment combining multiple terrain types

with elevation and containing several different resource types.

60

be created by defining a single region type with constant elevation. Multiobjective

problems can be created by defining multiple region types and/or an elevation heightmap.

The different resource types provide goals for the agent to pursue while moving through

the environment. While these environments can be defined manually, either as hand-crafted

models or based on real-world data, our focus in this work is on the generation and study

of purely synthetic environments using procedural methods. The various approaches used

by the CMM framework to generate environments are described over the next several

sections.

Grid worlds are discrete domains that can simplify the representation of

environment attributes, but they can also add significant overhead to the memory

requirement and computational burden in large problems. We address this issue in two

ways. First, we limit the size of the grid world environments to relatively small dimensions

(typically between 3030 and 100100) to prevent an exponential growth in the number

of grid cells. Second, we propose an approximate representation of the complete

environment by clustering similar regions together using superpixels and working within

this reduced domain. This latter approach forms the basis for the region graph

representation of the mental map and will be discussed in more detail in Chapter 5. The

remainder of this chapter is dedicated to explaining how a complete discrete grid-based

environment model is generated from an initial random seed.

3.2 Generating Caverns

The first (and sometimes only) attribute layer we define is the occupancy grid that

specifies which cells are traversable by the agent. Simple problem spaces can be defined

61

with few or no obstacles, but the problems become more interesting as the environments

are filled with walls and passageways that limit the agent’s navigation options. In the

extreme case, the environment could be a complex maze that is challenging even for a

human to solve. State-of-the-art path planning algorithms make solving mazes and other

fully observable occupancy grid environments somewhat trivial, but when the environment

is not completely visible, these obstacles serve to limit how much the agent can see. We

model the occupancy grid layer as a 2D cavern map, generated using a cellular automation.

These maps have an organic quality with both winding passageways and large open regions

containing non-uniform random structure that leads to interesting shortest path problems

and visibility constraints.

The general outline of our method for creating the occupancy grid is given in

Algorithm 3.1. The process begins by initializing an n  m grid with random values, where

each grid cell is assigned a value of 1 with probability p0 and a value of 0 with probability

1 – p0 (lines 1-4). The algorithm then iterates through k steps of cellular automation rules,

represented by the CELLULAR_AUTOMATA function in Algorithm 3.2. The rules are applied

simultaneously to all grid cells and are defined by two parameters, rb and rd, where rb ≥ rd.

For each grid cell, we check to see how many of the eight cells in the 33 Moore

neighborhood around each cell are set to 1. If this number is greater than the birth rate (rb),

the cell is set to 1. Otherwise, if it is less than the death rate (rd), the cell is set to 0. Between

each generation, we apply an optional mask to constrain the cellular growth to a specified

region (line 7). This is used when creating certain types of terrain in environments that

62

already have an occupancy grid layer defined. The border cells are always set to 0 between

generations to ensure that the world is fully enclosed (line 8).

Algorithm 3.1 Cave Environment Generation

GENERATE_CAVE_ENVIRONMENT(n, m, p0, rb, rd, k, mask, opt)

1: W ← n  m grid initalized to 0

2: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m }

3: if r ~ U(0, 1) ≤ p0 // With probability p0

4: W [i, j] ← 1

5: for k iterations

6: W ← CELLULAR_AUTOMATA(W, rb, rd) // Algorithm 3.2

7: W [i, j] ← 0 for all cells where mask[i, j] = 1

8: W [i, j] ← 0 for all cells where (i, j) is a border cell

9: if opt.makeConnected

10: while (# of connected components in W)  1

11: Z ← the smallest connected component in W

12: Z' ← Z  [0 1 0; 1 1 1; 0 1 0] // Image dilation

13: if opt.method = “dilate”

14: W ← max(W, Z')

15: elseif opt.method = “random”

16: Y ← Z'  Z

17: (i, j) ← random grid cell where Y [i, j] = 1

18: W [i, j] ← 1

19: W [i, j] ← 0 for all cells where mask[i, j] = 1

20: W [i, j] ← 0 for all cells where (i, j) is a border cell

21: W ← REMOVE_DIAGONAL_PASSAGES(W) // Algorithm 3.3

22: return W

63

In most cases, we want every open location in the environment to be reachable so

that the agent can acquire all the resources. This is controlled by an options parameter that

specifies if the environment is to be connected and which method should be used to make

it connected. The two methods are referred to as dilate and random. In both approaches,

the environment map is refined iteratively until there is only a single connected component.

On each iteration, we identify the smallest connected component consisting of a contiguous

set of 4-connected open cells (with a value of 1) and call this image Z, where Z [i, j] = 1 if

cell (i, j) is part of the smallest connected component and Z [i, j] = 0 otherwise (line 11).

We then compute Z' by dilating Z with a 4-connected mask that sets any cell in Z' to 1 if

one of its 4-connected neighbors in Z is 1 (line 12). If the method is set to dilate, then the

entirety of the newly dilated region is set to 1 (line 14). For the random method, only one

of the newly opened grid cells is set to 1, chosen randomly (lines 16-18). The dilate method

operates faster than the random method, but can produce irregular open regions if the

smallest connected component is large. In contrast, the random method produces a more

Algorithm 3.2 Cellular Automata

CELLULAR_AUTOMATA(W, rb, rd)

1: (n, m) ← size of W

2: W' ← W

3: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m }

4: N ← {(u, v) | i−1 ≤ u ≤ i+1  j−1 ≤ v ≤ j+1  (u, v) ≠ (i, j)  W [u, v] = 1}

5: if | N | > rb

6: W' [i, j] ← 1

7: elseif | N | < rd

8: W' [i, j] ← 0

9: return W'

64

uniform appearance, but operates more slowly. Between each iteration, we perform a clean-

up step by setting all cells in the mask and on the border to zero (lines 19-20).

We also remove any passageways that are only connected diagonally using the

REMOVE_DIAGONAL_PASSAGES function presented in Algorithm 3.3. This procedure

checks each grid cell to see if it is part of a diagonally connected passage and if it is found

to be so, the cell is filled in and set to 0. This improves the visual appearance of the

environment and helps the visibility computation, which is discussed further in Section

4.1.2. Several examples of cave environments are shown in Figure 3.2.

Algorithm 3.3 Remove Diagonal Passages

REMOVE_DIAGONAL_PASSAGES(W)

1: (n, m) ← size of W

2: changed ← True

3: while changed

4: changed ← False

5: for each (i, j) {(i, j) | 2 ≤ i ≤ n −1  2 ≤ j ≤ m −1}

6: if W [i, j] = 1 

((W [i−1, j−1] = 1  W [i−1, j] = 0  W [i, j−1] = 0) 

(W [i+1, j−1] = 1  W [i+1, j] = 0  W [i, j−1] = 0) 

(W [i−1, j+1] = 1  W [i−1, j] = 0  W [i, j+1] = 0) 

(W [i+1, j+1] = 1  W [i+1, j] = 0  W [i, j+1] = 0))

7: W [i, j] ← 0

8: changed ← True

9: return W

65

3.3 Region Partitioning

The grid world environments can be partitioned into discrete regions to aid in the

generation of additional features and to simplify the mental map representation. Our

method for partitioning the environment is based on the SLIC superpixel clustering

algorithm (Achanta et al. 2012). SLIC stands for simple linear iterative clustering and is

an adaptation of the k-means algorithm for producing superpixels in color imagery. The

version of SLIC used in this work is modified slightly from the original method used on

color imagery and is designed for use in grid world environments. Instead of three color

channels, we use an elevation map to group similar grid cells. Distances are also computed

 p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 6, rd = 4, p0 = 0.5, rb = 6, rd = 4,

 k = 1, dilate k = 10, dilate k = 1, dilate k = 1, random

 p0 = 0.2, rb = 4, rd = 2, p0 = 0.2, rb = 4, rd = 2, p0 = 0.8, rb = 6, rd = 4, p0 = 0.8, rb = 5, rd = 3,

 k = 10, dilate k = 10, random k = 30, dilate k = 30, dilate

Figure 3.2 Examples of cavern maps generated using Algorithm 3.1. A wide range of map types can be

created by varying the input parameters. These examples are 5050 grids with all locations set to be

reachable.

66

with respect to the cave wall boundaries. If no elevation map is provided, only spatial

distance is used in determining region boundaries. We include the reference to an optional

elevation map here since this procedure is used in the definition of region boundaries for

the mental map representation in Chapter 5. However, since a region map may be needed

to create an elevation map in Section 3.4, the elevation map is not required to define the

region partitions. An overview of the region partitioning method is shown in Algorithm

3.4.

The algorithm takes a cave wall map W and an optional elevation map E as inputs,

along with a cluster separation radius r, an elevation weighting parameter we, and an

improvement tolerance threshold 𝜖. We start by sampling evenly spaced cluster centers. In

Algorithm 3.4 Region Partitioning

PARTITION_REGIONS(W, E, r, we, 𝜖)

1: C ← TABU_SAMPLING(W, r) // Algorithm 3.5

2: C ← ADJUST_CLUSTER_CENTERS(E, C) // Algorithm 3.7

3: (n, m) ← size of W

4: R ← n  m  | C | matrix initalized to ∞

5: e ← ∞

6: for ⌈√𝑟 ⌉ iterations

7: for k in 1 to | C |

8: (u, v) ← C[k]

9: R[…, …, k] ← GRID_DISTANCE(W, u, v, 2r) // Algorithm 3.6

10: L, e' ← ASSIGN_CELLS_TO_CLUSTERS(E, C, R, r, we) // Algorithm 3.8

11: if (e − e') / e < 𝜖

12: break

13: e ← e'

14: C ← GET_REGION_CENTERS(L) // Algorithm 3.9

15: L ← FIX_ORPHANS(C, L, R) // Algorithm 3.10

16: return L

67

standard SLIC, this is accomplished by sampling on a grid at regular intervals. Because of

the irregular nature of the cavern environments, this could lead to some narrow

passageways being missed and having no local cluster center. Instead, we use tabu

sampling to generate the cluster centers. Algorithm 3.5 shows the procedure for tabu

sampling in a cavern map. The algorithm takes a cavern map W and a separation radius r

as input. To begin, all open grid cells are added to a set of valid sample indices (line 3).

While there are still grid cells in this set, a random location is sampled and added to the list

of cluster centers (lines 5-7). After sampling a new cluster center, we compute the grid

distance from that location and remove any cells within a specified radius r from the set of

valid indices (lines 8-10). This ensures that no two samples are too close to one another.

By continuing until there are no more valid locations, we obtain a set of samples that span

the entire grid. Figure 3.3 shows several examples of tabu sampling using this approach

with different values for the separation radius.

Algorithm 3.5 Tabu Sampling

TABU_SAMPLING(W, r)

1: k ← 0

2: C ← empty list

3: I ← {(i, j) | W [i, j] = 1} // Get the set of valid indices

4: while | I | > 0

5: k ← k + 1

6: (i, j) ~ I // Sample a random grid cell in I

7: C[k] ← (i, j)

8: D ← GRID_DISTANCE(W, i, j, r) // Algorithm 3.6

9: for each (u, v)  {(u, v) | D [u, v] ≤ r }

10: I ← I ∖ {(u, v)} // Remove from I

11: return C

68

The computation of grid distance on line 8 of the TABU_SAMPLING function is

detailed in Algorithm 3.6. This function serves many roles throughout this work and will

be revisited in Chapter 5 for computing edge attributes for the mental map representation

of the environment. The input arguments are a cavern map W and a reference location (i, j),

along with a maximum distance parameter dmax. The algorithm is based on the approach

presented by (Lee 1961) and operates as a flood-fill, breadth-first search that radiates

outward from the starting location. To summarize the procedure, we begin by initializing

a matrix D to infinity (lines 1-2) that will store the shortest path grid distance from (i, j)

that obeys the wall boundaries. A distance counter d is set to 0 and we initialize the open

and closed sets, adding the starting location to the open set (lines 3-5). While the open set

is not empty and the distance counter is less than the maximum value, we set the distance

of each grid cell in the open set to the current distance counter value (line 9) and move the

cell to the closed set (line 10). We then identify the neighbors of this cell that are not walls

and have not yet been added to the closed set (lines 11-12). These locations are collected

in the frontier set, which replaces the open set after all the previous cells in the open set

have been evaluated (line 13) and the distance counter is incremented by one (line 14).

This algorithm works as a flood fill method using breadth-first search to label each location

 r = 32 r = 16 r = 8 r = 4 r = 2

Figure 3.3 Tabu sampling on a 5050 grid with different values for the separation radius.

69

in the environment. The maximum distance parameter allows the search to terminate early,

which can greatly reduce computation time when only close distances are needed. Once all

cells have been evaluated and the open set is empty, the algorithm returns the distance

matrix D.

After the initial cluster centers have been defined, they can be moved into a local

minimum of the elevation gradient if an elevation map is provided. If no elevation is

provided, the initial cluster centers are used without adjustment. Algorithm 3.7 shows the

procedure for updating the set of cluster centers C using an elevation map E. The first step

of this algorithm (line 1) is to compute the gradient of E which we denote as the matrix F.

Algorithm 3.6 Grid Distance

GRID_DISTANCE(W, i, j, dmax)

1: (n, m) ← size of W

2: D ← n  m matrix initalized to ∞

3: d ← 0

4: open ← {(i, j)}

5: closed ← ∅

6: while | open| > 0  d ≤ dmax

7: frontier ← ∅

8: for each (u, v)  open

9: D [u, v] ← d

10: closed ← closed ∪ (u, v)

11: N ← {(u−1, v), (u+1, v), (u, v−1), (u, v+1)}

12: frontier ← frontier ∪ {(u', v') | (u', v')  N  (u', v')  closed  W [u', v'] = 1}

13: open ← frontier

14: d ← d + 1

15: return D

70

Element F [i, j] is defined as the magnitude of the central difference for interior points such

that

 𝐹[𝑖, 𝑗] = √(𝐹𝑥[𝑖, 𝑗])
2
+ (𝐹𝑦[𝑖, 𝑗])

2
, where (3.1)

 𝐹𝑥[𝑖, 𝑗] = 0.5 ∗ (𝐸[𝑖, 𝑗 + 1] − 𝐸[𝑖, 𝑗 − 1]), (3.2)

 𝐹𝑦[𝑖, 𝑗] = 0.5 ∗ (𝐸[𝑖 + 1, 𝑗] − 𝐸[𝑖 − 1, 𝑗]). (3.3)

For exterior points and points where one of the neighbors of 𝐸[𝑖, 𝑗] is undefined, the

gradient is computed as the single-sided difference using only the defined values. For

instance, if 𝐸[𝑖 − 1, 𝑗] is undefined, but 𝐸[𝑖 + 1, 𝑗], 𝐸[𝑖, 𝑗 − 1], and 𝐸[𝑖, 𝑗 + 1] are defined,

then 𝐹𝑥[𝑖, 𝑗] keeps the same definition as Equation 3.2, but 𝐹𝑦[𝑖, 𝑗] is defined as

 𝐹𝑦[𝑖, 𝑗] = (𝐸[𝑖 + 1, 𝑗] − 𝐸[𝑖, 𝑗]). (3.4)

Once the gradient matrix has been computed, the algorithm cycles through each cluster

center and moves it to the location of the minimum gradient value within a 33

neighborhood. This helps prevent clusters from being located on natural region boundaries

and generally improves the stability of the algorithm.

Algorithm 3.7 Adjust Cluster Centers

ADJUST_CLUSTER_CENTERS(E, C)

1: F ← E

2: for k in 1 to | C |

3: (i, j) ← C[k]

4: G ← {(u, v) | i−1 ≤ u ≤ i+1  j−1 ≤ v ≤ j+1}

5: (u, v) ← (u, v)  G s.t. F [u, v] ≤ F [u', v']  (u', v')  G

6: C[k] ← (u, v)

7: return C

71

At this point, we begin the main loop of Algorithm 3.4 and iteratively assign all

grid cells to the nearest cluster center and then update the cluster center locations. This

outer loop can be repeated until the cluster assignments do not change, or until some

improvement threshold is reached. In practice, we have found it useful to scale the

maximum number of iterations to be proportional to the effective cluster size, which is

determined by the separation radius r. In our experiments, we use ⌈√𝑟 ⌉ as the maximum

number of iterations and 0.01 as the improvement tolerance threshold 𝜖. The first step

during each iteration is to precompute the grid distance values for each cluster. These are

stored in the n  m  | C | matrix R, where n and m are the dimensions of the environment

and | C | is the number of clusters. This reference distance matrix is updated each iteration

with new cluster center locations and allows for quick distance lookups for each grid cell.

Note that the call to the GRID_DISTANCE function on line 9 of Algorithm 3.4 uses 2r as the

maximum distance parameter to reduce computation time, which assumes that cells will

not be assigned to clusters greater than 2r steps away.

The next step of the main loop is the assignment of each grid cell to the nearest

cluster center. This is accomplished by the ASSIGN_CELLS_TO_CLUSTERS function in

Algorithm 3.8. This function starts by initializing a distance matrix D and a label matrix L

(lines 1-3). The distance matrix will store the distance from each grid cell to the nearest

cluster center and the label matrix will store the index of the nearest cluster center. For

each grid cell (i, j) and each cluster center (u, v), we compute both a spatial and an elevation

distance. The spatial distance 𝑑𝑠 is computed from the grid distance reference matrix R and

normalized by the cluster separation radius r (line 7). The elevation distance is computed

72

as the absolute difference between the elevation of the two grid cells and is multiplied by

a weighting parameter we (line 8). Note that since the elevation values come from the range

[0, 1] the unweighted elevation distance is also restricted to the unit interval. If no elevation

map is used, we can be set to zero. The two distance measures are combined using the

ℓ2-norm to give the overall cluster distance d (line 9). The index of the cluster center with

the smallest distance to a given grid cell is stored in the label matrix L and the distance to

this cluster center is saved in the distance matrix D (lines 11-12). After all clusters and grid

cells have been evaluated, the error is computed as the sum of all non-infinite distances

between grid cells and their assigned cluster centers. This error value and the label matrix

are then returned to the main algorithm.

Algorithm 3.8 Assign Cells to Clusters

ASSIGN_CELLS_TO_CLUSTERS(E, C, R, r, we)

1: (n, m) ← size of E

2: L ← n  m matrix initalized to 0

3: D ← n  m matrix initalized to ∞

4: for k in 1 to | C |

5: (u, v) ← C[k]

6: for each (i, j)  {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m }

7: ds ← R[i, j, k] / r

8: de ← we ×| E[i, j] − E[u, v] |

9: d ← √𝑑𝑠2 + 𝑑𝑒2

10: if d < D[i, j]
11: D[i, j] ← d
12: L[i, j] ← k
13: e ← ∑𝐷[𝑖, 𝑗] for all (i, j) such that 𝐷[𝑖, 𝑗] ≠ ∞
14: return L, e

73

Once all the grid cells have been assigned a cluster label, we can check if the error

term has improved significantly from the previous iteration. Lines 11-13 of Algorithm 3.4

check to see if the improvement is less than the error tolerance threshold and break out of

the main loop if it is small enough. If not, then the main loop continues and we use the

GET_REGION_CENTERS function to get new cluster centers at the centroids of each region.

Algorithm 3.9 gives the pseudocode for this procedure. We begin by initializing a new

empty cluster list C (line 1). We then loop over each region label index and identify the

grid cells that belong to each region (line 4). It should be noted that this algorithm assumes

that there is at least one cell in the label map L for each index k in 1, ..., max(L). Next, we

compute the centroid of the region, rounding to the nearest cell (lines 5-10). If this cell is

not already part of the region, we move the region center to the cell closest to the centroid

that is already labeled as part of the region (lines 11-12). The list of region centers is then

returned to the main algorithm to be used as the new cluster centers.

74

The main loop in Algorithm 3.4 continues until the maximum number of iterations

has been reached or the improvement threshold has been met. A final post-processing step

is performed to remove orphaned grid cells that are not connected to a cluster center. This

is done by the FIX_ORPHANS function in Algorithm 3.10. The function takes the current

cluster centers C, the label matrix L, and the reference distance matrix R as input. The

Algorithm 3.9 Get Region Centers

GET_REGION_CENTERS(L)

1: C ← empty list

2: t ← 0

3: for k in 1 to max(L)

/* Get the grid cells that belong to this region */

4: S ← {(i, j) | L[i, j] = k}

/* Compute the centroid of the region */

5: (ci, cj) ← (0, 0)

6: for each (i, j)  S

7: ci ← ci + i / | S |

8: cj ← cj + j / | S |

9: ci ← ⌊𝑐𝑖 + 0.5⌋

10: cj ← ⌊𝑐𝑗 + 0.5⌋

/* Move the centroid to the closest cell in the region if not already in the region */

11: if L[ci, cj] ≠ k

12: (ci, cj) ← (i, j)  S s.t. √(𝑖 − 𝑐𝑖)
2
+ (𝑗 − 𝑐𝑗)

2
≤ √(𝑖′ − 𝑐𝑖)

2
+ (𝑗′ − 𝑐𝑗)

2

∀ (𝑖′, 𝑗′) ∈ 𝑆

/* Save the region center */

13: t ← t + 1

14: C [t] ← (ci, cj)

15: return C

75

algorithm loops repeatedly until it can be verified that there are no remaining orphans. For

each cluster, we identify the main connected component by using the GRID_DISTANCE

function seeded at the cluster center with the non-cluster cells acting as walls (lines 7-11).

Any grid cells that were labeled as part of the cluster, but that were unreachable by the

GRID_DISTANCE function are marked as orphan cells (line 12). For each orphan cell, we

get the 4-connected neighbors (line 15) and check to see which of these have different

labels from the label of the orphan cell (line 16). If none of the neighbor cells have different

labels, then the algorithm moves on to the next orphan cell and will eventually return to

this cell after the other orphans have been processed (lines 17-18). The label of the orphan

cell is then set to the label of the neighboring cell with the smallest distance to the original

cluster center (lines 19-20). After the outer loop of the FIX_ORPHANS function can verify

that none of the clusters contain any orphans, the updated label matrix is returned to the

main algorithm. Note that we do not explicitly check for race conditions that could lead to

an infinite loop. In practice this is very rare and is best resolved by restarting with a

different random seed or separation radius. Some examples of the final cluster labeling

using different values of separation radius are shown in Figure 3.4.

 r = 32 r = 16 r = 8 r = 4 r = 2

Figure 3.4 Results of the region partitioning algorithm on a 5050 grid with different values for the

separation radius.

76

3.4 Creating a Heightmap

A heightmap provides a real-valued elevation attribute for every grid cell. This can

add a sense of realism to the problem domain and give a new set of features that influence

how the agent makes decisions. The heightmaps for the grid world environments are

Algorithm 3.10 Fix Orphans

FIX_ORPHANS(C, L, R)

1: (n, m) ← size of L

2: hasOrphans ← true

3: while hasOrphans

4: hasOrphans ← false

5: for k in 1 to | C |

6: (u, v) ← C[k]

/* Get the orphans for this cluster */

7: S ← {(i, j) | L[i, j] = k}

8: B ← n  m matrix initalized to 0

9: for each (i, j)  S

10: B[i, j] ← 1

11: D ← GRID_DISTANCE(B, u, v, ∞) // Algorithm 3.6

12: O ← {(i, j) | (i, j)  S  D[i, j] = ∞}

/* Assign each orphan a neighboring label */

13: for each (i, j)  O

14: hasOrphans ← true

15: N ← {(i−1, j), (i+1, j), (i, j−1), (i, j+1)}

16: G ← {(u, v) | (u, v)  N  L[u, v] ≠ 0  L[u, v] ≠ k}

17: if | G | = 0

18: continue

19: (u, v) ← (u, v)  G s.t. R[u, v, k] ≤ R[u', v', k]  (u', v')  G

20: L[i, j] ← L[u, v]

21: return L

77

generated using the method of successive random additions. This approach is based on the

fractal terrain methods presented in Section 2.2.3. Several random noise layers are created

using the PARTITION_REGIONS function at multiple scales. These are combined to give the

overall heightmap.

Algorithm 3.11 gives an overview of the GENERATE_HEIGHTMAP procedure. The

algorithm takes as input a cave wall map W and two control parameters, p and q, which

influence the overall shape and texture of the heightmap. The algorithm starts by

initializing the elevation map E to zero and the scale factor to one (lines 1-3). The main

loop of the algorithm repeats while the scale factor is less than the largest dimension of the

grid world. At the end of each iteration, the scale factor is doubled (line 17). At the start of

each iteration, the environment is partitioned into regions proportional to the current scale

factor (line 5). Each labeled region is then assigned a random value from the uniform

distribution U(0, 1) (lines 6-10). This effectively creates a random noise image R at the

current scale. Figure 3.5 and Figure 3.6 show several examples of random noise images

generated at different scales with and without a cave wall map. Note that because we use

the PARTITION_REGIONS function to define the region boundaries, the individual regions at

larger scales will not cross the cells marked as walls. This allows high and low regions to

be separated by only a thin wall, which is a difficult effect to achieve with other image

scaling methods. Each noise image R is smoothed using a mean filter in a 33 window

(lines 11-14). This is repeated q times, with larger values of q producing smoother terrain.

The image R is then multiplied by a scale factor 𝑠
1
𝑝⁄ and added to the current elevation

map E (lines 15-16). Larger values of p produce more homogeneous noise, as all scales

78

begin to be weighted equally. Smaller values of p give sharply distinct regions, as the larger

image scales dominate the overall elevation map. After all iterations have completed, the

elevation map is normalized to the range [0, 1] and retuned. Figure 3.7 shows the effect of

p and q on the generated heightmap.

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32

Figure 3.5 Random noise images at different scales on a 5050 grid with no cave walls. (q = 3)

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32

Figure 3.6 Random noise images at different scales on a 5050 grid with a provided cave wall map. (q = 3)

79

Algorithm 3.11 Heightmap Generation

GENERATE_HEIGHTMAP(W, p, q)

1: (n, m) ← size of W

2: E ← n  m matrix initalized to 0

3: s ← 1

4: while s < n  s < m

/* Create a random elevation map at the current scale */

5: L ← PARTITION_REGIONS(W, E, s, 0, 0.01) // Algorithm 3.4

6: R ← n  m matrix initalized to 0

7: for k in 1 to max(L)

8: r ~ U(0, 1)

9: for each (i, j)  {(i, j) | L[i, j] = k}

10: R[i, j] ← r

/* Smoothing */
11: for q iterations

12: for each (i, j)  {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1}

13: G ← {(u, v) | i−1 ≤ u ≤ i+1  j−1 ≤ v ≤ j+1}

14: R[i, j] ← mean(R[u, v]) for all (u, v)  G

/* Add to existing heightmap */

15: for each (i, j)  {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1}

16: 𝐸[𝑖, 𝑗] ← 𝐸[𝑖, 𝑗] + 𝑅[𝑖, 𝑗] ⋅ 𝑠
1
𝑝⁄

17: s ← 2s // Increase scale

18: 𝐸 ←
𝐸−min(𝐸)

max(𝐸)−min(𝐸)
 // Normalize

19: return E

80

 p = 0.1, q = 0 p = 0.1, q = 1 p = 0.1, q = 3 p = 0.1, q = 10 p = 0.1, q = 50

 p = 0.5, q = 0 p = 0.5, q = 1 p = 0.5, q = 3 p = 0.5, q = 10 p = 0.5, q = 50

 p = 1, q = 0 p = 1, q = 1 p = 1, q = 3 p = 1, q = 10 p = 1, q = 50

 p = 2, q = 0 p = 2, q = 1 p = 2, q = 3 p = 2, q = 10 p = 2, q = 50

 p = 5, q = 0 p = 5, q = 1 p = 5, q = 3 p = 5, q = 10 p = 5, q = 50

Figure 3.7 Heightmaps generated on a 5050 grid with different values of p and q using the same random

seed. Small values of p give more uniform regions, whereas larger values produce more noise. As q increases,

the heightmap becomes smoother and sharp boundaries are eliminated.

81

3.5 Defining Terrain Types

The terrain feature of the grid world environments provides a discrete attribute that

agents can use in the decision-making process. There are several ways that the terrain

feature can be generated depending on the desired characteristics of the problem

environment. We consider four different problem types in this work. The first uses only a

single terrain type, open_space, and is used when studying single-objective problems in

cavern maps or when elevation is the only relevant environment feature. In this case, there

is no need to define additional terrain types. The second problem type uses two terrain

types, meadow and forest, and is used mainly to study bi-objective problems where one

type of terrain is preferred over the other and in some multi-objective problems. The third

problem type adds water to the meadow and forest terrain types and is used to demonstrate

problems that have directional terrain transition preferences, where the agent prefers to

move from one type of terrain into another. The last problem type utilizes all the procedural

content generation methods discussed and simulates a real-world environment with five

terrain types: meadow, forest, water, rock, and snow.

3.5.1 Binary Terrain Environments

In the binary terrain environment problem type, we define two types of terrain:

meadow and forest. The meadow represents open space where the agent can move freely

and the forest offers concealment that may be desirable to some agents. We begin by

constructing a cave wall map using the cellular automata method of Section 3.2. The cave

walls provide the mask for generating the forested region, which is also created using the

GENERATE_CAVE_ENVIRONMENT function. If the initial probability p0 used to generate the

82

cave wall map is set to 1, then the wall map mask is set entirely to open space except for

the border cells. In this case, the problem is focused entirely on the terrain and the

heightmap if provided.

Algorithm 3.12 gives the procedure for generating the binary terrain map. The call

to the GENERATE_CAVE_ENVIRONMENT function on line 1 returns a binary map where the

“walls” represent the forest terrain type and the open space represents meadow. Because

the output of this function is binary and we wish to indicate three types of grid cells (wall,

meadow, and forest), we remap the indices by subtracting the terrain index from 2 if the

grid cell was open space in the original cave wall map (lines 2-3). The resulting matrix T

maps 0 to walls, 1 to meadow, and 2 to forest and can be added as an attribute layer in the

grid world environment. Several examples of binary environments are shown in Figure 3.8.

One interesting parameter is the opt.makeConnected setting. If set to true, the meadow

terrain will be completely connected, such that an agent could get from any meadow grid

cell to any other meadow grid cell without ever going into the forest. If makeConnected is

set to false, the agent may be forced to go through at least some forest terrain.

Algorithm 3.12 Generate Binary Terrain

GENERATE_BINARY_TERRAIN(W, p0, rb, rd, k, opt)

1: T ← GENERATE_CAVE_ENVIRONMENT(n, m, p0, rb, rd, k, W, opt) // Algorithm 3.1

2: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1}

3: T [i, j] ← 2 − T[i, j]

4: return T

83

3.5.2 Trinary Terrain Environments

For the trinary environment problem type, we add water to the forest and meadow

terrain types. We use fashion-based cellular automata such as the one presented in Section

2.2.2 to generate the three terrain types. The outline of our approach is given in Algorithm

3.13. We start by sampling an initial terrain type from a prior distribution P0 for every grid

cell that is open in the cave wall map W (lines 1-4). For trinary terrain environments, P0 is

a multinomial distribution over the domain {1, 2, 3}, indicating the probability of a grid

cell starting as meadow, forest, or water respectively. We then apply the fashion-based

cellular automation rules for k iterations (line 5-6). Algorithm 3.14 gives the pseudocode

 p0 = 0.5, p0 = 0.5, p0 = 0.4, p0 = 0.5, p0 = 0.6,

 rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3,

 connected, dilate connected, random not connected not connected not connected

 p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.6,

 rb = 4, rd = 3, rb = 4, rd = 3, rb = 4, rd = 3, rb = 5, rd = 3, rb = 5, rd = 4,

 connected, dilate connected, random not connected not connected not connected

Figure 3.8 Examples of binary environments containing forest and meadow terrain types. The top row shows

the binary environments in grid worlds with a cave wall map generated using parameters p0=0.5, rb=4, rd=3,

k=10, and the dilate connection method. The bottom row shows binary environments created without a cave

wall map.

84

for the FASHION_BASED_CELLULAR_AUTOMATA function. The first part of this function

computes the score of each cell that has been assigned a terrain type using a supplied rule

matrix R. For each cell, we examine its 4 adjacent neighbors and lookup the score value

R[i, j] that corresponds to a cell with terrain type i having a neighbor of terrain type j. The

sum of these scores for each neighbor gives the overall score for the cell. Once all the

scores have been computed, we set the terrain type of each open grid cell to that of its

highest scoring neighbor. If a cell has a higher score than any of its neighbors, it keeps its

current label. In this way, the cells “follow the fashion” of the neighborhood.

Figure 3.9 shows several examples of the fashion-based cellular automata for

creating trinary terrain environments. The resulting patterns are highly dependent on the

rule matrix and the initial distribution of terrain types. It can be difficult to anticipate the

type of pattern that any given rule will produce, and it may take several tries to generate a

valid environment containing at least some cells of every terrain type.

Algorithm 3.13 Generate Trinary Terrain

GENERATE_TRINARY_TERRAIN (W, P0, R, k)

/* Sample the initial terrain type for each cell */

1: (n, m) ← size of W

2: T ← n  m grid initalized to 0

3: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1}

4: T[i, j] ~ P0 // Sample a terrain type from the initial distribution

5: for k iterations

6: T ← FASHION_BASED_CELLULAR_AUTOMATA(T, R) // Algorithm 3.14

7: return T

85

Algorithm 3.14 Fashion-Based Cellular Automata

FASHION_BASED_CELLULAR_AUTOMATA(T, R)

/* Compute the score for each cell */

1: (n, m) ← size of T

2: S ← n  m grid initalized to 0

3: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  T[i, j] ≠ 0}

4: N ← {(i−1, j), (i+1, j), (i, j−1), (i, j+1)}

5: for each (u, v)  N s.t. T[u, v] ≠ 0

6: S[i, j] ← S[i, j] + 𝑅[𝑇[𝑖, 𝑗], 𝑇[𝑢, 𝑣]]

/* Assign the terrain type of the highest-scoring neighbor to each cell */

7: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  T[i, j] ≠ 0}

8: N ← {(i, j), (i−1, j), (i+1, j), (i, j−1), (i, j+1)}

9: (u, v) ← (u, v)  N s.t. S [u, v]  S [u', v']  (u', v')  N

10: T[i, j] ← T[u, v]

11: return T

86

3.5.3 Full World Environments

The last environment type we present simulates a real-world environment with

optional cave walls, elevation, and five terrain types: meadow, forest, water, rock, and

snow. For this type of environment, we have hand-chosen some of the parameters after

careful experimentation to ensure consistency. The pseudocode of our approach is given in

Algorithm 3.15. We begin by creating a cave wall map W using the supplied parameters

for the GENERATE_CAVE_ENVIRONMENT function (lines 1-2). Next, we create a heightmap

E using the GENERATE_HEIGHTMAP function (line 3). The lowest elevations should be

filled with water, but we would like for the above water elevations to remain scaled in the

 𝑃0 = [0.5, 0.3, 0.2] 𝑃0 = [0.3, 0.4, 0.3] 𝑃0 = [0.1, 0.8, 0.1] 𝑃0 = [0.5, 0.3, 0.2]

 𝑅 = [
0.5 0.6 0.4
0.9 0.4 0
0 0.9 0.5

] 𝑅 = [
0.6 0.3 0.2
0.7 0.1 0.9
0.8 0.1 0.8

] 𝑅 = [
0.9 0.2 0.1
0.5 0.2 0.8
0.7 0.2 0.8

] 𝑅 = [
1 0.2 0.8
0.4 1 0.8
0.9 0.4 1

]

Figure 3.9 Examples of the fashion-based cellular automata algorithm for creating trinary terrain

environments. The top row shows the results of Algorithm 3.14 using a cave wall map generated using

parameters p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The bottom row shows trinary

environments created without a cave wall map. The initial distribution P0 and the rule matrix R are the same

for each column.

87

range [0, 1]. Lines 4-5 achieve this effect by scaling the elevation map by a factor of 1.2

and then subtracting 0.2. Any grid cells that result in an elevation below zero are marked

as water cells and the elevation is set back to zero to indicate sea-level. The gradient of the

heightmap is computed on line 6, which is used in the next step to initialize the terrain map.

Lines 7-15 describe how the terrain map is initialized. We construct the prior

distribution P0 independently for each grid cell (i, j) from a set of unnormalized values. A

constant value of 0.8 is assigned to P0[1] representing meadow. P0[2] represents forest and

is given a value of 1 − 𝐸[𝑖, 𝑗] to give greater weight to lower elevations. Terrain type 3 is

used to represent water, which is handled separetely, so P0[3] is set to 0. P0[4] represents

rock and is given a value proportional to the square root of the heightmap gradient so that

steep slopes have a higher chance of being initialized with rock. P0[5] represents snow and

is given a value of (𝐸[𝑖, 𝑗])5 to strongly favor high elevations. These values are normalized

and used to construct a multinomial distribution from which the initial terrain type is

sampled.

The terrain is updated using the FASHION_BASED_CELLULAR_AUTOMATA function

for 10 iterations using the rule specified on line 16. This simple rule indicates that meadow

and forest terrain types prefer their own types and each gives half weight to the other. The

rock and snow terrain types give full weight to themselves and each other. The third row

and column is set to zero to ignore the water terrain type since it has already been defined

with the heightmap. After each iteration, the terrain type for each grid cell where the

elevation is zero is set to water. After the terrain has been defined, the cave wall map,

heightmap, and terrain map are returned to be used as attribute layers in the grid world

environment. Several full world environment examples are shown in Figure 3.10.

88

Algorithm 3.15 Generate Full World Environment

GENERATE_FULL_WORLD_ENVIRONMENT(n, m, p0, rb, rd, k, opt, p, q)

/* Create the cave wall map */

1: mask ← n  m grid initalized to 0

2: W ← GENERATE_CAVE_ENVIRONMENT(n, m, p0, rb, rd, k, mask, opt) // Algorithm 3.1

/* Create the heightmap */

3: E ← GENERATE_HEIGHTMAP(W, p, q) // Algorithm 3.11

4: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m}

5: E[i, j] ← max(0, 𝐸[𝑖, 𝑗] ∗ 1.2 − 0.2)

6: F ← E // Compute the slope of each grid cell

/* Initialize the terrain map */

7: T ← n  m grid initalized to 0

8: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1}

9: P0[1] ← 0.8 // Meadow

10: P0[2] ← 1 − 𝐸[𝑖, 𝑗] // Forest

11: P0[3] ← 0 // Water (handled separately)

12: P0[4] ← √
𝐹[𝑖,𝑗]−min(𝐹)

max(𝐹)−min(𝐹)
 // Rock

13: P0[5] ← (𝐸[𝑖, 𝑗])5 // Snow

14: P0 ← P0 / sum(P0) // Normalize

15: T[i, j] ~ P0 // Sample a terrain type

/* Create the terrain map */

16: R ←

[

 1 0.5 0 0 0
0.5 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1]

17: for 10 iterations

18: T ← FASHION_BASED_CELLULAR_AUTOMATA(T, R) // Algorithm 3.14

19: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  E[i, j] = 0}

20: T[i, j] ← 3 // Set water terrain type

21: return W, E, T

89

3.6 Resource Placement

The last attribute layer specifies the resources that are present in the environment.

The resources represent goal locations that the agent needs to visit to satisfy the problem

requirements. There are many ways that the resources can be placed in the environment

and some problems may require a different approach from the methods presented here. We

consider three general classes of problems: Shortest path problems (SPP), traveling

salesman problems (TSP), and traveling purchaser problems (TPP).

Figure 3.10 Examples of full world environments generated using Algorithm 3.15. The top row uses a cave

wall map generated using parameters p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The

heightmap generation parameters are p=2 and q=3. The bottom row shows examples without any cave wall

map.

90

In shortest path problems, the agent must navigate through the environment to a

single resource location, choosing a route that minimizes its objectives. To initialize the

problem, we only need to place the agent and a single resource. One straightforward way

to accomplish this is to use tabu sampling with Algorithm 3.5 to sample many possible

locations with some minimum separation, and then select two locations that are reasonably

far apart. For instance, a SPP can be initialized by using tabu sampling to sample locations

with a 5-cell separation radius and then placing the agent at the sampled location closest to

the origin and the goal at the location farthest from the origin. This approach is simple to

implement, but may not utilize the entire environment space. An alternative is to compute

the all-pairs shortest path distances between every open grid cell and place the agent and

the goal at the two locations that have the maximum distance between them. This requires

a graph representation of the environment, which will be discussed further in Chapter 4.

Figure 3.11 shows an example cavern environment with the SPP initialized using these two

approaches.

91

In the traveling salesman problem, the agent must plan a minimum-cost route that

visits a set of known waypoints. In some variants, the agent only needs to visit a certain

number of waypoints. For this type of problem, we can again use tabu sampling to sample

the desired number of waypoints and one additional point to use as the agent starting

location. This ensures that the agent and all the waypoints meet some minimum separation

distance. Depending on the specifics of the problem, we can choose to restrict the valid

sampling area to one type of terrain, such as meadow. When using elevation as a feature,

some interesting problems can be created by placing waypoints at extrema locations in the

environment. Placing the agent in a relatively flat location at a middle elevation helps

maximize the difference between the agent’s possible choices, particularly if only some of

the waypoints need to be visited. Figure 3.12 shows two environments with the TSP

demonstrating these approaches.

 (a) (b)

Figure 3.11 Examples of shortest path problems in a cavern environment using the tabu sampling approach

(a) and the longest path approach (b). The agent is shown as a red circle and the goal is a blue cross.

92

The last problem type we consider is the traveling purchaser problem. In the CMM

framework, the TPP is presented as a resource collecting problem. Various resource types

are distributed throughout the environment and the agent is required to collect a specified

number of each type. We use five resource types; one for each type of terrain in the full

world environment. Just as with the TSP, tabu sampling is used to sample the resource

locations, with each terrain type handled independently. For each type of terrain, we create

a mask that leaves only grid cells of that terrain type and sample the resources using a

separation distance of 10 for meadow, 4 for forest, 8 for water, 2 for rock, and 3 for snow.

For meadow and forest, we sample resource locations until 100% of the feasible area has

selected. For water, rock, and snow, we sample 50%, 5% and 20% respectively. Other

values can be used, but these were found to create suitable problems for this work. The

 (a) (b)

Figure 3.12 Examples of traveling salesman problems initialized using the tabu sampling method in meadow

terrain only (a) and using extrema locations in the elevation (b). The agent is a red circle and the waypoints

are blue crosses.

93

agent location is sampled from an open location in the meadow terrain type. Figure 3.13

shows two examples of full world environments with the TPP.

3.7 Summary

This chapter described how the grid world problem environments are procedurally

generated in the CMM framework. The environments are represented as multiple matrices

representing the attributes of each grid cell, including the presence or absence of a wall,

the type of terrain, the elevation, and the locations of any resources. Not all properties need

to be defined, depending on the problem being studied. Maze-like environments can be

created by only using the cave wall layer and discrete problems can be created by using

only the terrain layer. Adding an elevation layer introduces a continuous feature that can

lead to interesting agent strategies. Finally, the full world environment uses all of these

Figure 3.13 Examples of traveling purchaser problems in full world environments. The agent is a red circle

and the other symbols represent different resource types. Each type of resource is restricted to a specific type

of terrain.

94

layers to simulate a synthetic real-world environment, although an agent need not consider

all of the environment attributes when deciding where to go.

Each environment presents a problem for an agent to solve, designed as a resource

gathering game. In the simplest problem type, there is a single resource (goal) placed

somewhere in the environment for the agent to collect. The traveling salesman problem

can be simulated by placing several resources of the same type throughout the environment.

It may be worthwhile to consider a problem in which the agent only needs to collect one

or a few resources, to observe how different destinations are compared. Finally, if the

resource types are different, the problem is modeled as the traveling purchaser problem, in

which the agent needs to collect a certain number of each resource. To decide which

resources to pursue and the routes to take, the agent needs to develop a working model of

the environment and understand the cost of each movement action. The next chapter

introduces the mental map grid and defines the fundamental features that the agent can use

to evaluate problems in the CMM framework.

95

4 THE MENTAL MAP GRID

The grid world environments defined in the previous chapter provide rich problem

domains for studying agent movement and planning. The agent’s actions are influenced by

how the agent sees and interprets the environment. This chapter introduces the mental map

that formalizes how the agent observes the environment and assigns costs to each

movement action. These costs are represented as features in an action graph, which defines

all possible actions that the agent can take. Later chapters summarize this information and

use it to develop plans that guide the agent’s movements.

4.1 The Mental Map

The CMM framework consists of two basic components: the simulation server and

the agent. The server is responsible for defining the grid world environment using the

procedural content generation methods presented in Chapter 3. The server also provides

information about the environment to the agent in the form of observations. The knowledge

that the agent accumulates through these observations is stored in a mental map

representation of the environment. This mental map contains the only information that the

agent can use to develop a plan that will solve the specified problem. Initially, the mental

map is empty and represents complete uncertainty about the environment. As the agent

moves, it discovers new regions and adds these to the mental map.

96

Formally, the server provides a grid world environment ℰ consisting of several

attribute layers as defined in Chapter 3. For each cell 𝑐 ∈ ℰ, the following attributes are

defined:

• OPEN(𝑐) ∈ {0, 1},

• TERRAIN(𝑐) ∈ 𝒯,

• ELEVATION(𝑐) ∈ [0,1], and

• RESOURCES(𝑐) ∈ ℛ ∪ ∅.

𝒯 is the set of all terrain types and ℛ is the set of all resource types. In our examples,

𝒯 = {0, 1, 2, 3, 4, 5} representing the terrain types wall, meadow, forest, water, rock, and

snow. Likewise, ℛ = {0, 1, 2, 3, 4, 5}, where 0 indicates no resource and 1-5 indicate the

resource that appears in the respective terrain type. In practice, these attribute layers are

stored as n  m matrices ℰ.𝑊, ℰ. 𝑇, ℰ. 𝐸, and ℰ. 𝑅 for the open, terrain, elevation, and

resource attributes respectively.

The agent maintains an internal representation of the environment as a mental map

ℳ. Each grid cell 𝑐 ∈ ℳ has the same attribute properties as ℰ and one additional attribute,

OBSERVED(𝑐) ∈ {0,1} (represented as the matrix V) indicating if the grid cell has been

observed by the agent (1) or not (0). Initially, OBSERVED(𝑐) = 0 for all 𝑐 ∈ ℳ and the other

attributes are undefined. As the environment is revealed to the agent, OBSERVED(𝑐) is set to

1 for the grid cells that have been observed, and the other attributes are defined as equal to

the corresponding values in ℰ. We assume that a grid cell is either fully observed, in which

case all other attributes are defined, or completely unobserved, in which case the other

attributes are undefined.

97

Algorithm 4.1 shows the INITIALIZE_MENTAL_MAP function used at the beginning

of the simulation to initialize ℳ with a specified size of n  m, and with terrain types 𝒯

and resource types ℛ. The size of the map is saved in ℳ.size (line 2), the terrain and

resource types are saved for later use (lines 3 and 4), and the other attributes are initialized

to default values. The position of the agent ℳ.pos is set to NIL (line 5) and a map of all

visited grid cells is initialized to zero (line 6). The visibility matrix ℳ.𝑉 is initialized to

zero (line 7) and the other attribute layers ℳ.𝑊, ℳ.𝐸, ℳ.𝑇, and ℳ.𝑅 are initialized to

NIL (lines 8-11). Lines 12 and 13 initialize the region labels ℳ.𝐿 and the local region

ℳ.localRegion. These are used to construct the region graph and will be discussed further

in Chapter 5.

Algorithm 4.1 Initialize the Mental Map

INITIALIZE_MENTAL_MAP(n, m, 𝒯, ℛ)

1: ℳ ← empty structure

2: ℳ.size ← (n, m)

3: ℳ.𝒯 ← 𝒯

4: ℳ.ℛ ← ℛ

5: ℳ.pos ← NIL

6: ℳ.visited ← n  m grid initalized to 0

7: ℳ.𝑉 ← n  m grid initalized to 0

8: ℳ.𝑊 ← n  m grid initalized to NIL

9: ℳ.𝐸 ← n  m grid initalized to NIL

10: ℳ.𝑇 ← n  m grid initalized to NIL

11: ℳ.𝑅 ← n  m grid initalized to NIL

12: ℳ.𝐿 ← n  m grid initalized to 1

13: ℳ.localRegion ← n  m grid initalized to 0

14: return ℳ

98

4.1.1 Creating Observations

At the start of the simulation and after each movement action by the agent, the

server provides an observation of the environment to the agent. An observation 𝒪 has the

same form as the mental map ℳ, but contains only the immediately visible image of the

environment. In contrast, ℳ maintains a record of everything that has been seen since the

start of the simulation and remembers what the environment looks like in places that are

no longer visible. Since we assume that the environment does not change during the course

of the simulation, portions of the mental map that have been observed but are no longer

visible are considered to be accurate.

The observation data structure is assembled using Algorithm 4.2. The first step in

this algorithm is to determine the visible region. There are two ways to do this that are

controlled by the opt.obsMode parameter: using the line of sight viewshed method or

declaring the entire environment to be visible. If we use the second method, then we can

bypass the visibility computation altogether and declare all cells to be in the visible region,

V (line 10). This is useful for studying problems without any uncertainty arising from

visibility. Using the first method, the visible region is computed from the viewshed (lines

3-8), which will be discussed next. We return to the definition of the overall observation

structure in Section 4.1.3. Figure 4.1 shows several examples of the observations computed

at the current agent location in different environments.

99

Algorithm 4.2 Get Observation

GET_OBSERVATION(ℰ, ai, aj, opt)

1: (n, m) ← size of ℰ

/* Get the visible region */

2: if opt.obsMode = “viewshed”

3: E ← ℰ. 𝐸

4: E[ℰ.𝑊 = 0  ℰ. 𝑇 = 2] ← NIL

5: E[ai, aj] ← ℰ. 𝐸[ai, aj]

6: for opt.k iterations

7: E ← E  G // Apply a 33 Gaussian blur

8: V ← GET_VIEWSHED(E, aj, ai, opt.h) // Algorithm 4.3

9: else

10: V ← n  m grid initalized to 1

11: V' ← V  [0 1 0; 1 1 1; 0 1 0] // 4-connected viewshed neighbors

12: V'' ← V  [1 1 1; 1 1 1; 1 1 1] // 8-connected viewshed neighbors

13: V [V' = 1  ℰ. 𝑇 = 2] ← 1 // Mark adjacent forest cells as visible

/* Get wall observation */

14: W ← n  m grid initalized to NIL

15: W [V = 1] ← 1

16: W [V'' = 1  ℰ.𝑊 = 0] ← 0

17: W [y, x] ← 0 for all cells where c(y, x) is a border cell

/* Create the observation structure */

18: 𝒪 ← empty structure

19: 𝒪.pos ← (ai, aj)

20: 𝒪. 𝑉 ← [W = 0  W = 1]

21: 𝒪.𝑊 ← W

22: 𝒪. 𝐸 ← ℰ. 𝐸

23: 𝒪. 𝐸 [𝒪. 𝑉 = 0] ← NIL

24: 𝒪. 𝑇 ← ℰ. 𝑇

25: 𝒪. 𝑇 [𝒪. 𝑉 = 0] ← NIL

26: 𝒪. 𝑅 ← ℰ. 𝑅

27: 𝒪. 𝑅 [𝒪. 𝑉 = 0] ← NIL

28: return 𝒪

100

4.1.2 Viewshed Computation

If the server is configured to use the partially observable viewshed method, then

the visible region V is computed using the GET_VIEWSHED function in Algorithm 4.3. The

elevation map E that is sent to this function has cells that completely obstruct the line of

sight, such as walls and forest terrain marked as NIL (lines 3-4 of Algorithm 4.2). The

forest terrain in our model is designed to be traversable by the agent, but with restricted

visibility, so these cells are marked as NIL in E. For the GET_VIEWSHED function to work

properly, the current agent location should not be marked as NIL, so line 5 of Algorithm

4.2 copies the true elevation value at the agent location into E. The qualitative appearance

of the viewshed region computed by GET_VIEWSHED can be improved by first applying

 (a) (b) (c) (d)

Figure 4.1 Examples of observations in various environments computed using Algorithm 4.2 and Algorithm

4.3. The top row shows the full environment ℰ and the bottom row shows the observation 𝒪 at the current

agent location (shown as a red dot). The environment values are observed within the visible region and hidden

everywhere else.

101

Gaussian smoothing to E. This removes elevation noise and results in a more continuous

viewshed region that is less sensitive to the discretized heightmap. Our implementation

convolves a 33 Gaussian filter G with the heightmap ℰ. 𝐸 for opt.k iterations, while

maintaining the NIL values (lines 6-7). We found that repeated applications of small filter

sizes produced more pleasing results than large filters when accounting for the NIL values.

At this point, the smoothed elevaiton map E is passed to the GET_VIEWSHED function with

the agent location (ai, aj) and the height parameter opt.h (line 8).

The GET_VIEWSHED function is given in Algorithm 4.3. It follows the basic premise

of the R3 viewshed algorithm given in Algorithm 2.1, but is optimized to avoid computing

the line of sight to every grid cell. The function starts by computing the elevation angle A

from the current agent location to every grid cell, and copying the NIL flag for cells that

are marked NIL in the elevation map (lines 1-7). Rather than evaluating the visibility of all

grid cells at once, the function starts at the agent location and works outward. We initialize

the visibility map V and a processed map P to all zeros (lines 8-9). The visibility map is

then set to 1 at the current agent location and this cell is added to the current working set,

C (lines 10-11). The algorithm then cycles through the main loop (lines 12-22) while the

current working set is not empty. Lines 13-16 get the next set of cells to process, N, which

are determined as the neighbors of C. Each cell in C is also marked with a 1 in the processed

map, P. Lines 17-22 check the visibility of each cell in N that has not already been

processed. The variable v in line 19 is computed using Algorithm 2.2 and is either 1 if the

grid cell is visible from the agent location, 0 if it is not visible, or −1 if the line of sight

encountered an obstruction marked as NIL. If v = 1, it is updated in the visibility map. If

102

v ≠ −1, then the cell is added to C and its neighbors will be evaluated on the next iteration.

If v = −1, then this cell will not be evaluated further. This allows the algorithm to stop

looking in a direction that has a wall or forest cell that obstructs the line of sight regardless

of the elevation.1 The algorithm can only stop looking in a direction once it encounters

such a cell, because there is always the possibility that a distant mountain ridge is visible

beyond a hidden valley. Figure 4.1 shows several examples of the viewshed region

computed in different environments.

1 A more accurate visibility model might account for tree height in a forested region and allow the agent to

look over a forest cell if the elevation permits. This would allow the agent to observe an entire forest region

on a distant mountainside, for instance.

103

Algorithm 4.3 Get Viewshed

GET_VIEWSHED(E, x1, y1, h)

/* Precompute the elevation angle to each grid cell */

1: (n, m) ← size of E

2: A ← n  m grid initalized to 0

3: for each (x2, y2) {(x2, y2) | 1 ≤ y2 ≤ n  1 ≤ x2 ≤ m  (x1, y1) ≠ (x2, y2)}

4: if E[y2, x2] = NIL

5: A[y2, x2] ← NIL

6: else

7: A[y2, x2] ← tan−1 (
𝐸[𝑦2,𝑥2]−𝐸[𝑦1,𝑥1]−ℎ

√(𝑥2−𝑥1)2+(𝑦2−𝑦1)2
)

8: V ← n  m grid initalized to 0

9: P ← n  m grid initalized to 0

10: V[y1, x1] ← 1

11: C ← {(x1, y1)}

12: while |C| > 0

/* Determine the next set of cells to process */

13: N ← ∅

14: for each (x, y)  C

15: P[y, x] ← 1

16: N ← N ∪ {(x−1, y), (x+1, y), (x, y−1), (x, y+1)}

/* Check the visibility */

17: C ← ∅

18: for each (x, y)  N s.t. P[y, x] = 0

19: v ← CHECK_VISIBILITY(A, x1, y1, x, y) // Algorithm 2.2

20: V[y, x] ← [v > 0]

21: if v  0

22: C ← C ∪ {(x, y)}

23: return V

104

4.1.3 Finalizing the Observation

Returning to the GET_OBSERVATION function in Algorithm 4.2, we have now

defined the visible region, V. We use this as a mask to define which cells have known

attributes in the observation structure 𝒪 and which cells are unobserved and marked as

NIL. Some heuristics are used to update the knowledge in the observation for cells adjacent

to the visible region. First, we define two dilations of V using both 4- and 8-connected

neighbors (lines 11-12 of Algorithm 4.2). We want to make sure that the cells adjacent to

the agent location are always visible, even in forest terrain, so line 13 marks these cells as

visible in V. Next, we create the observation wall map W from the environment wall map

ℰ.𝑊 and the visible region. Line 14 initializes W as a grid with all cells marked as NIL to

indicate complete uncertainty. Line 15 marks any cells in the visible region as being

traversable open space in W. Because the edges of the visible region include cells that are

adjacent to walls but not the walls themselves, we use the 8-connected neighbors of the

visible region to identify which wall cells to include in the observation. Any cells in this

expanded visible region that are marked as walls in the environment wall map are marked

as walls in W (line 16). We also mark the border cells of the environment as walls to prevent

the agent from moving off the edge of the map (line 17).

Lines 18-27 of Algorithm 4.2 create the actual observation structure 𝒪. The

observation consists of several information layers and the current agent position, which is

stored as 𝒪.pos (line 19). The visible region of the observation 𝒪. 𝑉 is defined as any cell

that has been identified as either open space or a wall. Note that this may be somewhat

different from the visible region computed using the GET_VIEWSHED function since we use

additional heuristics to determine where the walls are. The observation wall map is saved

105

as 𝒪.𝑊 and the remaining attribute layers are saved using the values from the environment.

Any cells that are not marked as visible in the observation visible region 𝒪. 𝑉 are set to

NIL in the elevation 𝒪. 𝐸, terrain 𝒪. 𝑇, and resource 𝒪. 𝑅 attribute layers. The complete

observation data structure 𝒪 is returned on line 28.

4.1.4 Updating the Mental Map

After receiving an observation from the server, the agent identifies any new

information and updates its mental map. An example is shown in Figure 4.2. Algorithm

4.4 gives the UPDATE_MENTAL_MAP procedure that takes an existing mental map structure

ℳ and an observation 𝒪 and integrates the new information from 𝒪 into ℳ. Lines 1-2

update the agent position and the map of visited locations. Line 3 identifies the grid cells

that have new information, defined as cells that are visible in the observation but have not

yet been observed in the mental map. These cells are saved as ℳ.new and are used to

avoid recomputing regions and features that have not changed since the last observation.

The new cells are marked as observed in ℳ.𝑉 (line 5) and the corresponding attribute

values are copied from the observation to the mental map (lines 6-9). Line 10 applies some

heuristics to the cave wall attribute layer to mark additional cells as walls based on

inference rules. These are given in the CAVE_WALL_HEURISTICS function in Algorithm

4.5. After updating the known wall locations, line 11 updates the region labels to remove

the label from any cell that is known to be a wall. The UPDATE_MENTAL_MAP procedure

ends by returning the updated mental map structure on line 12.

106

 (a) (b) (c)

Figure 4.2 Updating the mental map from an observation. (a) The agent’s mental map before receiving the

observation. The agent’s path is shown in red, and the agent has just moved north into a cell that opens to the

west. The previous observation is highlighted and previously observed cells are darkened. (b) The

observation returned by the server at the agent’s new position. (c) The agent’s updated mental map after

integrating the new information from the observation. The new observation is highlighted and previously

observed cells are darkened.

Algorithm 4.4 Update Mental Map

UPDATE_MENTAL_MAP(ℳ, 𝒪)

1: ℳ.pos ← 𝒪. 𝑝𝑜𝑠
2: ℳ.visited [ℳ.pos] ← 1

3: new ← {(i, j) | 𝒪. 𝑉 [i, j] = 1  ℳ.𝑉 [i, j] = 0}

4: ℳ.new ← new

5: ℳ.𝑉 [new] ← 1

6: ℳ.𝑊 [new] ← 𝒪.𝑊 [new]

7: ℳ.𝐸 [new] ← 𝒪. 𝐸 [new]

8: ℳ.𝑇 [new] ← 𝒪. 𝑇 [new]

9: ℳ.𝑅 [new] ← 𝒪. 𝑅 [new]

10: ℳ.𝑊 ← CAVE_WALL_HEURISTICS(ℳ.𝑊) // Algorithm 4.5

11: ℳ.𝐿[ℳ.𝑊 = 0] ← 0

12: return ℳ

107

There are two main heuristics applied by the CAVE_WALL_HEURISTICS function in

Algorithm 4.5. The first seeks to fill in unreachable areas that have been surrounded

completely by walls such as the example in Figure 4.3. These cells are inaccessible to the

agent, and are therefore assumed to be wall cells. Line 1 of the function identifies all

unobserved wall cells that are currently labeled as NIL. The 4-connected components are

Algorithm 4.5 Cave Wall Heuristics

CAVE_WALL_HEURISTICS(W)

/* Fill in unreachable areas */

1: U ← {(i, j) | W [i, j] = NIL} // Get all unobserved cells

2: L ← 4-connected component labeling of U

3: for k in 1 to max(L)

4: Z ← {(i, j) | L[i, j] = k}

5: D ← Z  [0 1 0; 1 1 1; 0 1 0] // Image dilation

6: B ← {(i, j) | Z [i, j] = 0  D[i, j] = 1} // Get the boundary cells

7: if W [i, j] = 0 for all (i, j)  B

8: W [Z] ← 0

/* Fix diagonals */

9: (n, m) ← size of W

10: for each (i, j) {(i, j) | 1 ≤ i ≤ n−1  1 ≤ j ≤ m−1}

11: if W [i, j] = 0  W [i+1, j+1] = 0

12: if W [i+1, j] = 1

13: W [i, j+1] ← 0

14: if W [i, j+1] = 1

15: W [i+1, j] ← 0

16: if W [i, j+1] = 0  W [i+1, j] = 0

17: if W [i, j] = 1

18: W [i+1, j+1] ← 0

19: if W [i+1, j+1] = 1

20: W [i, j] ← 0

21: return W

108

identified on line 2, and for each one we apply an image dilation to identify the boundary

cells of this unobserved region (lines 4-6). If all the boundary cells are marked as walls,

then there is no way for an agent to access the cells in the unobserved region, so they are

marked as walls (lines 7-8).

The second heuristic is used to improve the wall boundary on diagonal edges.

Because Algorithm 3.3 removed any diagonal passages during the generation of the cave

wall map, the agent can assume that there will be no diagonal passages in the environment.

This means that if two diagonally adjacent grid cells are both observed to be wall cells and

one of the two cells between them is observed to be open, then the other cell must be a wall

to prevent the creation of a diagonal passage. Lines 9-20 apply this rule to the entire map

and mark cells that meet these criteria as walls. An example is shown in Figure 4.4.

 (a) (b) (c)

Figure 4.3 Filling in unreachable areas with walls. (a) An unobserved region (gray) is surrounded by wall

cells (black) and is inaccessible to the agent. (b) The boundary cells (marked with red dots) of the unobserved

region are checked and if they are all walls, then the unobserved region is filled in. (c) The filled in region.

109

4.2 The Action Graph

The mental map structure ℳ is stored internally as a set of raster image layers,

representing the agent’s knowledge of the environment at each grid cell location. However,

for planning future actions, it is useful to represent the mental map as an attributed weighted

graph. We begin by defining the action graph 𝐺𝐴 that is the most granular representation

of the knowledge stored in ℳ. In Chapter 5 we will introduce the region graph, which

summarizes the information in 𝐺𝐴 for distinct regions in the environment. Each vertex in

𝐺𝐴 represents a grid cell where the agent can be located and edges represent the movement

actions between adjacent grid cells. The vertex set is defined as 𝑉(𝐺𝐴) =

{𝑐 ∈ ℳ | OPEN(𝑐) = 1 ∨ OBSERVED(𝑐) = 0}, which represents every grid cell that has

either been observed to be traversable, or has not yet been observed and therefore may be

traversable. Each vertex 𝑣 ∈ 𝑉(𝐺𝐴) inherits the attributes of the grid cell associated with

it. Adjacent grid cells are connected by a directed edge 𝑒 = (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑉(𝐺𝐴) and

 (a) (b) (c)

Figure 4.4 Fixing diagonal boundaries. (a) The wall layer of a mental map before fixing diagonals. Open

space is white, walls are black, and the unobserved cells are gray. (b) Locations that match the pattern of

diagonally adjacent wall cells with one open and one unobserved cell in between are marked in red. (c) The

unobserved cells in these patterns are marked as walls.

110

the cell represented by 𝑢 is adjacent to the cell represented by 𝑣. We denote START(𝑒) = 𝑢

as the starting vertex and END(𝑒) = 𝑣 as the ending vertex of edge 𝑒. The set of all edges

in the graph forms the edge set 𝐸(𝐺𝐴). Figure 4.5 shows the action graphs computed from

mental maps of two example environments.

Consider a single edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝐺𝐴) where 𝑢 represents grid cell 𝑐1 and 𝑣

represents an adjacent grid cell 𝑐2. If a grid cell is observed, then its attributes are known;

otherwise the attributes are marked as NIL. We denote the terrain type of cell 𝑐𝑘 as 𝑡𝑘, the

elevation (height) as ℎ𝑘, and the observability as 𝑜𝑘, where 𝑘 ∈ {1, 2}. (Note that we use ℎ

to represent elevation to avoid confusion with the notation for graph edges.)

 𝑜𝑘 = OBSERVED(𝑐𝑘) (4.1)

 𝑡𝑘 = {
TERRAIN(𝑐𝑘), 𝑜𝑘 = 1

NIL, 𝑜𝑘 = 0
 (4.2)

Figure 4.5 Examples of the action graph for two mental maps. All grid cells that are not walls are included

as vertices, regardless of observability. Adjacent grid cells are connected with edges.

111

 ℎ𝑘 = {
ELEVATION(𝑐𝑘), 𝑜𝑘 = 1

NIL, 𝑜𝑘 = 0
 (4.3)

The attributes of grid cell 𝑐𝑘 are defined as the pair (𝑡𝑘, ℎ𝑘) and the attributes of an edge

can be written as the pair of pairs, ((𝑡1, ℎ1), (𝑡2, ℎ2)). For notational convenience, we

define 𝑒. 𝑡1 and 𝑒. 𝑡2 as the starting and ending terrain types of an edge, 𝑒. ℎ1 and 𝑒. ℎ2 as

the starting and ending elevations, and 𝑒. 𝑜1 and 𝑒. 𝑜2 as the observability of the starting

and ending cells. We occasionally drop the 𝑒 prefix when referring to only a single edge.

The terrain, elevation, and observability of 𝑐1 and 𝑐2 are used to define several features

𝑓(𝑒) for an edge 𝑒. Multiple edge features are combined into a feature vector

𝐟(𝑒) = (𝑓1(𝑒),… , 𝑓𝑚(𝑒)), where 𝑓𝑖: 𝑒 ↦ ℝ≥0 for all 𝑖 = 1,… ,𝑚. We assume that each

feature maps into a non-negative real number to aid in the formulation of agent objective

functions, which will be defined so that edge features are minimized. The next two sections

give several possible feature functions that an agent can use to define 𝐟(𝑒). We first

consider the case in which both grid cells are observed, resulting in a crisp feature vector

with no uncertainty. Then, we show how these features become fuzzy when one or both

grid cells are unobserved.

4.3 Crisp Feature Functions

In the case where both grid cells of an edge 𝑒 are observed (i.e. 𝑒. 𝑜1 = 𝑒. 𝑜2 = 1),

the attributes are known exactly and the resulting feature vector contains no uncertainty.

The following subsections define several crisp features for action graph edges. An edge

feature 𝑓(𝑒) may depend only on some of the cell attributes, so for notational clarity, only

112

the required arguments are included in the following feature definitions. An example

showing the computation of these features is given in Section 4.3.6.

4.3.1 Distance Feature

The simplest feature we consider is a basic measure of the distance the agent has

traveled. We denote this feature as 𝑓𝑑. For a single edge in a uniform grid, the distance

feature is defined as a constant value,

 𝑓𝑑 = 1. (4.4)

The distance feature is independent of the grid cell attributes and can be applied in any

environment.

4.3.2 Terrain Type Features

In environments with multiple types of terrain, we can define a separate feature for

each terrain type. These features indicate how much of each type of terrain is represented

by an edge. For terrain type 𝑖, we denote this feature as 𝑓𝑡(𝑖), defined as

 𝑓𝑡(𝑖)(𝑡1, 𝑡2) = {

0, 𝑡1 ≠ 𝑖 ∧ 𝑡2 ≠ 𝑖
0.5, 𝑡1 ≠ 𝑖 ∧ 𝑡2 = 𝑖
0.5, 𝑡1 = 𝑖 ∧ 𝑡2 ≠ 𝑖
1, 𝑡1 = 𝑖 ∧ 𝑡2 = 𝑖 .

 (4.5)

There are four possible cases considered, where each cell either is or is not of terrain type

𝑖. Equation 4.5 can be expressed more compactly as

 𝑓𝑡(𝑖)(𝑡1, 𝑡2) =
1

2
[𝑡1 = 𝑖] +

1

2
[𝑡2 = 𝑖], (4.6)

where the notation [∗] evaluates to 1 if the condition in the brackets is true and 0 otherwise.

A terrain type feature is computed for each terrain type 𝑖 ∈ 𝒯. The feature will be 1 if both

113

grid cells are of type 𝑖 and 0 if neither grid cell is of type 𝑖. If only one grid cell is of type

𝑖, the feature will evaluate to 0.5.

4.3.3 Terrain Transition Features

In some circumstances, it may be important for the agent to consider the transition

between different types of terrain (e.g. when getting into or out of a boat at the edge of a

lake). For these types of features, we define a transition matrix T ∈ {0, 1}|𝒯|×|𝒯| where 𝑡𝑖𝑗

is 1 if the transition between two grid cells is from terrain type 𝑖 to terrain type 𝑗 and 0

otherwise. If the direction of the transition is important, we can use each element of T as a

separate feature. We denote these directional terrain transition features as 𝑓𝑡〈𝑖,𝑗〉 and define

them formally as

 𝑓𝑡〈𝑖,𝑗〉(𝑡1, 𝑡2) = {
1, 𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗
0, otherwise .

 (4.7)

This can also be written as

 𝑓𝑡〈𝑖,𝑗〉(𝑡1, 𝑡2) = [(𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗)]. (4.8)

If the direction of the transition is unimportant, we can reduce the number of features by

accounting for symmetries. The symmetric terrain transition features are denoted as 𝑓𝑡{𝑖,𝑗}

where we assume that 𝑖 ≤ 𝑗 and they are defined as

 𝑓𝑡{𝑖,𝑗}(𝑡1, 𝑡2) = {
1, 𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗
1, 𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖
0, otherwise .

 (4.9)

Again, this can be written in square bracket notation as

 𝑓𝑡{𝑖,𝑗}(𝑡1, 𝑡2) = [(𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗) ∨ (𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖)]. (4.10)

114

Table 4.1 shows the difference between the terrain type features and the terrain transition

features for all possible combinations of terrain types for the two cells.

Table 4.1 Crisp terrain type and terrain transition features

𝑡1 𝑡2 𝑓𝑡(𝑖) 𝑓𝑡(𝑗) 𝑓𝑡{𝑖,𝑖} 𝑓𝑡{𝑖,𝑗} 𝑓𝑡{𝑗,𝑗} 𝑓𝑡〈𝑖,𝑖〉 𝑓𝑡〈𝑖,𝑗〉 𝑓𝑡〈𝑗,𝑖〉 𝑓𝑡〈𝑗,𝑗〉

𝑖 𝑖 1 0 1 0 0 1 0 0 0

𝑖 𝑗 0.5 0.5 0 1 0 0 1 0 0

𝑖 ¬(𝑖 ∨ 𝑗) 0.5 0 0 0 0 0 0 0 0

𝑗 𝑖 0.5 0.5 0 1 0 0 0 1 0

𝑗 𝑗 0 1 0 0 1 0 0 0 1

𝑗 ¬(𝑖 ∨ 𝑗) 0 0.5 0 0 0 0 0 0 0

¬(𝑖 ∨ 𝑗) 𝑖 0.5 0 0 0 0 0 0 0 0

¬(𝑖 ∨ 𝑗) 𝑗 0 0.5 0 0 0 0 0 0 0

¬(𝑖 ∨ 𝑗) ¬(𝑖 ∨ 𝑗) 0 0 0 0 0 0 0 0 0

Note that we define a separate directional terrain transition feature for each terrain

type pair (𝑖, 𝑗) and (𝑗, 𝑖) whereas we only need to define the symmetric terrain transition

feature for the pair (𝑖, 𝑗) where 𝑖 ≤ 𝑗. Also, note that the self-transition features 𝑓𝑡{𝑖,𝑖} and

𝑓𝑡〈𝑖,𝑖〉 are not quite the same as the terrain type feature 𝑓𝑡(𝑖) since the terrain transition

features can only take binary values. However, an agent need only use one of the terrain-

based feature sets because the same information is simply distributed across a different

number of features. For 𝑁 terrain types, there are 𝑁 terrain type features, 𝑁2 directional

terrain transition features, and
𝑁2+𝑁

2
 symmetrical terrain transition features.

4.3.4 Elevation Features

Whereas terrain is a discrete feature type, the difference in elevation between two

grid cells is a continuous feature domain. Recall that the elevation values of the starting

115

and ending edge cells are given as ℎ1 and ℎ2. The absolute difference in elevation for the

edge is a feature that we denote as 𝑓ℎ and define as

 𝑓ℎ(ℎ1, ℎ2) = |ℎ1 − ℎ2|. (4.11)

Often, an agent will want to differentiate between an uphill slope and a downhill slope. To

account for this, we define the uphill slope feature 𝑓ℎ↑ as

 𝑓ℎ↑(ℎ1, ℎ2) = max(0, ℎ2 − ℎ1), (4.12)

And the downhill slope feature 𝑓ℎ↓ as

 𝑓ℎ↓(ℎ1, ℎ2) = max(0, ℎ1 − ℎ2). (4.13)

Note that the features are always non-negative to ensure that the objective values never go

below zero. The uphill and downhill slope features are complementary and at least one of

them will always be zero. The absolute elevation difference feature represents a

combination of the two directional elevation difference features, so an agent will usually

only use either just 𝑓ℎ or the pair 𝑓ℎ↑ and 𝑓ℎ↓. Figure 4.6 shows plots of the elevation

difference features for all values of ℎ1 and ℎ2 within the allowed range of [0, 1].

 (a) (b) (c)

Figure 4.6 Plots of the elevation difference features. (a) The absolute elevation difference 𝑓ℎ. (b) the uphill

elevation difference 𝑓ℎ↑. (c) The downhill elevation difference 𝑓ℎ↓.

116

4.3.5 Other Features

We limit our study in this work to the above features, but this list is by no means

exhaustive. Many different problems can be expressed in this framework so long as it is

possible to compute a feature for each edge based only on the attributes of its vertices. For

instance, one could compute additional features in the environment such as proximity to a

wall or the amount of terrain that is visible from a grid cell and develop edge features based

on these environment attributes. We should mention that features that depend on multiple

edges, such as the curviness or uniqueness of a path might be more difficult to use in this

framework. These types of features would be more suitably defined over paths rather than

individual edges, which would require different agent strategies than the ones presented

here.

4.3.6 Example

Figure 4.7 shows four examples of the edge features computed between two grid

cells. Each example shows a pair of cells representing a single edge going from the left cell

to the right cell. The colors indicate the terrain type with light tan representing terrain type

1 (meadow) and green representing terrain type 2 (forest). The numbers inside each cell

indicate the elevation, and the computed features are shown below each example.

117

Figure 4.7 Four examples demonstrating the computation of the feature functions considered in this work

for a single transition between two grid cells. The light tan region represents terrain type 1 (meadow) and the

green region represents terrain type 2 (forest). The numbers in each cell indicate the elevation value.

The distance feature 𝑓𝑑 is a constant 1 for each of the examples. The terrain type

features (𝑓𝑡(1), 𝑓𝑡(2)) are either (1,0), (0,1), or (0.5, 0.5) depending on if the pair of cells

is all of terrain type 1, 2, or both. The symmetric terrain transition features

(𝑓{1,1}, 𝑓{1,2}, 𝑓{2,2}) are either (1,0,0), (0,1,0), or (0,0,1), with the single nonzero element

indicating which pair of terrain types is present in each example. Likewise, the directional

terrain transition features (𝑓𝑡〈1,1〉, 𝑓𝑡〈1,2〉, 𝑓𝑡〈2,1〉, 𝑓𝑡〈2,2〉) each have a single nonzero element

that indicates the appropriate configuration of the two terrain types. The absolute elevation

difference feature 𝑓ℎ is simply the absolute difference in elevation between the two grid

118

cells. The directional elevation difference features (𝑓ℎ↑, 𝑓ℎ↓) indicate the direction of the

slope and have one element equal to 𝑓ℎ and the other set to zero. An agent could use various

subsets of these features to define its objective functions, which will be discussed further

in Chapter 6.

4.4 Fuzzy Feature Functions

We now consider the case in which one or both grid cells of an edge 𝑒 are

unobserved (i.e. 𝑒. 𝑜1 = 0 and/or 𝑒. 𝑜2 = 0). When this occurs, we introduce uncertainty

into the feature vector, which now needs to capture the range and distribution of possible

feature values given the unobserved attributes. Fuzzy numbers are well-suited for this task,

as they can represent a range of values with different weights specified by a membership

function. A fuzzy number 𝐴 ⊆ ℝ is a normalized convex fuzzy set with a membership

function 𝜇𝐴: 𝐴 → [0, 1] that specifies how well a number 𝑥 ∈ 𝐴 is represented by 𝐴. We

use triangular fuzzy numbers in this work for their relative simplicity. For a value 𝑥 ∈ ℝ,

the membership function of a triangular fuzzy number 𝐴 = Tri(𝑎, 𝑏, 𝑐) is defined as

 𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) =

{

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 < 𝑏

1, 𝑥 = 𝑏
𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 < 𝑐

0, 𝑥 ≥ 𝑐 .

 (4.14)

Whereas a crisp feature function 𝑓(𝑒) only needs to define a single value, a fuzzy feature

function 𝑓(𝑒) needs to define the three control parameters for the triangular fuzzy number.

A natural interpretation of these parameters is the min, mean, and max values that the

corresponding crisp feature function could take if the hidden grid cells were observed.

119

Using the notation from Equation 4.14, we denote these as 𝑎 = 𝑓min(𝑒), 𝑏 = 𝑓mean(𝑒),

and 𝑐 = 𝑓max(𝑒). The following sections define these values for each of the feature

functions considered in this work.

4.4.1 Distance Feature

Unlike the other features, the distance feature for a single edge is unaffected by

observability. Because all edges in the action graph have the same length, the distance

feature is defined as a crisp value of 1, regardless of whether the grid cells are observed or

not.

 𝑓𝑑
min(𝑒) = 𝑓𝑑

mean(𝑒) = 𝑓𝑑
max(𝑒) = 1. (4.15)

The resulting fuzzy feature is defined as

 𝑓𝑑(𝑒) = Tri(1, 1, 1). (4.16)

4.4.2 Terrain Type Features

The terrain type features measure the amount of an edge that occurs within terrain

type 𝑖. In the crisp case, the possible values are 0, 0.5, and 1, indicating that neither, one,

or both grid cells were of type 𝑖. In the fuzzy case, we need to consider what the minimum,

maximum, and expected values of the crisp feature would be over all possible

configurations of the unknown terrain types. We start by defining some additional notation.

Let 𝑡1
∗, 𝑡2

∗ ∈ 𝒯 be the true terrain types of the starting and ending cells respectively.

The value of the terrain type feature in the fully observable case is given by Equation 4.5

or Equation 4.6 as 𝑓𝑡(𝑖)(𝑡1
∗, 𝑡2

∗). When either 𝑡1
∗ or 𝑡2

∗ is unknown, this value cannot be

120

evaluated directly, but we can determine the range and most likely value. Let 𝑇𝑘𝑖 be the

event that 𝑡𝑘
∗ = 𝑖 for 𝑘 ∈ {1, 2}. The probability that event 𝑇𝑘𝑖 occurs is defined as

 𝑝(𝑇𝑘𝑖) = {

1, 𝑜𝑘 = 1 ∧ 𝑡𝑘 = 𝑖
0, 𝑜𝑘 = 1 ∧ 𝑡𝑘 ≠ 𝑖

𝑝(𝑖), 𝑜𝑘 = 0 ,
 (4.17)

where 𝑝(𝑖) is the prior likelihood of observing terrain type 𝑖. Often, 𝑝(𝑖) =
1

|𝒯|
, where |𝒯|

is the number of possible terrain types, but other priors are possible. The complementary

event 𝑇𝑘𝑖
𝑐 is defined as the event that 𝑡𝑘

∗ ≠ 𝑖 for 𝑘 ∈ {1, 2}. Since these are the only two

possible events describing the state of a single cell,

 𝑝(𝑇𝑘𝑖
𝑐) = 1 − 𝑝(𝑇𝑘𝑖). (4.18)

For the two cells involved in a graph edge, there are four possible states that need to be

considered:

• 𝑠12 = (𝑇1𝑖, 𝑇2𝑖), (4.19)

• 𝑠1 = (𝑇1𝑖, 𝑇2𝑖
𝑐), (4.20)

• 𝑠2 = (𝑇1𝑖
𝑐 , 𝑇2𝑖), and (4.21)

• 𝑠0 = (𝑇1𝑖
𝑐 , 𝑇2𝑖

𝑐). (4.22)

Here, 𝑠12 is the state where both grid cells have terrain type 𝑖, 𝑠0 is the state where neither

cell has terrain 𝑖, and 𝑠1 and 𝑠2 are the states where just one of the cells is of terrain type 𝑖.

We call the set of all possible states 𝑆 = {𝑠12, 𝑠1, 𝑠2, 𝑠0}, and each of these states results in

a crisp terrain type feature vector for the edge. Adapting Equation 4.5 gives

 𝑓𝑡(𝑖)(𝑠) = {

0, 𝑠 = 𝑠0
0.5, 𝑠 = 𝑠1 ∨ 𝑠 = 𝑠2
1, 𝑠 = 𝑠12 .

 (4.23)

121

We assume that the terrain types of the two cells are independent, so the following

expressions give the probability that each state is the true state of the environment.

 𝑝(𝑠12) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖) (4.24)

 𝑝(𝑠1) = 𝑝(𝑇1𝑖)(1 − 𝑝(𝑇2𝑖)) (4.25)

 𝑝(𝑠2) = (1 − 𝑝(𝑇1𝑖))𝑝(𝑇2𝑖) (4.26)

 𝑝(𝑠0) = (1 − 𝑝(𝑇1𝑖))(1 − 𝑝(𝑇2𝑖)) (4.27)

If the probability of a state is greater than zero, then it has some chance of occurring. We

define the possibility that a state occurs as

 pos(𝑠) = [𝑝(𝑠) > 0], (4.28)

and the set of all possible states is given as

 𝑆pos = {𝑠 ∈ 𝑆|pos(𝑠) > 0}. (4.29)

We can now express the minimum, maximum, and expected values of the terrain type

feature for an edge 𝑒 and terrain type 𝑖.

 𝑓𝑡(𝑖)
min(𝑒) = min

𝑠∈𝑆pos
𝑓(𝑠) (4.30)

 𝑓𝑡(𝑖)
max(𝑒) = max

𝑠∈𝑆pos
𝑓(𝑠) (4.31)

 𝑓𝑡(𝑖)
mean(𝑒) =∑𝑓(𝑠)𝑝(𝑠)

𝑠∈𝑆

 (4.32)

In practice, the fuzzy terrain type feature values are computed using the following

equivalent definitions.

122

 𝑓𝑡(𝑖)
min(𝑒) =

1

2
[𝑡1 = 𝑖 ∧ 𝑜1 = 1] +

1

2
[𝑡2 = 𝑖 ∧ 𝑜1 = 1] (4.33)

 𝑓𝑡(𝑖)
max(𝑒) =

1

2
[𝑡1 = 𝑖 ∨ 𝑜1 = 0] +

1

2
[𝑡2 = 𝑖 ∨ 𝑜2 = 0] (4.34)

𝑓𝑡(𝑖)
mean(𝑒) =

1

2
[𝑡1 = 𝑖 ∧ 𝑜1 = 1] +

1

2
𝑝(𝑖)[𝑜1 = 0] +

 
1

2
[𝑡2 = 𝑖 ∧ 𝑜2 = 1] +

1

2
𝑝(𝑖)[𝑜2 = 0]

(4.35)

The fuzzy number representing the overall terrain type feature is defined as

 𝑓𝑡(𝑖)(𝑒) = Tri (𝑓𝑡(𝑖)
min(𝑒), 𝑓𝑡(𝑖)

mean(𝑒), 𝑓𝑡(𝑖)
max(𝑒)). (4.36)

A summary of the triangular fuzzy number feature values is given in Table 4.2 for the case

where |𝒯| = 2 and 𝑝(𝑖) = 0.5. Note that when both grid cells are observed, the fuzzy

numbers are equivalent to the crisp version.

Table 4.2 Example of the fuzzy terrain type feature when |𝒯| = 2 and 𝑝(𝑖) = 0.5

𝑓𝑡(𝑖)(𝑒)
𝑜2 = 1 𝑜2 = 0

𝑡2 = 𝑖 𝑡2 ≠ 𝑖

𝑜1 = 1
𝑡1 = 𝑖 Tri(1,1,1) Tri(0.5, 0.5, 0.5) Tri(0.5, 0.75, 1)

𝑡1 ≠ 𝑖 Tri(0.5, 0.5, 0.5) Tri(0, 0, 0) Tri(0, 0.25, 0.5)

𝑜1 = 0 Tri(0.5, 0.75, 1) Tri(0, 0.25, 0.5) Tri(0, 0.5, 1)

To demonstrate, consider the examples in Figure 4.8. In (a), both cells are observed,

so the fuzzy terrain type feature value is equivalent to the crisp case and the fuzzy number

is a singleton value of 0.5 for both terrain type 1 (meadow) and 2 (forest). In (b), the first

cell is observed to be terrain type 1 and the second cell is unobserved. Both terrain types

have equal priors, so the second grid cell is equally likely to be either terrain type. If the

second cell is type 1, then the crisp terrain type features would be 𝑓𝑡(1) = 1 and 𝑓𝑡(2) = 0.

123

If the second cell is type 2, then they would be 𝑓𝑡(1) = 0.5 and 𝑓𝑡(2) = 0.5. Clearly, the

minimum value of 𝑓𝑡(1) is 0.5 and the maximum is 1. Likewise, the minimum of 𝑓𝑡(2) is 0

and the maximum is 0.5. Since the priors are equal, the mean values are the averages of

these two extremes. In (c), the first grid cell is unobserved and the priors favor terrain type

1. The resulting triangular fuzzy numbers are skewed to reflect that the most likely outcome

is that the unobserved cell is type 1 and the resulting crisp feature value would be 0.5. In

(d), both cells are unobserved, so both terrain type features span the entire range [0, 1].

Because the priors slightly favor terrain type 1, the mean value of 𝑓𝑡(1) is slightly higher

than that of 𝑓𝑡(2).

 (a) (b) (c) (d)

Figure 4.8 Four examples demonstrating the computation of the fuzzy terrain type features for a single

transition between two adjacent grid cells. The light tan region represents terrain type 1 (meadow) and the

green region represents terrain type 2 (forest). Gray cells are unobserved. The plots compare the fuzzy terrain

type features for each example.

124

4.4.3 Terrain Transition Features

The directional terrain transition feature 𝑓𝑡〈𝑖,𝑗〉(𝑒) indicates if an edge 𝑒 goes from

terrain type 𝑖 to terrain type 𝑗, whereas the symmetric terrain transition feature 𝑓𝑡{𝑖,𝑗}(𝑒)

only checks if an edge 𝑒 includes both terrain types 𝑖 and 𝑗. In the fully observable case,

these features could only take binary values. However, in the partially observable case, the

terrain transition features are represented as triangular fuzzy numbers. Following the

notation from the previous section, let 𝑡1
∗, 𝑡2

∗ ∈ 𝒯 be the true terrain types of the starting and

ending grid cells for an edge 𝑒, and let 𝑇𝑘𝑖 be the event that 𝑡𝑘
∗ = 𝑖 and 𝑇𝑘𝑗 the event that

𝑡𝑘
∗ = 𝑗 for 𝑘 ∈ {1, 2}. Equation 4.17 gives the probability of each event as 𝑝(𝑇𝑘𝑖) and

𝑝(𝑇𝑘𝑗). Note that the terrain priors 𝑝(𝑖) and 𝑝(𝑗) may be different, but the terrain priors

for all terrain types must satisfy the requirements of a multinomial probability distribution

(i.e. ∑ 𝑝(𝑘)𝑘∈𝒯 = 1 and 𝑝(𝑘) ≥ 0 for all 𝑘 ∈ 𝒯). For the directional terrain transition

features, the only environment state that gives a feature value of one is (𝑇1𝑖, 𝑇2𝑗); all other

states give a feature value of zero. The probability of this state is defined as 𝑝(𝑇1𝑖, 𝑇2𝑗),

which is equivalent to 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) since the two terrain types are independent of each

other. For the symmetric terrain transition features, both (𝑇1𝑖, 𝑇2𝑗) and (𝑇1𝑗 , 𝑇2𝑖) give a

feature value of one with all other states being zero. The probability of this occurring is

𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) if 𝑖 ≠ 𝑗 and 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖) if 𝑖 = 𝑗. The different expression

for when 𝑖 and 𝑗 refer to the same terrain type is because there is only a single environment

state where both terrain types are the same (type 𝑖), so it should only be counted once.

As with the terrain type features, the fuzzy terrain transition features are defined

using the minimum, maximum, and expected value of the crisp features over all possible

125

environment states. For the fuzzy directional terrain transition features, the expected value

is given as

 𝑓𝑡〈𝑖,𝑗〉
mean(𝑒) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗), (4.37)

and for the fuzzy symmetric terrain transition features, the expected value is given as

 𝑓𝑡{𝑖,𝑗}
mean(𝑒) = {

𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖), 𝑖 ≠ 𝑗

𝑝(𝑇1𝑖)𝑝(𝑇2𝑖), 𝑖 = 𝑗 .
 (4.38)

Because the crisp feature value is binary, we can infer that the minimum possible feature

value will be zero, unless both terrain types are known and the feature value is observed to

be one. In other words, if the expected value is less than one, then the minimum value will

be zero; otherwise it will be one. Likewise, the maximum possible feature value will be

one if the expected value is greater than zero; otherwise it will be zero. Formally,

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 1

0, otherwise
, and (4.39)

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 0

1, otherwise
 (4.40)

for the fuzzy directional terrain transition features and

 𝑓𝑡{𝑖,𝑗}
min (𝑒) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 1

0, otherwise
, and (4.41)

 𝑓𝑡{𝑖,𝑗}
max (𝑒) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 0

1, otherwise
 (4.42)

for the fuzzy symmetric terrain transition features. In practice, the fuzzy terrain transition

features are computed using the following equivalent definitions.

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒) = [𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1] (4.43)

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒) = [(𝑡1 = 𝑖 ∨ 𝑜1 = 0) ∧ (𝑡2 = 𝑗 ∨ 𝑜2 = 0)] (4.44)

126

 𝑓𝑡〈𝑖,𝑗〉
mean(𝑒) =

{

1, 𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1

𝑝(𝑗), 𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑜2 = 0

𝑝(𝑖), 𝑜1 = 0 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1

𝑝(𝑖)𝑝(𝑗), 𝑜1 = 0 ∧ 𝑜2 = 0
0, otherwise

 (4.45)

 𝑓𝑡{𝑖,𝑗}
min (𝑒) = [((𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗) ∨ (𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖)) ∧ 𝑜1 = 1 ∧ 𝑜2 = 1] (4.46)

 𝑓𝑡{𝑖,𝑗}
max (𝑒) = [(𝑡1 = 𝑖 ∨ 𝑡1 = 𝑗 ∨ 𝑜1 = 0) ∧ (𝑡2 = 𝑖 ∨ 𝑡2 = 𝑗 ∨ 𝑜2 = 0)] (4.47)

 𝑓𝑡{𝑖,𝑗}
mean(𝑒) =

{

1, ((𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗) ∨ (𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖)) ∧

𝑜1 = 1 ∧ 𝑜2 = 1

𝑝(𝑗), (𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑜2 = 0) ∨
(𝑜1 = 0 ∧ 𝑡2 = 𝑖 ∧ 𝑜2 = 1)

𝑝(𝑖), (𝑡1 = 𝑗 ∧ 𝑜1 = 1 ∧ 𝑜2 = 0) ∨
(𝑜1 = 0 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1)

𝑝(𝑖)2, 𝑜1 = 0 ∧ 𝑜2 = 0 ∧ 𝑖 = 𝑗

2𝑝(𝑖)𝑝(𝑗), 𝑜1 = 0 ∧ 𝑜2 = 0 ∧ 𝑖 ≠ 𝑗

0, otherwise

 (4.48)

The fuzzy numbers representing the directional and symmetric terrain transition features

are defined as

 𝑓𝑡{𝑖,𝑗}(𝑒) = Tri (𝑓𝑡{𝑖,𝑗}
min (𝑒), 𝑓𝑡{𝑖,𝑗}

mean(𝑒), 𝑓𝑡{𝑖,𝑗}
max (𝑒)) , and (4.49)

 𝑓𝑡〈𝑖,𝑗〉(𝑒) = Tri (𝑓𝑡〈𝑖,𝑗〉
min (𝑒), 𝑓𝑡〈𝑖,𝑗〉

mean(𝑒), 𝑓𝑡〈𝑖,𝑗〉
max (𝑒)). (4.50)

A summary of these features is shown in Table 4.3 and Table 4.4. Note that this

differs from the terrain type feature summary in Table 4.2 since we consider a problem

with more than two terrain types (|𝒯| > 2), and unequal terrain type priors. There are a

few noticeable differences between the symmetric and directional versions. In the

directional version, only the case where 𝑡1 = 𝑖 and 𝑡2 = 𝑗 (blue) is a crisp 1, whereas in

127

the symmetric version, the case where 𝑡1 = 𝑗 and 𝑡2 = 𝑖 (red) is also a crisp 1. The bottom

row and rightmost column indicate configurations where at least one of the cells is

unobserved. The nonzero configurations are shaded to show the similarity between the two

versions of the feature. Note that the mean feature value of the configuration where both

cells are unobserved is twice as large in the symmetric version of the feature as compared

to the directional version. (We assume that 𝑖 ≠ 𝑗.)

Table 4.3 Example of the fuzzy symmetric terrain transition feature when

 |𝒯| > 2, 𝑝(𝑖) = 0.7, and 𝑝(𝑗) = 0.2 (𝑖 ≠ 𝑗)

𝑓𝑡{𝑖,𝑗}(𝑒)
𝑜2 = 1 𝑜2 = 0

𝑡2 = 𝑖 𝑡2 = 𝑗 𝑡2 ≠ 𝑖 ∧ 𝑡2 ≠ 𝑗

𝑜1 = 1

𝑡1 = 𝑖 Tri(0,0,0) Tri(1, 1, 1) Tri(0, 0, 0) Tri(0, 0.2, 1)

𝑡1 = 𝑗 Tri(1, 1, 1) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0.7, 1)

𝑡1 ≠ 𝑖 ∧
𝑡1 ≠ 𝑗

Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0)

𝑜1 = 0 Tri(0, 0.2, 1) Tri(0, 0.7, 1) Tri(0, 0, 0) Tri(0, 0.28, 1)

Table 4.4 Example of the fuzzy directional terrain transition feature when

 |𝒯| > 2, 𝑝(𝑖) = 0.7, and 𝑝(𝑗) = 0.2 (𝑖 ≠ 𝑗)

𝑓𝑡〈𝑖,𝑗〉(𝑒)
𝑜2 = 1 𝑜2 = 0

𝑡2 = 𝑖 𝑡2 = 𝑗 𝑡2 ≠ 𝑖 ∧ 𝑡2 ≠ 𝑗

𝑜1 = 1

𝑡1 = 𝑖 Tri(0,0,0) Tri(1, 1, 1) Tri(0, 0, 0) Tri(0, 0.2, 1)

𝑡1 = 𝑗 Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0)

𝑡1 ≠ 𝑖 ∧
𝑡1 ≠ 𝑗

Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0)

𝑜1 = 0 Tri(0, 0, 0) Tri(0, 0.7, 1) Tri(0, 0, 0) Tri(0, 0.14, 1)

128

Figure 4.9 shows the same four examples from Figure 4.8, now evaluated for the

terrain transition features. We assume that |𝒯| = 2 in all cases. In (a), both cells are

observed, so the terrain transition features are crisp binary values. In (b), the second cell is

unobserved and is equally likely to be either terrain type 1 (meadow) or type 2 (forest). The

feature values are either zero if the observation is incompatible with the feature type, or a

completely uncertain fuzzy number spanning the range [0, 1] with a mean of 0.5. In (c),

the first cell is unobserved and the priors favor terrain type 1. This changes the means of

the fuzzy numbers to reflect the greater likelihood that the unobserved region is type 1. In

(d), both cells are unobserved with unequal priors, making each feature span the range

[0, 1], but with different mean values. Note that 𝑓𝑡{𝑖,𝑗} and 𝑓𝑡〈𝑖,𝑗〉 are identical when 𝑖 = 𝑗,

and that 𝑓𝑡{1,2}
mean = 2𝑓𝑡〈1,2〉

mean. Again, this is because when 𝑖 ≠ 𝑗, the symmetric version of the

feature will consider the both cases where (𝑡1, 𝑡2) is (𝑖, 𝑗) and (𝑗, 𝑖), but when 𝑖 = 𝑗, there

is only a single case, (𝑖, 𝑖).

129

4.4.4 Elevation Features

Unlike the discrete terrain features, the crisp elevation features come from the

continuous domain [0, 1]. We defined three elevation features in Section 4.3.4, given by

Equations 4.11, 4.12, and 4.13: the absolute, uphill, and downhill elevation difference. In

 (a) (b) (c) (d)

Figure 4.9 Four examples demonstrating the computation of the fuzzy terrain transition features for a single

transition between two adjacent grid cells. The light tan region represents terrain type 1 (meadow) and the

green region represents terrain type 2 (forest). Gray cells are unobserved. The plots compare the fuzzy terrain

transition features for each example.

130

the partially observed case, we need to compute the minimum, maximum, and expected

values of these features over all possible configurations. To simplify the analysis, we

assume that the elevation attributes of a grid cell are bounded by the range [0, 1] and that

the values are distributed uniformly over this range, so that all elevations are equally likely.

Recall that the elevation values of the starting and ending edge cells are given as

ℎ1, ℎ2 ∈ [0, 1] and we denote the observability of the cells as 𝑜1 and 𝑜2. If one or both cells

of an edge are unobserved, then the minimum elevation difference for all three feature

types will always be zero, because it is possible that both cells have the same elevation.

 𝑓ℎ
min(𝑒) = {

|ℎ1 − ℎ2|, 𝑜1 = 1 ∧ 𝑜2 = 1
0, otherwise

 (4.51)

 𝑓ℎ↑
min(𝑒) = {

max(0, ℎ2 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 1
0, otherwise

 (4.52)

 𝑓ℎ↓
min(𝑒) = {

max(0, ℎ1 − ℎ2) , 𝑜1 = 1 ∧ 𝑜2 = 1
0, otherwise

 (4.53)

If neither cell is observed, the maximum elevation difference is one, and if just one cell is

observed, the maximum elevation difference is determined by the observed elevation value.

 𝑓ℎ
max(𝑒) = {

|ℎ1 − ℎ2|, 𝑜1 = 1 ∧ 𝑜2 = 1

max(ℎ1, 1 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 0

max(ℎ2, 1 − ℎ2) , 𝑜1 = 0 ∧ 𝑜2 = 1
1, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.54)

 𝑓ℎ↑
max(𝑒) = {

max(0, ℎ2 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 1
1 − ℎ1, 𝑜1 = 1 ∧ 𝑜2 = 0

ℎ2, 𝑜1 = 0 ∧ 𝑜2 = 1
1, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.55)

 𝑓ℎ↓
max(𝑒) = {

max(0, ℎ1 − ℎ2) , 𝑜1 = 1 ∧ 𝑜2 = 1
ℎ1, 𝑜1 = 1 ∧ 𝑜2 = 0

1 − ℎ2, 𝑜1 = 0 ∧ 𝑜2 = 1
1, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.56)

131

For instance, if the first cell is observed but not the second, then the biggest absolute

elevation difference is the greater of ℎ1 and 1 − ℎ1, since these are the differences between

the two extremes of the possible range for ℎ2. Similar reasoning follows for the other cases

and feature types.

To get the expected elevation difference, we need to integrate over all possible

unobserved values. Consider the plots shown in Figure 4.10. These plots show how the

value of the elevation difference features change when just one grid cell is observed. In

this case, we can express the expected value of the elevation difference features as

 𝑓ℎ∗
mean(𝑒) = ∫ 𝑓ℎ∗(𝑥|𝑧)𝑝(𝑥)𝑑𝑥

1

0

, (𝑜1 = 1 ∧ 𝑜2 = 0) ∨ (𝑜1 = 0 ∧ 𝑜2 = 1). (4.57)

Here, 𝑓ℎ∗ is the crisp feature function for either the absolute elevation difference 𝑓ℎ, the

uphill elevation difference 𝑓ℎ↑, or the downhill elevation difference 𝑓ℎ↓. The function

parameter 𝑥 is the unobserved elevation value and 𝑧 is the elevation value from the

observed cell. The probability of observing 𝑥 is given as 𝑝(𝑥), which can be ignored since

we assume a uniform distribution over the interval [0, 1] and therefore 𝑝(𝑥) = 1.

132

As an example, consider the case where the first cell is observed with an elevation

of 𝑧 and the second cell is unobserved (top row of Figure 4.10). The value of the absolute

elevation difference can be written as a piecewise linear function of 𝑥,

 𝑓ℎ(𝑥|𝑧) = {
𝑧 − 𝑥, 𝑥 < 𝑧
𝑥 − 𝑧, 𝑥 ≥ 𝑧 .

 (4.58)

Figure 4.10 Plots of the elevation difference features when one cell is unobserved. The top row assumes that

the second cell is unobserved (𝑜1 = 1 and 𝑜2 = 0) and the first cell has the value given in the plot title. The

bottom row shows the opposite case, where the first cell is unobserved (𝑜1 = 0 and 𝑜2 = 1). These plots are

cross-sections of the bivariate feature plots shown in Figure 4.6.

133

The expected value is then calculated as

 𝑓ℎ
mean(𝑧) = ∫ (𝑧 − 𝑥)𝑑𝑥

𝑧

0

+∫ (𝑥 − 𝑧)𝑑𝑥
1

𝑧

 (4.59a)

 = [𝑥𝑧 −
1

2
𝑥2]

0

𝑧

+ [
1

2
𝑥2 − 𝑥𝑧]

𝑧

1

 (4.59b)

 = (
1

2
𝑧2) + (

1

2
𝑧2 − 𝑧 +

1

2
) (4.59c)

 = 𝑧2 − 𝑧 +
1

2
 . (4.59d)

The uphill and downhill elevation difference functions each contain only one of the linear

segments from the absolute elevation difference with the other set to zero.

 𝑓ℎ↑(𝑥|𝑧) = {
0, 𝑥 < 𝑧

𝑥 − 𝑧, 𝑥 ≥ 𝑧
 (4.60)

 𝑓ℎ↓(𝑥|𝑧) = {
𝑧 − 𝑥, 𝑥 < 𝑧

0, 𝑥 ≥ 𝑧
 (4.61)

The expected values of these functions are the corresponding components of the overall

integral from Equation 4.59.

𝑓ℎ↑
mean(𝑧) = ∫ (𝑥 − 𝑧)𝑑𝑥

1

𝑧

=
1

2
𝑧2 − 𝑧 +

1

2
 (4.62)

𝑓ℎ↓
mean(𝑧) = ∫ (𝑧 − 𝑥)𝑑𝑥

𝑧

0

=
1

2
𝑧2 (4.63)

These functions are shown in Figure 4.11 for all possible values where only one cell is

observed. Note that the expected elevation difference value is bounded by the range

[0, 0.5].

134

Finally, we consider the case where both grid cells are unobserved. The expected

elevation difference in this case is the double integral over both possible elevation values,

 𝑓ℎ∗
mean(𝑒) = ∫ ∫ 𝑓ℎ∗(𝑥, 𝑦)𝑝(𝑥)𝑑𝑥

1

0

𝑝(𝑦)𝑑𝑦
1

0

, 𝑜1 = 0 ∧ 𝑜2 = 0. (4.64)

Here, 𝑓ℎ∗(𝑥, 𝑦) is one of the crisp elevation difference feature functions for two elevation

values, 𝑥 and 𝑦. These are given by Equations 4.11, 4.12, and 4.13. Again, since we assume

a uniform distribution for 𝑥 and 𝑦, 𝑝(𝑥) = 𝑝(𝑦) = 1. First, consider the absolute elevation

difference feature. To compute the double integral, the expression is divided into two parts,

 (a) (b)

Figure 4.11 Plots of the expected elevation difference features when only the first cell (a) or the second cell

(b) is observed. Note that the uphill and downhill elevation difference features are switched in the two cases.

135

 𝑓ℎ
mean(𝑒) = ∫ ∫ |𝑥 − 𝑦|𝑑𝑥

1

0

𝑑𝑦
1

0

 (4.65a)

 = ∫ ∫ (𝑦 − 𝑥)𝑑𝑥
𝑦

0

𝑑𝑦
1

0

+∫ ∫ (𝑥 − 𝑦)𝑑𝑥
1

𝑦

𝑑𝑦
1

0

 (4.65b)

 = ∫ [𝑥𝑦 −
1

2
𝑥2]

0

𝑦

𝑑𝑦
1

0

+∫ [
1

2
𝑥2 − 𝑥𝑦]

𝑦

1

𝑑𝑦
1

0

 (4.65c)

 = ∫ (
1

2
𝑦2) 𝑑𝑦

1

0

+∫ (
1

2
𝑦2 − 𝑦 +

1

2
)𝑑𝑦

1

0

 (4.65d)

 = [
1

6
𝑦3]

0

1

+ [
1

6
𝑦3 −

1

2
𝑦2 +

1

2
𝑦]
0

1

 (4.65e)

 =
1

6
+
1

6
=
1

3
, 𝑜1 = 0 ∧ 𝑜2 = 0. (4.65f)

As before, the expected values of the uphill and downhill elevation difference features each

contain only the corresponding component of the absolute elevation difference.

𝑓ℎ↑
mean(𝑒) = ∫ ∫ (𝑦 − 𝑥)𝑑𝑥

𝑦

0

𝑑𝑦
1

0

=
1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0 (4.66)

𝑓ℎ↓
mean(𝑒) = ∫ ∫ (𝑥 − 𝑦)𝑑𝑥

1

𝑦

𝑑𝑦
1

0

=
1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0 (4.67)

136

Collecting all the above definitions, we have the following expressions for the expected

elevation difference.

 𝑓ℎ
mean(𝑒) =

{

|ℎ1 − ℎ2|, 𝑜1 = 1 ∧ 𝑜2 = 1

ℎ1
2 − ℎ1 +

1

2
, 𝑜1 = 1 ∧ 𝑜2 = 0

ℎ2
2 − ℎ2 +

1

2
, 𝑜1 = 0 ∧ 𝑜2 = 1

1

3
, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.68)

 𝑓ℎ↑
mean(𝑒) =

{

max(0, ℎ2 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 1
1

2
ℎ1
2 − ℎ1 +

1

2
, 𝑜1 = 1 ∧ 𝑜2 = 0

1

2
ℎ2
2, 𝑜1 = 0 ∧ 𝑜2 = 1

1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.69)

 𝑓ℎ↓
mean(𝑒) =

{

max(0, ℎ1 − ℎ2) , 𝑜1 = 1 ∧ 𝑜2 = 1

1

2
ℎ1
2, 𝑜1 = 1 ∧ 𝑜2 = 0

1

2
ℎ2
2 − ℎ2 +

1

2
, 𝑜1 = 0 ∧ 𝑜2 = 1

1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.70)

As before, the triangular fuzzy numbers for each of the elevation difference features are

defined using the min, mean, and max values computed above.

 𝑓ℎ(𝑒) = Tri (𝑓ℎ
min(𝑒), 𝑓ℎ

mean(𝑒), 𝑓ℎ
max(𝑒)) (4.71)

 𝑓ℎ↑(𝑒) = Tri (𝑓ℎ↑
min(𝑒), 𝑓ℎ↑

mean(𝑒), 𝑓ℎ↑
max(𝑒)) (4.72)

 𝑓ℎ↓(𝑒) = Tri (𝑓ℎ↓
min(𝑒), 𝑓ℎ↓

mean(𝑒), 𝑓ℎ↓
max(𝑒)) (4.73)

Figure 4.12 shows the computation of the fuzzy elevation difference features for

four different cases. In (a), both cells are observed, so the features are all crisp values. In

137

(b), only the first cell is observed with a height value of 0.4. The minimum possible value

for all three features is 0. If the unobserved cell were to have a height of 1, 𝑓ℎ↑ would have

its maximum value of 0.6, whereas if it were to have a height of 0, 𝑓ℎ↓ would have its

maximum value of 0.4. The maximum of 𝑓ℎ is the greater of these two, 0.6. The mean

values of all three features are given by the above definitions, and one can see that because

the observed value is less than 0.5, 𝑓ℎ↓ has the smallest expected value. The expected value

of 𝑓ℎ is greater than that of 𝑓ℎ↑ because the latter will be zero if the true height of the second

cell is anything less than 0.4. In (c), the first cell is unobserved and the second cell is

observed to be zero. Since the height of the first cell cannot be less than 0, there is no

possibility of an uphill slope, so 𝑓ℎ↑ is a crisp 0. The other two features, 𝑓ℎ and 𝑓ℎ↓, both

scale linearly with the unobserved height value and have a maximum value of 1 and an

average value of 0.5. In (d), both cells are unobserved, so the feature definitions are given

by the expressions derived previously. The minimum value of all three features is 0 and

the maximum is 1. The expected value of 𝑓ℎ is
1

3
 (≈ 0.33), and the expected value of both

𝑓ℎ↑ and 𝑓ℎ↓ is
1

6
 (≈ 0.17).

138

4.5 Summary

This chapter introduced the mental map grid and the action graph used by the agent to

represent the observed environment in the CMM framework. The simulation server keeps

track of the agent’s location within the environment and computes the viewshed region

using line-of-sight, considering obstructions from elevation and terrain. The agent

maintains a record of all the observations it receives and stores the information in grid

layers representing the attributes of the environment. An additional layer indicates which

cells have been observed and which cells still have unknown properties.

The action graph is defined over all grid cells that are potentially traversable and

indicates possible movement actions by the agent. Each movement step is an edge in the

graph between adjacent grid cells. Several features are defined for each edge representing

 (a) (b) (c) (d)

Figure 4.12 Four examples demonstrating the computation of the fuzzy elevation difference features for a

single transition between two adjacent grid cells. The numbers inside the cells indicate the height value. Gray

cells are unobserved. The plots compare the fuzzy elevation difference features for each example.

139

distance, the terrain type of each cell, and the change in elevation. When both cells are

observed, the feature values are known with no uncertainty and are stored as crisp values.

If one or both grid cells is unobserved, then there is some uncertainty in the feature values,

which are represented as triangular fuzzy numbers. While the action graph provides a low-

level analysis of the cost of moving through the environment, it can often be helpful to

summarize this information, both to reduce the number of decision points in the planning

process and to more closely model the humanistic concepts of spatial reasoning. The next

chapter introduces the region graph, which provides this summary by grouping similar

nearby grid cells into regions and computing the feature costs between adjacent regions.

140

5 THE REGION GRAPH

In this chapter, we introduce the concept of the region graph, which summarizes

the information in the mental map and allows the agent to develop plans at a higher level.

Whereas the action graph specifies the cost of individual actions, the region graph specifies

the cost of multiple aggregated actions that cannot be performed immediately, but may be

used in future plans. The region graph must therefore deal with the uncertainty inherent in

extending the single-step feature definitions to multi-step features defined over regions of

the environment.

5.1 The Region Graph

Up to this point, we have considered only single-step transitions between adjacent

grid cells. These short edges comprise the action graph 𝐺𝐴 and represent the actual steps

that an agent can take within the environment. Each edge 𝑒 in the action graph is attributed

with one or more feature values to give a feature vector 𝐟(𝑒), which in the general case is

comprised of triangular fuzzy numbers. While the action graph gives a low-level

representation of the information in the mental map ℳ, the decision-maker is often unable

to fully utilize all this knowledge. Planning typically occurs at a higher level of cognition

where the spatial information and feature values have been summarized into a more

succinct form. We introduce the region graph 𝐺𝑅 to provide this summary of the

information in the action graph. Note that the region graph will be less precise than the

more granular action graph, but will allow planning to take place at a higher level with

fewer decision points.

141

Our concept of the region graph is to combine similar nearby grid cells into a single

region that is represented as one vertex in the graph. Adjacent regions are connected by

bidirectional edges. This can drastically reduce the size of the graph and make it easier to

develop high-level plans. To construct the region graph, we use the region partitioning

algorithm introduced in Section 3.3. Each terrain type and the unobserved areas are

partitioned separately to ensure that each resulting region is either completely unobserved

or contains only a single type of terrain. This is an important restriction that we employ to

facilitate the computation of fuzzy features in the region graph, which will be described in

Sections 5.2 and 5.3. Additionally, we define a local region around the agent and any

observed resources that will not be clustered. This ensures that the grid cells immediately

surrounding the agent and any goal locations are given their own vertices in the region

graph. The region graph within the local region is identical to the action graph, which

means that the immediate decision actions available to the agent are actual movement steps

that the agent can take in the environment. Without this restriction, an agent might develop

a plan to move into an adjacent region that is accessible from multiple directions, but not

specify to the simulation server which direction to move. The region graph is updated after

each movement action by the agent, which will be discussed in Section 5.4.

Algorithm 5.1 provides a high-level overview of the process for creating the initial

region graph. The function takes the current mental map ℳ as input and a set of options

specified by the variable opt. The first step is to get the local region (lines 1 and 2), which

is given in Algorithm 5.2. Then, a clustering mask Q is created to define all areas outside

of the local region as regions that need to be clustered (lines 3-5). The region boundaries

142

are defined on line 6 using Algorithm 5.3. Line 7 creates the structure and features of the

region graph using Algorithm 5.5. The updated mental map structure is returned on line 8.

5.1.1 Defining the Local Region

The local region is first defined on line 1 of Algorithm 5.1 using the

GET_LOCAL_REGION function in Algorithm 5.2. There are two methods we consider for

defining the local region, specified by the option opt.lrMethod. If opt.lrMethod = “all”,

then the entire traversable space is marked as part of the local region (lines 3-4 of Algorithm

5.2). This is essentially a control parameter to allow for experimentation with no region

clustering. In the default case, the local region is first defined as all observed grid cells

within a distance of opt.lrDist from the current agent position using the GRID_DISTANCE

Algorithm 5.1 Create the Initial Region Graph

INITIALIZE_REGION_GRAPH(ℳ, opt)

/* Get the local region */

1: LR ← GET_LOCAL_REGION(ℳ, opt) // Algorithm 5.2

2: ℳ.localRegion ← LR

/* Create the region boundaries */

3: (n, m) ← ℳ.size

4: Q ← n  m grid initalized to 1

5: Q[LR] ← 0

6: ℳ.L ← CLUSTER_MENTAL_MAP_REGIONS(ℳ, LR, Q, opt) // Algorithm 5.3

/* Construct the region graph */

7: ℳ.𝐺𝑅 ← CREATE_REGION_GRAPH(ℳ) // Algorithm 5.5

8: return ℳ

143

function from Algorithm 3.6 (lines 6-10). Next, any observed resources are included as

part of the local region (line 11). This is done to ensure that cells that contain resources are

given their own vertices in the region graph. This also ensures that a region will not contain

more than one resource. Figure 5.1. shows an example of defining the local region.

Algorithm 5.2 Get the Local Region

GET_LOCAL_REGION(ℳ, opt)

1: (n, m) ← ℳ.size

2: LR ← n  m grid initalized to 0

3: if opt.lrMethod = “all”

4: LR[ℳ.𝑊 ≠ 0] ← 1 // Include all potentially traversable cells

5: else

6: (ai, aj) ← ℳ.pos
7: W ← ℳ.𝑊

8: W [ℳ.𝑊 ≠ 1] ← 0

9: D ← GRID_DISTANCE(W, ai, aj, opt.lrDist) // Algorithm 3.6

10: LR[𝐷 ≤ opt.lrDist] ← 1 // Include observed cells near the agent

11: LR[ℳ.𝑅 > 0] ← 1 // Include observed resource locations

12: return LR

144

5.1.2 Creating the Region Boundaries

After determining the local region, the next step is to cluster the remaining area to

define the region boundaries. This is done by the CLUSTER_MENTAL_MAP_REGIONS

function in Algorithm 5.3. Lines 2-7 initialize the region label matrix L by assigning a

unique label to each cell in the local region. Then, each type of terrain is clustered

separately (lines 8-17). Line 9 identifies the grid cells within the clustering mask Q with

terrain type t, and if there are none, the loop proceeds to the next terrain type (lines 10-11).

A wall matrix is defined for these cells (lines 12-13) and the corresponding elevation values

are extracted from the mental map (lines 14-15). These are passed to the

PARTITION_REGIONS function from Algorithm 3.4 with a cluster separation radius defined

by opt.regionSize to get a set of labels U (line 16). These labels are added to the region

 (a) (b)

Figure 5.1 An example of determining the local region. (a) The initial observation an agent receives in a new

environment. (b) The local region is highlighted within a distance of 3 cells from the agent and in the cell

containing an observed resource. Note that unobserved cells and walls are excluded from the local region.

145

label matrix using the UPDATE_REGION_MAP function given in Algorithm 5.4. This

function ensures that the label indices from U do not conflict with those already in L.

Once the terrain has been clustered, lines 18-24 of Algorithm 5.3 cluster the

unobserved areas. The elevation matrix is set to all zeros and the separation radius for the

PARTITION_REGIONS function is set by opt.hiddenSize, which we usually set to be larger

than opt.regionSize to reduce the number of unobserved regions. After the entire

environment has been clustered, the region labels are returned on line 25. The final region

boundaries from the example in Figure 5.1 are shown in Figure 5.2 (a).

146

Algorithm 5.3 Create the Initial Mental Map Regions

CLUSTER_MENTAL_MAP_REGIONS(ℳ, LR, Q, opt)

1: (n, m) ← ℳ.size

/* Assign labels to cells in the local region */

2: L ← n  m grid initalized to 0

3: I ← {(i, j) | LR[i, j] = 1}

4: k ← 1

5: for each (i, j)  I

6: L[i, j] ← k

7: k ← k + 1

/* Cluster each terrain type separately */

8: for each t ∈ ℳ.𝒯

9: I ← {(i, j) | ℳ.𝑇[i, j] = t  Q[i, j] = 1}

10: if I = ∅

11: continue

12: W ← n  m grid initalized to 0

13: W [I] ← 1

14: E ← ℳ.𝐸

15: E[W = 0] ← NIL

16: U ← PARTITION_REGIONS(W, E, opt.regionSize, opt.we, opt.𝜖) // Algorithm 3.4

17: L ← UPDATE_REGION_MAP(L, U) // Algorithm 5.4

/* Cluster the unobserved areas */

18: I ← {(i, j) | ℳ.𝑊[i, j] = NIL  Q[i, j] = 1}

19: if | I | > 0

20: W ← n  m grid initalized to 0

21: W [I] ← 1

22: E ← n  m grid initalized to 0

23: U ← PARTITION_REGIONS(W, E, opt.hiddenSize, opt.we, opt.𝜖) // Algorithm 3.4

24: L ← UPDATE_REGION_MAP(L, U) // Algorithm 5.4

25: return L

147

5.1.3 Constructing the Region Graph

The final step in creating the initial region graph is to define the structure and

features of the graph itself. The region graph 𝐺𝑅 is built from the current information stored

in the mental map ℳ. Each region with a unique label in the label map ℳ.𝐿 is defined as

a vertex of the region graph, and adjacent regions are connected with bidirectional edges.

Algorithm 5.4 Update Region Map

UPDATE_REGION_MAP(L, U)

1: kmax ← max(L)

2: for k in 1 to max(U)

3: I ← {(i, j) | U [i, j] = k}

4: L[I] ← kmax + k

5: return L

 (a) (b)

Figure 5.2 (a) Region boundaries computed from the example in Figure 5.1 using Algorithm 5.3. (b) The

region graph defined from the region labels. Each pair of adjacent regions is connected by a bidirectional

edge in the graph.

148

Sections 5.2 and 5.3 describe the process for computing features for edges between regions.

Within the local region, and anywhere that adjacent regions each contain only a single grid

cell, the region graph and its edge attributes are identical to the corresponding vertices and

edges of the action graph. Elsewhere, the region graph summarizes the information in the

action graph using the structure presented in this section and the features computed in the

next two sections. For consistency, we always use the region graph for planning agent

actions, even in special circumstances where the region graph is identical to the action

graph, such as when the local region method is defined using opt.lrMethod = “all”, making

each region a single cell.

Algorithm 5.5 shows the procedure for creating the region graph. The function

takes the mental map structure ℳ as input and returns a structure representing the region

graph. We begin by creating the graph vertices on lines 2-6, which are stored in the list V.

The center point of each region is found on line 2 using the GET_REGION_CENTERS

function from Algorithm 3.9. This is saved along with a the cells belonging to each region

on lines 4-6. After defining the graph vertices, lines 7-20 define the graph edges. We start

with an empty adjacency matrix A on line 7 and an empty list of edge features on line 8.

Line 9 initalizes the edge index, which is used to associate edge features with the adjacency

matrix. For each vertex, lines 11 and 12 construct a mask of the region assigned to this

vertex. This mask is dilated on line 13 to get the 4-connected neighbors. Line 14 identifies

the region labels of the neighboring regions, and each one is added as an edge in lines 15-

20. The current edge index is incremented on line 16 and saved in the adjacency matrix on

line 17. This allows for a quick lookup into the edge feature list E, which will contain the

features computed by the COMPUTE_REGION_FEATURES function, discussed further in

149

Sections 5.2 and 5.3. Lines 18 and 19 create a region map R for each edge, with cells

belonging to the first region labeled 1, cells belonging to the second region labeled 2, and

all other cells labeled 0. This map is used to compute the region features for the edge using

Algorithm 5.10 on line 20. After defining all the graph edges, the vertices, adjacency

matrix, and edge features are all saved and returned as the region graph 𝐺𝑅 on lines 21-25.

Figure 5.2 (b) shows the region graph for the example in Figure 5.1 with vertices drawn at

the region centers. Note that while the edge is only drawn between the center points of

adjacent regions, the edge exists conceptually between the two regions as a whole.

150

Algorithm 5.5 Create Region Graph

CREATE_REGION_GRAPH(ℳ)

1: (n, m) ← ℳ.size

/* Add vertices for each region */

2: C ← GET_REGION_CENTERS(ℳ.𝐿) // Algorithm 3.9

3: V ← list of | C | uninitialized vertices

4: for k in 1 to | C |

5: V [k].region ← {(i, j) | ℳ.𝐿[i, j] = k}

6: V [k].center ← C [k]

/* Add edges for adjacent regions */

7: A ← | C |  | C | adjacency matrix initalized to 0

8: E ← empty list of edge features

9: i ← 0

10: for k in 1 to | C |

11: U ← n  m grid initalized to 0

12: U [V [k].region] ← 1

13: U' ← U  [0 1 0; 1 1 1; 0 1 0] // Dilate to get neighboring cells

14: N ← {l | l ∈ ℳ.𝐿[U' = 1]  l ≠ 0  l ≠ k}

15: for n in 1 to | N |

16: i ← i + 1

17: A[k][n] ← i

18: R ← U

19: R[V [n].region] ← 2

20: E [i] ← COMPUTE_REGION_FEATURES(ℳ, R) // Algorithm 5.10

/* Save the graph structure */

21: 𝐺𝑅 ← empty graph structure

22: 𝐺𝑅 . 𝑉 ← V

23: 𝐺𝑅 . 𝐴 ← A

24: 𝐺𝑅 . 𝐸 ← E

25: return 𝐺𝑅

151

5.2 Fuzzy Region Distance

Each edge 𝑒 of the region graph 𝐺𝑅 connects two adjacent regions and is annotated

with the same features defined in the previous chapter. Let 𝑅1 be the starting region and

𝑅2 be the ending region. We define the fuzzy region features of the edge 𝑒𝑅1𝑅2 ∈ 𝐸(𝐺𝑅) as

triangular fuzzy numbers that represent the minimum, maximum, and average feature

values that the agent could expect to encounter when moving from any grid cell in 𝑅1 to

any grid cell in 𝑅2. Consider the example in Figure 5.3 (a) that shows two adjacent regions

of different terrain types with labeled elevation values. Let 𝐺12 be a subgraph of the action

graph 𝐺𝐴 that contains only the vertices belonging to 𝑅1 or 𝑅2. We define three additional

subgraphs of 𝐺12 that will be used to compute the fuzzy region features. 𝐺1 is the subgraph

of 𝐺12 that contains only the vertices belonging to grid cells in 𝑅1. Likewise, 𝐺2 is the

subgraph of 𝐺12 for 𝑅2. The boundary graph 𝐺bnd consists of only the edges and vertices

belonging to the transition between the two regions. For every edge 𝑒 ∈ 𝐸(𝐺bnd),

START(𝑒) ∈ 𝑅1 and END(𝑒) ∈ 𝑅2. Note that the only edges from 𝐺12 that are not assigned to

𝐺1, 𝐺2, or 𝐺bnd are those that return from 𝑅2 back to 𝑅1. These three graphs are shown in

Figure 5.3 (b). All edges except the boundary edges are bidirectional, indicating that only

one boundary edge can be used in a path from 𝑅1 to 𝑅2. In this section, we define a measure

of the distance between two adjacent regions. This will be used to define the distance and

terrain-based fuzzy region features. Section 5.3 will extend this approach to the elevation

feature.

152

5.2.1 Computing the Distance Cost Matrix

A prerequisite for many of the fuzzy region features is a measure of the distance

between the two regions. Assume that each edge 𝑒 ∈ 𝐸(𝐺12) is assigned a crisp cost value

of 1, corresponding to the distance feature in Equation 4.4. (In the following sections, we

may consider a different cost for each edge.) An agent in 𝑅1 could exist in any one of the

cells belonging to this region and need to know the minimum total distance cost required

to get to any one of the cells in 𝑅2. We define all possible costs using the matrix 𝐶, where

𝐶𝑖𝑗 represents the minimum cost required to move from cell 𝑖 ∈ 𝑅1 to cell 𝑗 ∈ 𝑅2. In the

special case where all edge costs are 1, this is equivalent to the distance between the two

cells, restricted to only using cells from the two regions. This can be cast as a special case

of the all-pairs shortest path problem where we are only interested in paths that originate

in 𝑅1 and end in 𝑅2. One way to compute this is to run the Floyd-Warshall algorithm (Floyd

1962; Warshall 1962) on 𝐺12 and then extract the submatrix corresponding to only the

 (a) (b)

Figure 5.3 (a) An example of two regions used to demonstrate the computation of fuzzy region features. The

left region 𝑅1 is terrain type 1 (meadow) and the right region 𝑅2 is terrain type 2 (forest). The numbers in

each cell indicate the elevation. (b) There are three graphs for the two regions. 𝐺1 (blue) and 𝐺2 (orange) are

bidirectional graphs that are each completely contained in 𝑅1 and 𝑅2 respectively. 𝐺bnd (purple) consists of

only the edges that start in 𝑅1 and end in 𝑅2.

153

paths that start in 𝑅1 and end in 𝑅2. The Floyd-Warshall algorithm has a computational

complexity of 𝑂(|𝑉|3), and results in significant overhead for this problem, since most of

the computed distances are disregarded. Our approach improves on this by utilizing the

regular grid structure of the graph and an additional requirement that each path can only

contain one transition edge between the two regions. This ensures that the agent moves

directly from 𝑅1 to 𝑅2 without moving repeatedly between the two regions.

To compute the cost matrix 𝐶 efficiently, we consider each boundary edge

independently and analyze the costs of all paths using that boundary edge. This allows us

to only compute the single-source shortest path costs to and from each boundary edge, as

opposed to the shortest paths between all pairs of cells.1 For each boundary edge

𝑘 ∈ 𝐸(𝐺bnd), let 𝑢𝑖𝑘
1 be the minimum cost required to get from cell 𝑖 ∈ 𝑅1 to the start of

boundary edge 𝑘. Likewise, let 𝑢𝑗𝑘
2 be the minimum cost required to get from the end of

boundary edge 𝑘 to cell 𝑗 ∈ 𝑅2. Also, let 𝑢𝑘
bnd be the cost of boundary edge 𝑘 (set to 1 for

the distance feature). The distance feature computes the cost of a path as the total sum of

the individual edge costs. This is an example of summation aggregation. Alternatively, the

cost of a path for some features may be evaluated as the maximum cost of an edge in the

path, such as when planning a path that minimizes the maximum change in elevation for

each edge (see Section 5.3). We define the minimum cost of a path from cell 𝑖 to cell 𝑗

using boundary edge 𝑘 as 𝑢𝑖𝑗𝑘 where

 𝑢𝑖𝑗𝑘 = 𝑢𝑖𝑘
1 + 𝑢𝑘

bnd + 𝑢𝑗𝑘
2 (5.1)

1 This approach is different from computing the shortest paths to any cell on the region boundary using a

shortest path algorithm with multiple source cells. Such an approach would overlook the cost of traveling

along the region boundary, essentially allowing free travel from one end of the border to the other.

154

when using the summation aggregation method (as with the distance feature) and

 𝑢𝑖𝑗𝑘 = max(𝑢𝑖𝑘
1 , 𝑢𝑘

bnd, 𝑢𝑗𝑘
2) (5.2)

when using the maximization aggregation method. The overall minimum cost to get from

cell 𝑖 to cell 𝑗 is defined over all boundary edges as

 𝐶𝑖𝑗 = min
𝑘
𝑢𝑖𝑗𝑘. (5.3)

The cost matrix for the distance feature is somewhat of a special case, since all

edges are given a uniform cost of 1. This is true even if a region is unobserved. Since we

define the region boundaries with no uncertainty, the only factor that influences the

distance feature is the shape and arrangement of the two adjacent regions. We define the

distance cost matrix as 𝐶𝑑 and the individual region cost matrices as 𝑈𝑑1 and 𝑈𝑑2. These

can be computed from the region map R using the GET_REGION_DISTANCE function in

Algorithm 5.6. The input R is a grid that spans the two regions, with cells in 𝑅1 marked 1,

cells in 𝑅2 marked 2, and all other cells marked 0. Line 1 gets the indices of the two regions

using Algorithm 5.7. Note that these are stored as ordered lists of tuples that define a

lexographic ordering of the grid cells. Lines 2-5 construct the individual regions maps W1

and W2 that are 1 inside of their respective regions and 0 elsewhere. Line 6 gets the

boundary edges Ebnd between the two regions using Algorithm 5.8. This function also

defines an ordering of the boundary edges to maintain consistency between the various cost

matrices. Each edge in Ebnd is represented as a 4-tuple (i1, j1, i2, j2), where (i1, j1) is a cell in

𝑅1 and (i2, j2) is an adjacent cell in 𝑅2. Lines 7-9 initialize the output matrices, where 𝑈𝑑1

stores the distances from cells in 𝑅1 to each boundary edge, 𝑈𝑑2 stores the distances from

each boundary edge to cells in 𝑅2, and 𝐶𝑑 stores the distances between all pairs of cells in

155

the two regions. Lines 10-15 compute the distances to and from each boundary edge using

the GRID_DISTANCE function from Algorithm 3.6. The starting and ending cells of each

boundary edge are used as the starting points for the distance computations using the region

map for each region. After computing the distances for the entire grid on lines 12 and 13,

the distance values within each region are saved to 𝑈𝑑1 and 𝑈𝑑2 on lines 14 and 15. Finally,

we compute the overall distance cost matrix 𝐶𝑑 for each pair of cells in the two regions

using Equations 5.1 and 5.3 on lines 16 and 17. Note that the 𝑢𝑘
bnd values are set to 1, since

the distance cost of each boundary edge is always 1. The cost matrices are returned on line

18.

156

Algorithm 5.6 Get Fuzzy Distance Cost Matrices for Two Regions

GET_REGION_DISTANCE(R)

/* Get the indices of the two regions */

1: I1, I2 ← GET_REGION_INDICES(R) // Algorithm 5.7

/* Create individual region maps */

2: (n, m) ← size of R

3: W1, W2 ← n  m matrices initalized to 0

4: W1[I1] ← 1

5: W2[I2] ← 1

/* Get the boundary edges */

6: Ebnd ← GET_BOUNDARY_EDGES(n, m, I1, I2) // Algorithm 5.8

/* Initialize the output matrices */

7: 𝑈𝑑1 ← | I1 |  | Ebnd | matrix initalized to ∞

8: 𝑈𝑑2 ← | I2 |  | Ebnd | matrix initalized to ∞

9: 𝐶𝑑 ← | I1 |  | I2 | matrix initalized to ∞

/* Compute region distances */

10: for k in 1 to | Ebnd |

11: (i1, j1, i2, j2) ← Ebnd[k]

12: D1 ← GRID_DISTANCE(W1, i1, j1, ∞) // Algorithm 3.6

13: D2 ← GRID_DISTANCE(W2, i2, j2, ∞) // Algorithm 3.6

14: 𝑈𝑑1[: , k] ← D1[I1]

15: 𝑈𝑑2[: , k] ← D2[I2]

/* Find the boundary edge that gives the minimum cost */

16: for each (i, j)  in {(i, j) | 1 ≤ i ≤ | I1 |  1 ≤ j ≤ | I2 |}

17: 𝐶𝑑 [i, j] ← mink{𝑈
𝑑1[i, k] + 1 + 𝑈𝑑2[j, k]}

18: return 𝐶𝑑, 𝑈𝑑1, 𝑈𝑑2

157

Algorithm 5.7 Get Region Indices

GET_REGION_INDICES(R)

1: (n, m) ← size of R

2: I1, I2 ← empty lists

3: N1, N2 ← 0

4: for j in 1 to m

5: for i in 1 to n

6: if R[i, j] = 1

7: N1 ← N1 + 1

8: I1[N1] ← (i, j)

9: else if R[i, j] = 2

10: N2 ← N2 + 1

11: I2[N2] ← (i, j)

12: return I1, I2

Algorithm 5.8 Get Boundary Edges

GET_BOUNDARY_EDGES(n, m, I1, I2)

1: Ebnd ← empty list

2: K ← 0

3: for j in 1 to m

4: for i in 1 to n

5: if (i, j)  I1

6: if (i, j–1)  I2

7: K ← K + 1

8: Ebnd[K] = (i, j, i, j–1)

9: if (i, j+1)  I2

10: K ← K + 1

11: Ebnd[K] = (i, j, i, j+1)

12: if (i–1, j)  I2

13: K ← K + 1

14: Ebnd[K] = (i–1, j, i, j)

15: if (i+1, j)  I2

16: K ← K + 1

17: Ebnd[K] = (i+1, j, i, j)

18: return Ebnd

158

Figure 5.4 shows the composite distance grids computed for the example problem

in Figure 5.3. These are the values returned by the GRID_DISTANCE function on lines 12

and 13 of Algorithm 5.6. The individual region and overall distance cost matrices for this

example are shown in Figure 5.5. The grid cells are indexed by consecutive columns from

left to right, and from top to bottom within each column. Note that the values of each

column of 𝑈𝑑1 and 𝑈𝑑2 match the values of the corresponding distance grid region in

Figure 5.4.

 k = 1 k = 2 k = 3

Figure 5.4 Composite distance grids for each of the three boundary edges for the example in Figure 5.3. The

numbers indicate the number of steps required to get to or from the boundary edge. The index k is used to

reference each of the three boundary edges.

Figure 5.5 Individual region and overall distance cost matrices for the example in Figure 5.4, given as the

output of Algorithm 5.6.

159

5.2.2 Region Distance Feature

As mentioned previously, the fuzzy region features are defined to represent the

minimum, mean, and maximum feature values that the agent could encounter when moving

between regions. Let 𝑒𝑅1𝑅2 ∈ 𝐸(𝐺𝑅) be the region graph edge from 𝑅1 to 𝑅2 for which we

need to compute a fuzzy feature value, and let 𝐺12 be the subgraph of the action graph 𝐺𝐴

that is completely within 𝑅1 and 𝑅2. We define 𝐶𝑑 as the cost matrix computed by

Algorithm 5.6 using the distance feature for all edges, i.e. 𝑓(𝑒) = 𝑓𝑑 = 1 ∀ 𝑒 ∈ 𝐸(𝐺12).

The min, mean, and max region distance features are defined as

𝑓𝑑
min(𝑒𝑅1𝑅2) = 𝐶min

𝑑 = min
𝑖=1,…,|𝑅1|

𝑗=1,…,|𝑅2|

𝐶𝑖𝑗
𝑑 ,

(5.4)

𝑓𝑑
mean(𝑒𝑅1𝑅2) = 𝐶mean

𝑑 =
1

|𝑅1||𝑅2|
∑ 𝐶𝑖𝑗

𝑑

𝑖=1,…,|𝑅1|

𝑗=1,…,|𝑅2|

, and
(5.5)

𝑓𝑑
max(𝑒𝑅1𝑅2) = 𝐶max

𝑑 = max
𝑖=1,…,|𝑅1|

𝑗=1,…,|𝑅2|

𝐶𝑖𝑗
𝑑 .

(5.6)

The resulting fuzzy region distance feature is

 𝑓𝑑(𝑒𝑅1𝑅2) = Tri (𝑓𝑑
min(𝑒𝑅1𝑅2), 𝑓𝑑

mean(𝑒𝑅1𝑅2), 𝑓𝑑
max(𝑒𝑅1𝑅2)). (5.7)

To get the fuzzy region distance feature for the example problem in Figure 5.3, we

compute the overall and individual distance cost matrices using Algorithm 5.6. The

distance grids for each boundary edge shown in Figure 5.4 are used to define the individual

region cost matrices 𝑈𝑑1 and 𝑈𝑑2, shown in Figure 5.5. The overall cost matrix 𝐶𝑑 is

computed using Equations 5.1 and 5.3. Using this as the input for the above equations gives

a fuzzy region distance feature value of 𝑓𝑑(𝑒𝑅1𝑅2) = Tri(1, 5.03, 9).

160

5.2.3 Region Terrain Type Features

The terrain type features measure the amount of distance traveled in each type of

terrain. For the fully observed single-step features defined in Section 4.3.2, this is a value

between 0 and 1 that depends only on the two terrain types 𝑡1 and 𝑡2. In Section 4.4.2, we

consider the fuzzy case where we include the observability of each cell 𝑜1 and 𝑜2 and define

the feature as a triangular fuzzy number that represents the minimum, maximum, and

expected crisp feature values based on the prior likelihoods of each terrain type. For the

region terrain type features, we extend this definition to account for the greater distance

within each region. Equations 5.4-5.6 define the min, mean, and max values of the overall

distance cost matrix 𝐶𝑑. As a shorthand, we notate these as 𝐶min
𝑑 , 𝐶mean

𝑑 , and 𝐶max
𝑑 . For the

individual region cost matrices 𝑈𝑑1 and 𝑈𝑑2, we first determine the minimum distance

from each grid cell to one of the boundary edges. We define these matrices as 𝑉𝑑1 and 𝑉𝑑2

where

 𝑉𝑖
𝑑1 = min

𝑘=1,…,𝐾
𝑈𝑖𝑘
𝑑1, (5.8)

 𝑉𝑗
𝑑2 = min

𝑘=1,…,𝐾
𝑈𝑗𝑘
𝑑2, (5.9)

and 𝐾 is the number of boundary edges. The min, mean, and max values of these two

matrices are given as 𝑉min
𝑑1 , 𝑉mean

𝑑1 , 𝑉max
𝑑1 , and 𝑉min

𝑑2 , 𝑉mean
𝑑2 , 𝑉max

𝑑2 , respectively. They represent

the expected distances that an agent would need to travel to reach the nearest boundary

edge from each cell within a region and assumes that the nearest boundary edge is the best

option when moving to the adjacent region. We make this assumption to avoid computing

an explicit probability distribution of which boundary edge is used for each pair of cells in

𝑅1 and 𝑅2. Such a distribution likely depends on other factors (such as elevation, which is

161

evaluated separately), and may be infeasible to compute accurately. The nearest boundary

assumption is a simple and straightforward heuristic that works in most cases and provides

a reasonable approximation of the required distances. Note that the minimum values 𝑉min
𝑑1

and 𝑉min
𝑑2 will always equal zero, since at least one of the cells in each region is already part

of a boundary edge.

Because we have defined each region to be only a single terrain type or completely

unobserved, we can use the same approach as Section 4.4.2, treating each region as one of

the two adjacent cells, but multiplying by some measure of the size of each region. Let 𝑡1
∗

and 𝑡2
∗ be the true terrain types of the two regions and let 𝑇𝑘𝑖 be the event that 𝑡𝑘

∗ = 𝑖 for

𝑘 ∈ {1, 2}. The probability that event 𝑇𝑘𝑖 occurs is defined as

 𝑝(𝑇𝑘𝑖) = {

1, 𝑜𝑘 = 1 ∧ 𝑡𝑘 = 𝑖
0, 𝑜𝑘 = 1 ∧ 𝑡𝑘 ≠ 𝑖

𝑝(𝑖), 𝑜𝑘 = 0 ,
 (5.10)

where 𝑝(𝑖) is the prior likelihood of observing terrain type 𝑖. The four possible state

configurations that need to be considered are given as 𝑆 = {𝑠12, 𝑠1, 𝑠2, 𝑠0}, where

 𝑝(𝑠12) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖), (5.11)

 𝑝(𝑠1) = 𝑝(𝑇1𝑖)(1 − 𝑝(𝑇2𝑖)), (5.12)

 𝑝(𝑠2) = (1 − 𝑝(𝑇1𝑖))𝑝(𝑇2𝑖), and (5.13)

 𝑝(𝑠0) = (1 − 𝑝(𝑇1𝑖))(1 − 𝑝(𝑇2𝑖)). (5.14)

States that have a probability greater than zero have some chance of occurring and are

added to the set of possible states,

 𝑆pos = {𝑠 ∈ 𝑆 | 𝑝(𝑠) > 0}. (5.15)

162

For each of the possible states, we consider the minimum, average, and maximum

of the terrain type feature values. The minimum value for each state is defined as

 𝑓𝑡(𝑖)
min(𝑠) = {

0, 𝑠 = 𝑠0
0.5, 𝑠 = 𝑠1 ∨ 𝑠 = 𝑠2
1, 𝑠 = 𝑠12 .

 (5.16)

This is equivalent to the single-step feature, since the minimum value occurs when the

agent only needs to take one step across the boundary edge. The maximum value for each

state is defined as

 𝑓𝑡(𝑖)
max(𝑠) =

{

0, 𝑠 = 𝑠0

𝑉max
𝑑1 + 0.5, 𝑠 = 𝑠1
𝑉max
𝑑2 + 0.5, 𝑠 = 𝑠2

𝐶max
𝑑 , 𝑠 = 𝑠12

.

 (5.17)

This uses the maximum values from each of the region cost matrices: 𝑉max
𝑑1 when only

region 1 is of terrain type 𝑖, 𝑉max
𝑑2 when only region 2 is of terrain type 𝑖, and 𝐶max

𝑑 when

both regions are of terrain type 𝑖. When only one region is the appropriate terrain type, 0.5

is added to the feature value to include half of the cost of traveling the boundary edge.

Since we may not know the true state if one or both regions are unobserved, the min and

max overall terrain type feature values are given as the minimum and maximum of the

costs for all possible states.

 𝑓𝑡(𝑖)
min(𝑒𝑅1𝑅2) = min

𝑠∈𝑆pos
𝑓𝑡(𝑖)
min(𝑠) (5.18)

 𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2) = max

𝑠∈𝑆pos
𝑓𝑡(𝑖)
max(𝑠) (5.19)

To get the average feature value, we sum up the mean distance costs multiplied by

the expected likelihood of each state,

163

𝑓𝑡(𝑖)
mean(𝑒𝑅1𝑅2) = 𝑝(𝑠1)(𝑉mean

𝑑1 + 0.5) + 𝑝(𝑠2)(𝑉mean
𝑑2 + 0.5) + 𝑝(𝑠12)𝐶mean

𝑑 . (5.20)

Note that we do not need to consider 𝑠0 since the feature value in this case would be zero.

The resulting fuzzy region terrain type feature is

 𝑓𝑡(𝑖)(𝑒𝑅1𝑅2) = Tri (𝑓𝑡(𝑖)
min(𝑒𝑅1𝑅2), 𝑓𝑡(𝑖)

mean(𝑒𝑅1𝑅2), 𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2)). (5.21)

For the example in Figure 5.3, the two terrain type features are computed as follows.

Since both regions are observed, the true state is known with no uncertainty. For terrain

type 1 (meadow), the state is 𝑠1 and for terrain type 2 (forest) the state is 𝑠2. For both of

these states, 𝑓𝑡(𝑖)
min = 0.5. With only one possible state, 𝑓𝑡(𝑖)

min(𝑒𝑅1𝑅2) = 0.5. From Figure 5.5

we can see that 𝑉max
𝑑1 = 4 and 𝑉max

𝑑2 = 4. For both 𝑠1 and 𝑠2, 𝑓𝑡(𝑖)
max = 4.5 and therefore

𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2) = 4.5. The average values of the individual region cost matrices are computed

as 𝑉mean
𝑑1 = 2 and 𝑉mean

𝑑2 ≈ 1.67. Since there is no uncertainty, 𝑓𝑡(1)
mean(𝑒𝑅1𝑅2) = 2.5 and

𝑓𝑡(2)
mean(𝑒𝑅1𝑅2) ≈ 2.17. The overall fuzzy region terrain type features are then defined as

𝑓𝑡(1)(𝑒𝑅1𝑅2) = Tri(0.5, 2.5, 4.5) and 𝑓𝑡(2)(𝑒𝑅1𝑅2) = Tri(0.5, 2.17, 4.5).

Consider now if both regions were unobserved. All four states would be possible

and their likelihoods would be determined by the terrain type priors. Assume that 𝑝(𝑡1) =

0.75 and 𝑝(𝑡2) = 0.25. For terrain type 1, the state probabilities are computed as:

• 𝑝(𝑠12) = (0.75)(0.75) ≈ 0.56

• 𝑝(𝑠1) = (0.75)(1 − 0.75) ≈ 0.19

• 𝑝(𝑠1) = (1 − 0.75)(0.75) ≈ 0.19

• 𝑝(𝑠0) = (1 − 0.75)(1 − 0.75) ≈ 0.06

164

For terrain type 2, the state probabilities are computed as:

• 𝑝(𝑠12) = (0.25)(0.25) ≈ 0.06

• 𝑝(𝑠1) = (0.25)(1 − 0.25) ≈ 0.19

• 𝑝(𝑠1) = (1 − 0.25)(0.25) ≈ 0.19

• 𝑝(𝑠0) = (1 − 0.25)(1 − 0.25) ≈ 0.56.

The minimum feature value 𝑓𝑡(𝑖)
min(𝑒𝑅1𝑅2) would be 0, since 𝑠0 has a nonzero probability for

both terrain types. The maximum feature value 𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2) would be 𝐶max

𝑑 = 9, since 𝑠12

is possible for both terrain types. For the average value, we would use 𝑉mean
𝑑1 = 2 and

𝑉mean
𝑑2 ≈ 1.67 as calculated before, and 𝐶mean

𝑑 ≈ 5.03. Using Equation 5.20, for terrain type

1 we compute

𝑓𝑡(1)
mean(𝑒𝑅1𝑅2) ≈ (0.19)(2 + 0.5) + (0.19)(1.67 + 0.5) + (0.56)(5.03) ≈ 3.70.

and for terrain type 2 we compute

𝑓𝑡(2)
mean(𝑒𝑅1𝑅2) ≈ (0.19)(2 + 0.5) + (0.19)(1.67 + 0.5) + (0.06)(5.03) ≈ 1.19.

Using Equation 5.21, the overall fuzzy region terrain type features are defined as

𝑓𝑡(1)(𝑒𝑅1𝑅2) = Tri(0, 3.70, 9) and 𝑓𝑡(2)(𝑒𝑅1𝑅2) = Tri(0, 1.19, 9). Comparing these

features to the observed case, we see that being unable to observe the regions increases the

overall uncertainty.

5.2.4 Region Terrain Transition Features

In the same way that the previous section extended the single-step terrain type

features to compute region features, the fuzzy region directional terrain transition features

𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) and symmetric terrain transition features 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) are computed as an

165

extension of the definitions presented in Sections 4.3.3 and 4.4.3. Recall from Section 4.3.3

that the directional and symmetric terrain transition features always take binary values in

the observable case. Given two terrain types 𝑖 and 𝑗, the feature is 1 if the edge represents

a transition from 𝑖 to 𝑗 and 0 otherwise. (The transition from 𝑗 to 𝑖 is also allowed in the

symmetric feature version.) When one or both cells (now regions) are unobserved, the

fuzzy feature is defined in Section 4.4.3 using the possibility and probability that the true

state is the specified type. Consider first the fuzzy region directional terrain transition

features 𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) and symmetric terrain transition features 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) when 𝑖 ≠ 𝑗.

Since we have defined the terrain within each region to be uniform and have the restricted

the agent to only cross the region boundary once, the only edge on a path from 𝑅1 to 𝑅2

that could have a different starting and ending terrain type is the boundary edge. Therefore,

if 𝑖 ≠ 𝑗, the 𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) and 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) feature definitions are identical to those

presented in Section 4.4.3 for the single-step case. The maximum value of the feature in

this case is 1, regardless of the region sizes.

We start by defining the true terrain types of the two regions as 𝑡1
∗ and 𝑡2

∗. Let 𝑇𝑘𝑖 be

the event that 𝑡𝑘
∗ = 𝑖 and 𝑇𝑘𝑗 the event that 𝑡𝑘

∗ = 𝑗 for 𝑘 ∈ {1, 2}. The directional terrain

transition feature is nonzero only when the environment state is (𝑇1𝑖, 𝑇2𝑗), which occurs

with probability 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗). These values can be obtained from the observed terrain

types and terrain priors using Equation 5.10. The symmetric terrain transition feature is

nonzero for environment states (𝑇1𝑖, 𝑇2𝑗) and (𝑇1𝑗, 𝑇2𝑖), which occur with probability

𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) if 𝑖 ≠ 𝑗 and 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖) if 𝑖 = 𝑗. For the case where 𝑖 ≠ 𝑗,

166

the fuzzy region directional terrain transition features are defined using the following

equations based on those in Section 4.4.3.

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒𝑅1𝑅2) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 1

0, otherwise
 (5.22)

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒𝑅1𝑅2) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 0

1, otherwise
 (5.23)

 𝑓𝑡〈𝑖,𝑗〉
mean(𝑒𝑅1𝑅2) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) (5.24)

For the symmetric terrain transition feature when 𝑖 ≠ 𝑗, the equations are as follows.

 𝑓𝑡{𝑖,𝑗}
min (𝑒𝑅1𝑅2) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 1

0, otherwise
 (5.25)

 𝑓𝑡{𝑖,𝑗}
max (𝑒𝑅1𝑅2) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 0

1, otherwise
 (5.26)

 𝑓𝑡{𝑖,𝑗}
mean(𝑒𝑅1𝑅2) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) (5.27)

When 𝑖 = 𝑗, both the directional and symmetric terrain transition features behave

like the terrain type feature, essentially measuring the number of steps taken within the

specified terrain type. The only real difference between the two is the handling of the region

boundary transition. In the previous section, we added 0.5 to the cost values for states that

only had one region of the specified terrain type to represent half the cost of crossing the

region boundary. This meant that the boundary edge could have a cost of 0.5 instead of a

binary value like the terrain transition features. Therefore, we redefine the equations from

the previous section for the terrain transition features when 𝑖 = 𝑗. Equations 5.10-5.15

167

remain the same, noting that 𝑝(𝑇𝑘𝑖) = 𝑝(𝑇𝑘𝑗) since 𝑖 = 𝑗. The minimum feature value for

each state is defined as

 𝑓𝑡𝑡(𝑖)
min (𝑠) = {

0, 𝑠 = 𝑠0 ∨ 𝑠 = 𝑠1 ∨ 𝑠 = 𝑠2
1, 𝑠 = 𝑠12

 (5.28)

and the maximum feature values are defined as

 𝑓𝑡𝑡(𝑖)
max(𝑠) =

{

0, 𝑠 = 𝑠0

𝑉max
𝑑1 , 𝑠 = 𝑠1
𝑉max
𝑑2 , 𝑠 = 𝑠2

𝐶max
𝑑 , 𝑠 = 𝑠12

.

 (5.29)

From this it follows that the minimum and maximum of the feature values are the minimum

and maximum values of all possible states for both the directional and symmetric feature

versions.

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒𝑅1𝑅2) = 𝑓𝑡{𝑖,𝑗}

min (𝑒𝑅1𝑅2) = min
𝑠∈𝑆pos

𝑓𝑡𝑡(𝑖)
min (𝑠) (5.30)

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒𝑅1𝑅2) = 𝑓𝑡{𝑖,𝑗}

max (𝑒𝑅1𝑅2) = max
𝑠∈𝑆pos

𝑓𝑡𝑡(𝑖)
max(𝑠) (5.31)

The mean value for both types is defined by multiplying the likelihood of each state by the

mean distance costs and computing the sum.

𝑓𝑡〈𝑖,𝑗〉
mean(𝑒𝑅1𝑅2) = 𝑓𝑡{𝑖,𝑗}

mean(𝑒𝑅1𝑅2) = 𝑝(𝑠1)𝑉mean
𝑑1 + 𝑝(𝑠2)𝑉mean

𝑑2 + 𝑝(𝑠12)𝐶mean
𝑑 . (5.32)

The resulting fuzzy region directional terrain transition feature is given as

 𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) = Tri (𝑓𝑡〈𝑖,𝑗〉
min (𝑒𝑅1𝑅2), 𝑓𝑡〈𝑖,𝑗〉

mean(𝑒𝑅1𝑅2), 𝑓𝑡〈𝑖,𝑗〉
max (𝑒𝑅1𝑅2)), (5.33)

and the fuzzy region symmetric terrain transition feature is given as

 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) = Tri (𝑓𝑡{𝑖,𝑗}
min (𝑒𝑅1𝑅2), 𝑓𝑡{𝑖,𝑗}

mean(𝑒𝑅1𝑅2), 𝑓𝑡{𝑖,𝑗}
max (𝑒𝑅1𝑅2)). (5.34)

168

For the example in Figure 5.3, the fuzzy region directional terrain transition features

are defined as

• 𝑓𝑡〈1,1〉(𝑒𝑅1𝑅2) = Tri(0, 2, 4),

• 𝑓𝑡〈1,2〉(𝑒𝑅1𝑅2) = Tri(1, 1, 1),

• 𝑓𝑡〈2,1〉(𝑒𝑅1𝑅2) = Tri(0, 0, 0),

• 𝑓𝑡〈2,2〉(𝑒𝑅1𝑅2) = Tri(0, 1.67, 4),

and the symmetric terrain transition features are defined as

• 𝑓𝑡{1,1}(𝑒𝑅1𝑅2) = Tri(0, 2, 4),

• 𝑓𝑡{1,2}(𝑒𝑅1𝑅2) = Tri(1, 1, 1),

• 𝑓𝑡{2,2}(𝑒𝑅1𝑅2) = Tri(0, 1.67, 4).

Note that when 𝑖 = 𝑗, both feature versions are 0.5 less than the corresponding terrain type

feature in the previous section. When 𝑖 ≠ 𝑗, the feature is a crisp binary value indicating if

the terrain transition is of the appropriate type.

If we consider the situation where both regions are unobserved as in the previous

section with the same terrain priors, 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) = 0.25, the fuzzy region

terrain transition features are defined as

• 𝑓𝑡〈1,1〉(𝑒𝑅1𝑅2) = 𝑓𝑡{1,1}(𝑒𝑅1𝑅2) = Tri(0, 3.52, 9),

• 𝑓𝑡〈2,2〉(𝑒𝑅1𝑅2) = 𝑓𝑡{2,2}(𝑒𝑅1𝑅2) = Tri(0, 1.00, 9),

• 𝑓𝑡〈1,2〉(𝑒𝑅1𝑅2) = 𝑓𝑡〈2,1〉(𝑒𝑅1𝑅2) = Tri(0, 0.19, 1),

• 𝑓𝑡{1,2}(𝑒𝑅1𝑅2) = Tri(0, 0.38, 1).

169

Note that the features where 𝑖 = 𝑗 have slightly lower mean values than the corresponding

terrain type features in the previous section. This comes from the possibility that only one

region is of the specified type and the 0.5 cost of the boundary edge is not incurred. The

symmetric 𝑓𝑡{1,2}(𝑒𝑅1𝑅2) feature also has a mean value that is the sum of the two directional

variants, indicating that both terrain configurations would contribute to the feature value.

5.3 General Fuzzy Region Features

In the previous section, we defined the graph 𝐺12 for every pair of adjacent regions

𝑅1 and 𝑅2 in the region graph 𝐺𝑅. By assigning a uniform cost of 1 to each edge of 𝐺12,

we computed the distance cost matrices 𝐶𝑑, 𝑈𝑑1, and 𝑈𝑑2, and used these to compute the

distance and terrain-based fuzzy region features between the two regions. For the elevation

feature, we can no longer assume that each edge has a uniform weight since the cost is

defined as the difference in elevation between adjacent grid cells. Because of this, we

introduce a more generic algorithm in this section for computing the cost matrices that can

handle non-uniform edge weights.

5.3.1 General Framework for Computing Region Features

The three subgraphs of 𝐺12 are 𝐺1, 𝐺2, and 𝐺bnd, where 𝐺1 contains only the vertices

from 𝑅1, 𝐺2 contains only the vertices from 𝑅2, and 𝐺bnd contains the boundary edges. In

practice, we represent the three subgraphs 𝐺1, 𝐺2, or 𝐺bnd as edge sets, where each edge 𝑒

is a 4-tuple (i1, j1, i2, j2). The pair (i1, j1) indicates the starting cell, START(𝑒), and (i2, j2) is

the ending cell, END(𝑒). The edges for the 𝐺1 and 𝐺2 subgraphs are separated by direction

170

into four sets: up, down, left, and right. This makes it straightforward to define the edge

sets and allows the shortest path algorithm to be optimized for grid world domains.

Algorithm 5.9 gives the procedure for creating the edge sets E1, E2, and Ebnd for

each of the three subgraphs using the function CREATE_REGION_EDGE_SETS. The

algorithm takes a region map R as input, where cells are labeled 1 for 𝑅1, 2 for 𝑅2, and 0

elsewhere. The indices for each region are found on line 2 using Algorithm 5.7, which

provides an ordering that is consistant with the distance cost matrices computed in the

previous section. Lines 3-8 create the directional edge sets E1 and E2 by identifying the

adjacent grid cells in each direction. Note that these sets do not need to be ordered. Line 9

gets the boundary edges using Algorithm 5.8, which also maintains the same ordering as

the previous section. These three edge sets are returned on line 10 and are used in

conjunction with the attributes of the mental map to compute the fuzzy features between

the two regions.

Algorithm 5.9 Create Region Edge Sets

CREATE_REGION_EDGE_SETS(R)

1: (n, m) ← size of R

2: I1, I2 ← GET_REGION_INDICES(R) // Algorithm 5.7

3: E1, E2 ← empty structures

4: for r in {1, 2}

5: Er.up ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  i2 = i1 − 1}

6: Er.down ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  i2 = i1 + 1}

7: Er.left ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  j2 = j1 − 1}

8: Er.right ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  j2 = j1 + 1}

9: Ebnd ← GET_BOUNDARY_EDGES(n, m, I1, I2) // Algorithm 5.8

10: return E1, E2, Ebnd

171

The general algorithm for computing all the region features for a given edge of the

region graph is given in Algorithm 5.10. The COMPUTE_REGION_FEATURES function is

called on line 20 of the CREATE_REGION_GRAPH function from Algorithm 5.5 and takes

the current mental map structure ℳ and the region map R as inputs. The first half of the

function computes the distance and terrain-based features from the previous section. Lines

1-5 get the terrain types and observability of each region and line 6 initializes an empty

structure to hold the features. Line 7 gets the region distance matrices using Algorithm 5.6,

which will be used to compute many of the features. Line 8 computes the distance feature

using the formulas from Section 5.2.2. Lines 9-14 loop over each terrain type in the set of

all terrain types, ℳ.𝒯. The terrain type feature from Section 5.2.3 is computed on line 10

using the distance matrices computed previously by the GET_REGION_DISTANCE function.

Lines 11-14 loop again over each terrain type to compute the terrain transition features

from Section 5.2.4. The directional terrain transition features are computed on line 12, and

if 𝑖 ≤ 𝑗, then the symmetrical features are also computed on line 14. It is possible to skip

any of these feature computations if they are not required by the problem.

172

Algorithm 5.10 Compute Region Features

COMPUTE_REGION_FEATURES(ℳ, R)

1: (n, m) ← ℳ. 𝑠𝑖𝑧𝑒

2: 𝑡1 ← {ℳ.𝑇[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 1}

3: 𝑡2 ← {ℳ.𝑇[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 2}

4: 𝑜1 ← {ℳ.𝑉[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 1}

5: 𝑜2 ← {ℳ.𝑉[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 2}

6: 𝐹 ← empty structure

/* Compute distance cost matrices */

7: 𝐶𝑑, 𝑈𝑑1, 𝑈𝑑2 ← GET_REGION_DISTANCE(R) // Algorithm 5.6

/* Compute distance and terrain-based features (Sections 5.2.2-5.2.4) */

8: 𝐹. 𝑓𝑑 ← DISTANCE_FEATURE(𝐶𝑑)

9: for 𝑖 in 1 to | ℳ.𝒯 |

10: 𝐹. 𝑓𝑡(𝑖) ← TERRAIN_TYPE_FEATURE(𝑖, 𝐶𝑑 , 𝑈𝑑1, 𝑈𝑑2, 𝑡1, 𝑡2, 𝑜1, 𝑜2)

11: for 𝑗 in 1 to | ℳ.𝒯 |

12: 𝐹. 𝑓𝑡〈𝑖,𝑗〉 ← DIR_TERRAIN_FEATURE(𝑖, 𝑗, 𝐶𝑑 , 𝑈𝑑1, 𝑈𝑑2, 𝑡1, 𝑡2, 𝑜1, 𝑜2)

13: if 𝑖 ≤ 𝑗

14: 𝐹. 𝑓𝑡{𝑖,𝑗} ← SYM_TERRAIN_FEATURE(𝑖, 𝑗, 𝐶𝑑, 𝑈𝑑1, 𝑈𝑑2, 𝑡1, 𝑡2, 𝑜1, 𝑜2)

/* Get edge sets */

15: E1, E2, Ebnd ← CREATE_REGION_EDGE_SETS(R) // Algorithm 5.9

/* Compute elevation edge costs (Algorithm 5.11) */

16: E1_abs, E2_abs, Ebnd_abs ← GET_ELEVATION_EDGE_COSTS(ℳ.𝐸, E1, E2, Ebnd, “abs”)

17: E1_↑, E2_↑, Ebnd_↑ ← GET_ELEVATION_EDGE_COSTS(ℳ.𝐸, E1, E2, Ebnd, “up”)

18: E1_↓, E2_↓, Ebnd_↓ ← GET_ELEVATION_EDGE_COSTS(ℳ.𝐸, E1, E2, Ebnd, “down”)

/* Compute elevation features (Algorithm 5.12) */

19: 𝐹. 𝑓ℎ_max ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_abs, E2_abs, Ebnd_abs, “abs”, “max”)

20: 𝐹. 𝑓ℎ↑_max ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↓, E2_↑, Ebnd_↑, “up”, “max”)

21: 𝐹. 𝑓ℎ↓_max ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↑, E2_↓, Ebnd_↓, “down”, “max”)

22: 𝐹. 𝑓ℎ_sum ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_abs, E2_abs, Ebnd_abs, “abs”, “sum”)

23: 𝐹. 𝑓ℎ↑_sum ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↓, E2_↑, Ebnd_↑, “up”, “sum”)

24: 𝐹. 𝑓ℎ↓_sum ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↑, E2_↓, Ebnd_↓, “down”, “sum”)

25: return 𝐹

173

The second half of Algorithm 5.10 computes the elevation features between the two

specified regions. This process begins on line 15, where the edge sets E1, E2, and Ebnd are

constructed using the CREATE_REGION_EDGE_SETS function from Algorithm 5.9. These

sets provide the starting and ending grid cells for the edges in each region and the boundary

set. On lines 16-19, we append these edges with the elevation features defined in Chapter

4. This is accomplished by the GET_ELEVATION_EDGE_COSTS function in Algorithm 5.11,

which is called three times. Each function call computes a different feature: the absolute

value of the elevation difference, the uphill difference, or the downhill difference.

The inputs to Algorithm 5.11 are the heightmap H from the mental map, the edge

sets E1, E2, and Ebnd, and a type flag indicating which elevation feature to compute. Lines

1-14 compute the crisp elevation features for the two region edge sets. Since each region

is either completely observed or unobserved, the feature values of each edge will either be

known exactly or be unknown with maximum uncertainty. If the region is unobserved, the

feature value of each edge is set to NIL (lines 5-6). We will discuss how unobserved regions

are handled in more detail in the next section. In each direction, the edge (i1, j1, i2, j2) is

used to compute the appropriate feature value c using Equations 4.11-4.13 (lines 7-12).

These features are appended to the edges creating a 5-tuple (i1, j1, i2, j2, c), which is saved

back to the edge set (lines 13-14). Note that it is not necessary to maintain the edge order

within each of the region edge sets.

174

Algorithm 5.11 Get Elevation Edge Costs

GET_ELEVATION_EDGE_COSTS(H, E1, E2, Ebnd, type)

/* Get costs for each region */

1: for 𝑟 in {1, 2}

2: for dir in {up, down, left, right}

3: F ← ∅

4: for each (i1, j1, i2, j2)  Er.{dir}

5: if H[i1, j1] = NIL  H[i2, j2] = NIL

6: c ← NIL

7: else if type = “abs”

8: c ← | H[i1, j1] – H[i2, j2] | // Equation 4.11

9: else if type = “up”

10: c ← max(0, H[i2, j2] – H[i1, j1]) // Equation 4.12

11: else if type = “down”

12: c ← max(0, H[i1, j1] – H[i2, j2]) // Equation 4.13

13: F ← F ∪ (i1, j1, i2, j2, c)

14: Er.{dir} ← F

/* Get boundary edge costs */

15: for k in 1 to | Ebnd |

16: (i1, j1, i2, j2) ← Ebnd[k]

17: ℎ1 ← H[i1, j1]

18: ℎ2 ← H[i2, j2]

19: 𝑜1 ← [H[i1, j1]  NIL]

20: 𝑜2 ← [H[i2, j2]  NIL]

21: if type = “abs”

22: c ← 𝑓ℎ(ℎ1, ℎ2, 𝑜1, 𝑜2) // Equation 4.71

23: else if type = “up”

24: c ← 𝑓ℎ↑(ℎ1, ℎ2, 𝑜1, 𝑜2) // Equation 4.72

25: else if type = “down”

26: c ← 𝑓ℎ↓(ℎ1, ℎ2, 𝑜1, 𝑜2) // Equation 4.73

27: Ebnd[k] ← (i1, j1, i2, j2, c)

28: return E1, E2, Ebnd

175

The elevation features for the boundary edges are computed on lines 15-27 of

Algorithm 5.11. The order of these edges is maintained, and for each edge, we determine

the starting and ending heights and observability (lines 16-20). These values are used to

compute the appropriate fuzzy elevation features using Equations 4.71-4.73 (lines 21-26).

Note that unlike the edge sets for each region, it is possible for only one side to be observed.

Therefore, we save the complete fuzzy feature for each boundary edge, represented as a

triangular fuzzy number. In practice, we only save the min, mean, and max points used to

define the membership function. Once all the edge features have been computed, the

updated edge sets are returned on line 28.

Each call to the GET_ELEVATION_EDGE_COSTS function on lines 16-18 of

Algorithm 5.10 returns three edge sets with either the absolute, uphill, or downhill

elevation difference features appended to each edge. These are saved as the sets E1_abs,

E2_abs, and Ebnd_abs for the absolute elevation difference, E1_↑, E2_↑, and Ebnd_↑ for the uphill

elevation difference, and E1_↓, E2_↓, and Ebnd_↓ for the downhill elevation difference. The

actual elevation features are computed on lines 19-24 using different subsets of these edge

sets, which will be discussed in the following sections. Note that for the uphill and downhill

elevation features, the edge set for region 1 is opposite that of the boundary edges and

region 2. This is done because costs are aggregated in the direction moving away from the

boundary edge. For region 1, this is opposite of the direction of agent movement, so the

edge set is replaced with that of the other elevation difference feature. This works because

the uphill cost in one direction is equal to the downhill cost in the opposite direction. As

with the distance and terrain type features, any features not required by the problem can be

176

skipped. The final set of features for this edge of the region graph is returned on line 25 to

the CREATE_REGION_GRAPH function in Algorithm 5.5.

Figure 5.6 shows the elevation edge costs computed for the example in Figure 5.3.

The three images show the absolute, uphill, and downhill elevation difference features.

These are saved in the corresponding edge sets and separated by edge direction. Note that

the uphill costs in each direction are equal to the downhill costs in the opposite direction.

 (a)

 (b) (c)

Figure 5.6 Elevation edge costs computed for the example in Figure 5.3. The elevation of each cell is shown

in gray and the edge costs are displayed next to each edge. (a) Absolute elevation difference. (b) Uphill

elevation difference. (c) Downhill elevation difference.

177

5.3.2 Region Elevation Features

As mentioned previously, computing the region elevation features requires a

generalization of the distance cost algorithm presented in the last section to account for

non-uniform edge weights. Algorithm 5.12 shows the approach we use to compute the

elevation features, which is very much like the GET_REGION_DISTANCE function in

Algorithm 5.6. The function takes the following input arguments:

• an 𝑛 ×𝑚 grid map R, where cells in 𝑅1 are marked 1, cells in 𝑅2 are marked 2, and

all other cells are 0,

• region distance matrices 𝑈𝑑1 and 𝑈𝑑2, obtained as the outputs of Algorithm 5.6 on

the grid map R,

• the observability of the two regions 𝑜1 and 𝑜2,

• weighted edge sets E1, E2, and Ebnd, obtained as the outputs of Algorithm 5.11,

• a type parameter set to either “abs”, “up”, or “down” to indicate which elevation

feature to compute, and

• an agg parameter set to either “sum” or “max” to indicate if summation or

maximization aggregation should be used.

The algorithm starts by obtaining the indices of the two regions using Algorithm 5.7 (line

2) and initializing the cost matrices (lines 3-5). 𝑈1 and 𝑈2 will hold the expected

aggregated elevation feature costs from each cell in 𝑅1 and 𝑅2 respectively to each

boundary edge. 𝑈bnd will hold the three triangular fuzzy number parameters (min, mean,

and max) for each boundary edge.

178

Algorithm 5.12 Elevation Feature

ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1, E2, Ebnd, type, agg)

1: (n, m) ← size of R

/* Get the indices of the two regions */

2: I1, I2 ← GET_REGION_INDICES(R) // Algorithm 5.7

/* Initialize the cost matrices */

3: 𝑈1 ← | I1 |  | Ebnd | matrix initalized to ∞

4: 𝑈2 ← | I2 |  | Ebnd | matrix initalized to ∞

5: 𝑈bnd ← | Ebnd |  3 matrix initalized to ∞

/* Compute region costs */

6: for 𝑟 in {1, 2}

7: if 𝑜𝑟 = 1

8: for k in 1 to | Ebnd |

9: (i1, j1, i2, j2, c) ← Ebnd[k]

10: D ← n  m matrix initalized to ∞

11: D[ir, jr] ← 0

12: D ← BELLMAN_FORD_GRID_DIST(D, Er, agg) // Algorithm 5.13

13: 𝑈𝑟[: , k] ← D[Ir]

14: else

15: 𝑈𝑟 ← UNOBSERVED_ELEVATION_COST(𝑈𝑑𝑟, type, agg) // Algorithm 5.14

/* Get boundary edge costs */

16: for k in 1 to | Ebnd |

17: (i1, j1, i2, j2, Tri(𝑓min, 𝑓mean, 𝑓max)) ← Ebnd[k]

18: 𝑈bnd[k, 1] ← 𝑓min

19: 𝑈bnd[k, 2] ← 𝑓mean

20: 𝑈bnd[k, 3] ← 𝑓max

/* Compute the feature (Algorithm 5.15) */

21: F ← COMBINE_ELEVATION_COSTS(𝑈1, 𝑈2, 𝑈bnd, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, type, agg)

22: return F

179

The first part of Algorithm 5.12 computes the region costs to fill in the 𝑈1 and 𝑈2

matrices. For each region that is observed, we cycle over each boundary edge and compute

the costs from that edge to each grid cell in the region. Unobserved regions are treated as

a special case and are discussed in the next section. Whereas Algorithm 5.6 used the

GRID_DISTANCE function from Algorithm 3.6 for each boundary edge in both regions, we

rely here on a variation of the Bellman-Ford algorithm presented in Algorithm 5.13, which

allows for non-uniform edge weights. Lines 9-11 prepare a distance grid D for the

algorithm, where all values in D are set to infinity except for the source grid cell, which is

set to zero at one of the boundary edge cells.

The Bellman-Ford algorithm (Bellman 1958; Ford Jr. 1956) operates by iteratively

relaxing an upper bound on the cost to each vertex from some source. Each vertex starts

with an initial value of infinity except for the source, which starts with zero. The entire set

of edges 𝐸 is evaluated for a maximum of |𝑉| − 1 iterations, and each time an edge is

found that results in a smaller cost to reach a vertex, the upper bound is relaxed. The

algorithm can terminate early if no edges are relaxed in an iteration. The worst-case runtime

performance is given as 𝑂(|𝑉||𝐸|), but the best-case performance is only 𝑂(|𝐸|). Our

implementation of the Bellman-Ford algorithm is specifically designed to operate on grid

graphs, where the edges can be divided into four sets: up, down, left, and right. This allows

the cost updates to occur simultaneously for each set. This is possible because within each

set, each vertex has at most one incoming edge that could change its current value. In

practice, this results in a wave propagation of settled costs radiating outward from the

source, similar to the breadth-first search approach of the Lee algorithm (Lee 1961) and

our previous GRID_DISTANCE function.

180

The BELLMAN_FORD_GRID_DIST function presented in Algorithm 5.13 takes the

following inputs:

• a distance grid D, where all cells have been initialized to infinity except for the

source cell, which is set to zero,

• a set of edges E, that has been subdivided into four sets, up, down, left, and right,

based on edge direction, and

Algorithm 5.13 Bellman-Ford Grid Distance

BELLMAN_FORD_GRID_DIST(D, E, agg)

/* D is a grid initialized to ∞ with source cells set to 0 */

1: (n, m) ← size of D

2: Dold ← D

3: while True

/* Loop over the edges in each direction */

4: for dir in {up, down, left, right}

5: for each (i1, j1, i2, j2, c)  E.{dir}

6: s ← D[i1, j1] // Get value of D at edge starting point

7: t ← D[i2, j2] // Get value of D at edge ending point

8: if agg = “sum”

9: u ← s + c

10: else if agg = “max”

11: u ← max(s, c)

12: D[i2, j2] ← min(u, t)

/* Check if finished */

13: if D = Dold

14: break

15: else

16: Dold ← D

17: return D

181

• an option parameter agg that indicates if summation or maximization aggregation

is to be used.

The distance grid D represents an upper bound on the minimum cost required to reach

each cell from the source. As the algorithm proceeds, the values in D are replaced with

better estimates. The main loop of Algorithm 5.13 begins on line 3 and continues until D

does not change, which is checked on lines 13-16. For each main loop iteration, each of

the four directional edge sets is evaluated in sequence (lines 4-12). Lines 5-12 loop over

each edge in the edge set. For each edge, we get the current values in D of the starting cell

(i1, j1) and ending cell (i2, j2), saved as the variables s and t (lines 6 and 7). The cost of the

edge is given as c and is aggregated with the value s, which represents the best-known cost

from the source to (i1, j1). If using summation aggregation, this is evaluated as s + c (line

9), whereas it is evaluated as max(s, c) if using maximization aggregation (line 11). The

resulting value is saved as the variable u and is compared with t, which represents the best-

known cost from the source to (i2, j2). If u is less than t, then the edge offers a better path

to (i2, j2). The value D[i2, j2] is updated to be the minimum of u and t on line 12. Note that

we do not save the shortest paths themselves, but only the costs associated with the paths.

Since we only consider edges in one direction at a time, each cell can have only a

single incoming edge and a single outgoing edge. This ensures that there are no conflicts

when the values in D are updated and allows lines 5-12 to operate in parallel, which can

greatly improve the speed of the algorithm. If no values in D have changed after evaluating

the edges in each direction (checked on lines 13-16), the algorithm terminates and D is

returned on line 17.

182

Figure 5.7 Composite distance grids computed using Algorithm 5.13 for the example in Figure 5.3 using the

maximum aggregation method. The top row shows the absolute elevation difference feature costs, the middle

row shows the uphill costs, and the bottom row shows the downhill costs. The three columns show the

different costs for reaching each of the three boundary edges.

Figure 5.8 Composite distance grids computed using Algorithm 5.13 for the example in Figure 5.3 using the

summation aggregation method. The top row shows the absolute elevation difference feature costs, the

middle row shows the uphill costs, and the bottom row shows the downhill costs. The three columns show

the different costs for reaching each of the three boundary edges.

183

Figure 5.7 shows the output of the BELLMAN_FORD_GRID_DIST function on the

example from Figure 5.3 using the maximization aggregation method. Likewise, Figure

5.8 shows the output when using summation. Each image shows the distance values

computed for each grid cell in both regions using a specific boundary edge and feature

type. The absolute, uphill, and downhill elevation difference features are shown. It can be

helpful to reference the elevation edge costs computed in Figure 5.6 when examining these

figures.

5.3.3 Unobserved Elevation Costs

We now return to the first part of Algorithm 5.12 where we compute the individual

region elevation costs for each boundary edge. If the region is observed, the edge costs are

computed using the BELLMAN_FORD_GRID_DIST function in Algorithm 5.13. However, if

the region is unobserved, then each edge in the region will have an unknown cost. In this

case, all edges can be assigned a fuzzy cost using the equations in Section 4.4.4. Because

each edge has the same fuzzy cost value, we can make use of the distance cost matrices

computed by the GET_REGION_DISTANCE function from Algorithm 5.6.

Consider first the average cost value of reaching one of the boundary edges from

each grid cell within a region. The matrices 𝑈𝑑1 and 𝑈𝑑2 give the number of steps required

to reach each boundary edge from any location within one of the regions. In general, 𝑛

steps are required where 𝑛 ≥ 0. Using the values computed in Equations 4.65-4.67, we

know that the mean elevation feature value for a single unobserved edge is
1

3
 for the

absolute elevation difference and
1

6
 for both the uphill and downhill elevation differences.

184

Therefore, for the summation aggregation method, the average total cost to reach one of

the boundary edges is
1

3
𝑈𝑑 for the absolute elevation difference and

1

6
𝑈𝑑 for the uphill and

downhill elevation differences.

For maximization, the approach is not so straightforward. The average cost of

reaching each boundary edge using maximization aggregation is the expected maximum

value of 𝑛 randomly sampled elevation feature values. Consider a set of 𝑛 independent1

and identically distributed (i.i.d.) random variables 𝑋1, 𝑋2, … , 𝑋𝑛 where each variable 𝑋𝑖 is

sampled from a probability distribution 𝑓𝑋(𝑥). Let 𝑌𝑛 = max{𝑋1, 𝑋2, … , 𝑋𝑛} be the

maximum value of the set. We can define the expected value of 𝑌𝑛 as

 𝔼[𝑌𝑛] = ∫ 𝑦𝑓𝑌𝑛(𝑦)

∞

−∞

𝑑𝑦, (5.35)

where 𝑓𝑌𝑛(𝑦) is the probability distribution function (PDF) of 𝑌𝑛. If the PDF is continuous,

it can be computed as

 𝑓𝑌𝑛(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌𝑛(𝑦), (5.36)

where 𝐹𝑌𝑛(𝑦) is the cumulative distribution function (CDF) of 𝑌𝑛, which is defined as

 𝐹𝑌𝑛(𝑦) = 𝑃(𝑌𝑛 ≤ 𝑦). (5.37)

Replacing 𝑌𝑛 with its definition, we get

 𝐹𝑌𝑛(𝑦) = 𝑃(max{𝑋1, 𝑋2, … , 𝑋𝑛} ≤ 𝑦). (5.38)

1 The elevation features within a region are not actually independent since they depend on the shared heights

of the grid cells. The heightmap is also generated in such a way that adjacent cells are more likely to have

the same elevation, biasing the elevation difference features toward zero. However, we assume independence

here for the sake of analysis and recognize that the resulting estimate will likely be larger than the true value.

185

Since the 𝑋𝑖 variables are independent, this can be expressed as

 𝐹𝑌𝑛(𝑦) = 𝑃(𝑋1 ≤ 𝑦)𝑃(𝑋2 ≤ 𝑦)…𝑃(𝑋𝑛 ≤ 𝑦) (5.39a)

 𝐹𝑌𝑛(𝑦) = [𝑃(𝑋𝑖 ≤ 𝑦)]
𝑛 (5.39b)

 𝐹𝑌𝑛(𝑦) = [𝐹𝑋(𝑦)]
𝑛. (5.39c)

Here, 𝐹𝑋(𝑦) is the CDF of the random variable 𝑋, which is one of the elevation feature

values.

Each of the elevation features introduced in Section 4.3.4 are defined in terms of

the starting and ending grid cell heights, ℎ1 and ℎ2. In the completely unobserved case,

both values are assumed to be randomly sampled from a uniform distribution over the unit

interval ℎ1, ℎ2 ~ 𝑈(0, 1). Let 𝑋ℎ be the absolute elevation difference feature computed

from ℎ1 and ℎ2 such that

 𝑋ℎ = |ℎ1 − ℎ2|. (5.40)

The CDF of 𝑋ℎ is defined as

 𝐹𝑋ℎ(𝑥) = 𝑃(𝑋ℎ ≤ 𝑥). (5.41)

The easiest way to evaluate this expression is to imagine a unit square representing all

possible values of the pair (ℎ1, ℎ2). The 3D surface plots of the elevation difference

features were shown in Figure 4.6, and a top-down view is shown in Figure 5.9. For any

value 𝑥, the area of the square where |ℎ1 − ℎ2| ≤ 𝑥 represents the probability that 𝑋ℎ ≤ 𝑥.

From Figure 5.9 (a), we can see that this area is 1 − (1 − 𝑥)2. Simplifying this expression

gives,

 𝐹𝑋ℎ(𝑥) = 2𝑥 − 𝑥2, 0 ≤ 𝑥 ≤ 1. (5.42)

186

For the directional elevation difference features, we define 𝑋ℎ↑ and 𝑋ℎ↓ as

 𝑋ℎ↑ = max(0, ℎ2 − ℎ1) , and (5.43)

 𝑋ℎ↓ = max(0, ℎ1 − ℎ2). (5.44)

Again, the CDFs of 𝑋ℎ↑ and 𝑋ℎ↓ are defined as

 𝐹𝑋ℎ↑(𝑥) = 𝑃(𝑋ℎ↑ ≤ 𝑥), and (5.45)

 𝐹𝑋ℎ↓(𝑥) = 𝑃(𝑋ℎ↓ ≤ 𝑥). (5.46)

From Figure 5.9 (b) and (c), we see that the areas of the unit square where

max(0, ℎ2 − ℎ1) ≤ 𝑥 and max(0, ℎ1 − ℎ2) ≤ 𝑥 are both 1 −
1

2
(1 − 𝑥)2. Simplifying

gives

 𝐹𝑋ℎ↑(𝑥) = 𝐹𝑋ℎ↓(𝑥) = −
𝑥2

2
+ 𝑥 +

1

2
, 0 ≤ 𝑥 ≤ 1. (5.47)

Since the CDFs of the uphill and downhill elevation difference features are

identical, we simplify our notation and refer to the two types of features as absolute and

 (a) (b) (c)

Figure 5.9 Plots of the elevation difference features over the unit square, with a shaded region showing the

area where the function is less than a value 𝑥. (a) The absolute elevation difference 𝑓ℎ. (b) The uphill elevation

difference 𝑓ℎ↑. (c) The downhill elevation difference 𝑓ℎ↓. These represent top-down views of the 3D surface

plots shown in Figure 4.6.

𝑓ℎ ℎ1 , ℎ2 = ℎ1 − ℎ2 𝑓ℎ↑ ℎ1 , ℎ2 = max 0, ℎ2 − ℎ1 𝑓ℎ↓ ℎ1, ℎ2 = max 0, ℎ1 − ℎ2

ℎ2

ℎ10
0 1

1

𝑥

𝑥

1 − 𝑥

1 − 𝑥

ℎ2

ℎ10
0 1

1

𝑥

1 − 𝑥
ℎ2

ℎ10
0 1

1

𝑥

1 − 𝑥

187

directional elevation difference features. We notate these two CDFs as 𝐹𝑋abs = 𝐹𝑋ℎ and

𝐹𝑋dir = 𝐹𝑋ℎ↑ = 𝐹𝑋ℎ↓. Figure 5.10 shows the plots of these CDFs as 𝑥 ranges between 0 and

1. The value of each function for a given 𝑥 represents the probability that the feature value

will be less than or equal to 𝑥. Note that 𝐹𝑋abs(0) = 0, whereas 𝐹𝑋dir(0) = 0.5. This is

because for half of the possible values of ℎ1 and ℎ2, the directional features are zero.

Figure 5.10 Plots of the cumulative distribution functions of the elevation difference features.

188

Returning to Equation 5.39, let 𝑌𝑛
abs be the maximum of 𝑛 values sampled from the

distribution 𝑓𝑋ℎ, and let 𝑌𝑛
dir be the maximum of 𝑛 values sampled from either 𝑓𝑋ℎ↑ or 𝑓𝑋ℎ↓.

We can express the CDF of 𝑌𝑛
abs as

 𝐹𝑌𝑛abs(𝑦) = [𝐹𝑋abs(𝑦)]
𝑛
 (5.48a)

 = (2𝑦 − 𝑦2)𝑛, 0 ≤ 𝑦 ≤ 1 (5.48b)

and the CDF of 𝑌𝑛
dir as

 𝐹𝑌𝑛dir(𝑦) = [𝐹𝑋dir(𝑦)]
𝑛
 (5.49a)

 = (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛

, 0 ≤ 𝑦 ≤ 1. (5.49b)

Plots of these CDFs are shown in Figure 5.11. Note that 𝐹𝑌𝑛abs(0) = 0 and 𝐹𝑌𝑛dir(0) = 2
−𝑛.

The functions shift toward higher values of 𝑦 as 𝑛 increases, indicating that the expected

maximum value should increase with more samples.

 (a) (b)

Figure 5.11 CDFs of the maximum of 𝑛 elevation difference feature values. (a) CDF of 𝑌𝑛
abs for various

values of 𝑛. (b) CDF of 𝑌𝑛
dir for various values of 𝑛.

189

To get the PDFs of these functions, we differentiate using Equation 5.36. For the

absolute elevation difference, this gives

 𝑓𝑌𝑛abs(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌𝑛abs(𝑦) (5.50a)

 = −𝑛(2𝑦 − 2)(2𝑦 − 𝑦2)𝑛−1, 0 ≤ 𝑦 ≤ 1. (5.50b)

For the directional elevation difference, this gives

 𝑓𝑌𝑛dir(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌𝑛dir(𝑦) (5.51a)

 = −𝑛(𝑦 − 1) (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛−1

+
𝛿(𝑦)

2𝑛
, 0 ≤ 𝑦 ≤ 1 (5.51b)

where 𝛿 is the Dirac delta function that models the probability point mass at 𝑦 = 0. This

represents the case where all sampled values are zero, and it is included to ensure that

∫ 𝑓𝑌𝑛dir(𝑦)
1

0
𝑑𝑦 = 1. Figure 5.12 shows these PDFs for several values of 𝑛. Notice that the

PDFs of the directional elevation features are skewed towards slightly lower values than

those of the absolute elevation difference. This is in addition to the probability mass from

the Dirac delta function at 𝑦 = 0, which is not shown.

 (a) (b)

Figure 5.12 PDFs of the maximum of 𝑛 elevation difference feature values. (a) PDF of 𝑌𝑛
abs for various

values of 𝑛. (b) PDF of 𝑌𝑛
dir for various values of 𝑛. Note that 𝛿(𝑦) is not shown in these plots.

190

We use Equation 5.35 to get the expected values of 𝑌𝑛
abs and 𝑌𝑛

dir from their PDFs.

For the expected absolute elevation difference, we obtain

 𝔼[𝑌𝑛
abs] = ∫𝑦𝑓𝑌𝑛abs(𝑦)

1

0

𝑑𝑦 (5.52a)

 = ∫−𝑛𝑦(2𝑦 − 2)(2𝑦 − 𝑦2)𝑛−1
1

0

𝑑𝑦. (5.52b)

For the uphill and downhill elevation differences, we obtain

 𝔼[𝑌𝑛
dir] = ∫𝑦𝑓𝑌𝑛dir(𝑦)

1

0

𝑑𝑦 (5.53a)

 = ∫−𝑛𝑦(𝑦 − 1) (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛−1

+
𝑦𝛿(𝑦)

2𝑛

1

0

𝑑𝑦 (5.53b)

 = ∫−𝑛𝑦(𝑦 − 1) (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛−11

0

𝑑𝑦. (5.53c)

Note that we can ignore the Dirac delta function here, since 𝑦𝛿(𝑦) = 0. Evaluating these

integrals for large values of 𝑛 can become costly for real-time operation, so we precompute

the expected values up to some limit (𝑛 = 100) and save these in a lookup table. Table 5.1

shows the expected values of 𝑌𝑛
abs and 𝑌𝑛

dir for several values of 𝑛.

Table 5.1 Expected values of 𝑌𝑛
abs and 𝑌𝑛

dir for various values of 𝑛

𝑛 1 2 3 4 5 10 20 50 100

𝔼[𝑌𝑛
abs] 0.333 0.467 0.543 0.594 0.631 0.730 0.806 0.876 0.912

𝔼[𝑌𝑛
dir] 0.167 0.283 0.368 0.431 0.480 0.618 0.725 0.824 0.875

191

To verify that our method is correct, we randomly sampled 𝑛 values of ℎ1 and ℎ2

from a uniform distribution 𝑈(0, 1) and computed the maximum value of the absolute and

directional elevation features. This was repeated 100 times for each value of 𝑛 in 1,… ,100.

Figure 5.13 shows the box plots of the distributions of computed values for each 𝑛 along

with a curve representing the expected values 𝔼[𝑌𝑛
abs] and 𝔼[𝑌𝑛

dir] computed using

Equations 5.52 and 5.53. The box plots show the maximum, minimum, median, and upper

and lower quartiles of each distribution, along with any outliers. A green ‘x’ is plotted on

each box plot at the location of the mean value. For both the absolute and directional

elevation features, the red line representing the computed expected values is in alignment

with the means of the sampled distributions.

192

Algorithm 5.14 shows how the above computations are implemented as part of the

ELEV_FEATURE function in Algorithm 5.12. Lines 6-15 of Algorithm 5.12 compute the

region cost matrices 𝑈1 and 𝑈2, using the BELLMAN_FORD_GRID_DIST function in

Algorithm 5.13 when the regions are observed and the UNOBSERVED_ELEVATION_COST

function in Algorithm 5.14 when the regions are unobserved. Algorithm 5.14 provides a

cost matrix 𝑈𝑟 containing the expected elevation feature costs for a region using the

distance cost matrix 𝑈𝑑 and the above definitions. For the maximum aggregation method,

the values are precomputed in a lookup table to avoid unnecessary computation.

 (a) (b)

Figure 5.13 Expected values of (a) 𝑌𝑛
abs and (b) 𝑌𝑛

dir for 𝑛 in 1,… ,100. For each 𝑛, 100 samples of 𝑌𝑛 were

computed for the absolute and directional elevation features and the resulting distributions are shown in blue

as box plots. The mean value of each sampled distribution is shown as a green ‘x’. The red line indicates the

expected value computed using Equations 5.52 and 5.53.

𝔼
𝑌 𝑛
ab
s

𝔼
𝑌 𝑛
d
ir

193

5.3.4 Combining Region Elevation Costs

The second half of Algorithm 5.12 combines the region elevation costs from both

regions to compute the actual elevation difference feature. Lines 16-20 of Algorithm 5.12

construct the 𝑈bnd matrix from the provided boundary edge list Ebnd. Each row of 𝑈bnd

contains the min, mean, and max feature values of one of the boundary edges. Line 21 calls

the COMBINE_ELEVATION_COSTS function, which is given in Algorithm 5.15. This

function takes the following input arguments:

• expected aggregated elevation cost matrices 𝑈1 and 𝑈2, containing the average

costs of traveling between each grid cell and each boundary edge,

• the boundary edge cost matrix 𝑈bnd,

Algorithm 5.14 Unobserved Elevation Costs

UNOBSERVED_ELEVATION_COST(𝑈𝑑, type, agg)

1: (N, K) ← size of 𝑈𝑑

2: 𝑈𝑟 ← N  K matrix initalized to ∞

3: for each (i, k)  {1 ≤ i ≤ N  1 ≤ k ≤ K}

4: if agg = “sum”

5: if type = “abs”

6: 𝑈𝑟[i, k] ←
1

3
× 𝑈𝑑[i, k]

7: else if type = “up” or type = “down”

8: 𝑈𝑟[i, k] ←
1

6
× 𝑈𝑑[i, k]

9: else if agg = “max”

10: 𝑛 ← 𝑈𝑑[i, k]

11: if type = “abs”

12: 𝑈𝑟[i, k] ← 𝔼[𝑌𝑛
abs]

13: else if type = “up” or type = “down”

14: 𝑈𝑟[i, k] ← 𝔼[𝑌𝑛
dir]

15: return 𝑈𝑟

194

• region distance cost matrices 𝑈𝑑1 and 𝑈𝑑2, containing the number of steps required

to travel between each grid cell and each boundary edge,

• the observability of the two regions 𝑜1 and 𝑜2, and

• an agg parameter set to either “sum” or “max” to indicate if summation or

maximization aggregation should be used.

The algorithm starts on lines 1 and 2 by getting the number of cells in each region (N1 and

N2) and the number of boundary edges (K). These are used to produce an index set I of

starting and ending cells from the two regions (line 3) and to initialize the mean and max

N1  N2 cost matrices 𝐶mean and 𝐶max (line 4). Note that we do not need a cost matrix for

the minimum feature value because this will always be represented by a single-step

transition along one of the boundary edges.

We first consider the computation of the mean cost matrix 𝐶mean for both

aggregation types. Recall from Equations 5.1 and 5.2 that the minimum cost of a path from

cell i in 𝑅1 to cell j in 𝑅2 using boundary edge k is given as 𝑢𝑖𝑘
1 + 𝑢𝑘

bnd + 𝑢𝑗𝑘
2 for summation

aggregation and as max(𝑢𝑖𝑘
1 , 𝑢𝑘

bnd, 𝑢𝑗𝑘
2) for maximization. The expected values of 𝑢𝑖𝑘

1 and

𝑢𝑗𝑘
2 are provided by the 𝑈1 and 𝑈2 matrices respectively, and the mean cost of the boundary

edge 𝑢𝑘
bnd is given by the second column of 𝑈bnd. From Equation 5.3, the minimum

expected cost is defined using the boundary edge that gives the minimum value. Since 𝑈1

and 𝑈2 have already been defined to contain the expected region elevation costs for the

appropriate aggregation type regardless of observability, we can apply the above

expressions to each pair of cells in the index I to get 𝐶mean on line 6 for the max type and

on line 13 for the sum type.

195

To compute the maximum cost matrix 𝐶max, we need to update the definitions of

𝑈1 and 𝑈2 depending on if each region has been observed. If a region has been observed,

then the corresponding cost matrix contains the actual observed costs and does not need to

be changed. However, if a region is unobserved (𝑜1 = 0 or 𝑜2 = 0), then we need to update

the cost matrix to contain the maximum cost that the agent could encounter along the path

between each cell and each boundary edge.

First, consider an unobserved region with the maximum aggregation type. If the

region distance cost matrix 𝑈𝑑1 or 𝑈𝑑2 indicates that a grid cell is one or more steps away

from the boundary edge, then there is at least one completely unobserved edge that could

take the maximum value of 1. Lines 8 and 10 apply this test to each cost matrix element in

an unobserved region, setting the value of 𝑈1 or 𝑈2 to 1 if the corresponding value in 𝑈𝑑1

or 𝑈𝑑2 is greater than zero and setting it to 0 otherwise. The only reason the expected cost

is not simply set to 1 for any unobserved region is to handle the edge case where one region

is unobserved and contains only a single grid cell. In this case, the maximum cost would

be determined by the maximum region cost of the other region and the boundary edge,

since there would be no edges completely within the unobserved region.

Next, consider an unobserved region with the summation aggregation type. For

summation, each unobserved step could mean the addition of the largest possible elevation

difference feature value. In the worst case, an elevation pattern of (0, 1, 0, 1, 0, ...) would

produce an absolute elevation difference of 1 for each grid step. Therefore, when the feature

type is set to “abs” and one of the regions is unobserved with summation aggregation, the

corresponding cost matrix 𝑈1 or 𝑈2 is set to be the same as the corresponding region

196

distance cost matrix 𝑈𝑑1 or 𝑈𝑑2 (lines 16 and 21). The situation is only half as bad for the

directional elevation costs. Even in the worst case, the uphill or downhill feature value can

only take its maximum every other step. Each element of the corresponding cost matrix is

set to ⌈
𝑑

2
⌉ where 𝑑 is the value of the distance cost matrix 𝑈𝑑1 or 𝑈𝑑2 (lines 18 and 23).

After updating the cost matrices 𝑈1 and 𝑈2 to account for unobserved regions, we

compute the maximum cost matrix 𝐶max, using Equations 5.1 or 5.2 and Equation 5.3 as

before, but using the third column of 𝑈bnd, which contains the maximum feature value of

each boundary edge (lines 11 and 24). To get the final feature as a triangular fuzzy number,

we first define the minimum feature value 𝑓min as the minimum of the first column of 𝑈bnd,

which contains the minimum cost of each boundary edge (line 25). The mean feature value

𝑓mean is the average of all values in the mean cost matrix 𝐶mean (line 26). The maximum

feature value 𝑓max is the maximum of all values in 𝐶max (line 27). The final feature is

constructed as the triangular fuzzy number Tri(𝑓min, 𝑓mean, 𝑓max) on line 28 and returned to

the ELEV_FEATURE function in Algorithm 5.12 on line 29. This is eventually returned to

the original COMPUTE_REGION_FEATURES function in Algorithm 5.10.

197

Algorithm 5.15 Combine Elevation Costs

COMBINE_ELEVATION_COSTS(𝑈1, 𝑈2, 𝑈bnd, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, type, agg)

1: (N1, K) ← size of 𝑈1

2: (N2, K) ← size of 𝑈2

3: I ← {(i, j) | 1 ≤ i ≤ N1  1 ≤ j ≤ N2}

4: 𝐶mean, 𝐶max ← N1  N2 matrices initalized to ∞

/* Combine costs */

5: if agg = “max”

6: 𝐶mean[i, j] ← mink{max(𝑈1[i, k], 𝑈bnd[k, 2], 𝑈2[j, k])}  (i, j)  I

7: if 𝑜1 = 0

8: 𝑈1[i, k] ← [𝑈𝑑1[i, k] > 0]  (i, k)  {(i, k) | 1 ≤ i ≤ N1  1 ≤ k ≤ K}

9: if 𝑜2 = 0

10: 𝑈2[j, k] ← [𝑈𝑑2[j, k] > 0]  (j, k)  {(j, k) | 1 ≤ j ≤ N2  1 ≤ k ≤ K}

11: 𝐶max[i, j] ← mink{max(𝑈1[i, k], 𝑈bnd[k, 3], 𝑈2[j, k])}  (i, j)  I

12: else if agg = “sum”

13: 𝐶mean[i, j] ← mink{𝑈
1[i, k] + 𝑈bnd[k, 2] + 𝑈2[j, k]}  (i, j)  I

14: if 𝑜1 = 0

15: if type = “abs”

16: 𝑈1 ← 𝑈𝑑1

17: else if type = “up” or type = “down”

18: 𝑈1[i, k] ← 𝑈𝑑1[i, k] / 2  (i, k)  {(i, k) | 1 ≤ i ≤ N1  1 ≤ k ≤ K}

19: if 𝑜2 = 0

20: if type = “abs”

21: 𝑈2 ← 𝑈𝑑2

22: else if type = “up” or type = “down”

23: 𝑈2[j, k] ← 𝑈𝑑2[j, k] / 2  (j, k)  {(j, k) | 1 ≤ j ≤ N2  1 ≤ k ≤ K}

24: 𝐶max[i, j] ← mink{𝑈
1[i, k] + 𝑈bnd[k, 3] + 𝑈2[j, k]}  (i, j)  I

/* Construct feature */

25: 𝑓min ← mink{𝑈
bnd[k, 1]}

26: 𝑓mean ←
1

𝑁1𝑁2
∑ 𝐶mean[𝑖, 𝑗]𝑖,𝑗

27: 𝑓max ← maxi, j{𝐶max[i, j]}

28: F ← Tri(𝑓min, 𝑓mean, 𝑓max)

29: return F

198

To demonstrate the computation of the elevation features for the example in Figure

5.3, consider the maximum absolute elevation difference feature when region 1 is observed

but region 2 is unobserved. The cost matrix 𝑈1 is implicitly given from the distance grid

values from region 1 in the top row of Figure 5.7,

𝑈1 =

[

0.3 0.3 0.3
0.3 0.3 0.3
0.5 0.5 0.5
0.1 0.2 0.2
0.1 0.2 0.2
0.2 0.2 0.2
0 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2
0 0.2 0.2
0.2 0 0]

.

The boundary edge matrix 𝑈bnd comes from the boundary edge list Ebnd computed in

Algorithm 5.11. Using Equation 4.71, we compute

𝑈bnd = [
0 0.25 0.5
0 0.5 1
0 0.5 1

].

The region distance cost matrices 𝑈𝑑1 and 𝑈𝑑2 are the same as those in Figure 5.5. Because

region 2 is unobserved, 𝑈2 is defined by Algorithm 5.14 using 𝑈𝑑2 and the “max-abs”

configuration. The values are given by 𝔼[𝑌𝑛
abs], where 𝑛 comes from 𝑈𝑑2. Using the

precomputed values shown partially in Table 5.1, the 𝑈2 matrix is computed as

199

𝑈2 =

[

0.594 0.467 0
0 0.467 0.594

0.333 0.333 0.543
0.467 0 0.467
0.543 0.333 0.333
0.467 0.467 0.594
0.543 0.333 0.543
0.594 0.467 0.467
0.594 0.594 0.659
0.543 0.543 0.631
0.594 0.467 0.594
0.594 0.594 0.659]

.

The mean cost matrix 𝐶mean is computed on line 6 of Algorithm 5.15 as

𝐶mean =

[

0.5 0.3 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.3 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59]

.

The max cost matrix 𝐶max is computed on line 11 of Algorithm 5.15 after replacing the 𝑈2

matrix with 1 for any value where 𝑈𝑑2 > 0,

𝐶max =

[

1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1]

.

200

From the boundary cost matrix, we compute 𝑓min = 0. The mean value of 𝐶mean is

computed as 𝑓mean = 0.483, and the max value of 𝐶max is 𝑓max = 1. The fuzzy number cost

for the maximum absolute elevation difference feature for this example is therefore

computed as 𝑓ℎ_max = Tri(0, 0.483, 1). Other configurations can be computed in a similar

way using the above algorithms and definitions.

5.4 Approximate Fuzzy Region Features

The region feature definitions presented in Sections 5.2 and 5.3 are sometimes too

computationally intensive for use in real-time applications or when performing many

Monte Carlo simulations. This can also be true in large environments or where regions

share long borders, resulting in many region boundary edges. In these situations, it may be

acceptable to approximate the region features using simpler approaches. Any problem with

partial observability or region partitioning will be subject to some approximation in the

feature definitions since there is uncertainty represented in the triangular fuzzy numbers.

The quality of any feature approximation depends on the type of environment and region

clustering parameters. The agent designer must decide what is an acceptable tradeoff for

any given problem.

By far, the costliest operations in the computation of region features are the grid

distance searches used to define the region distance and elevation cost matrices. The

GRID_DISTANCE function is called twice for each boundary edge regardless of

observability, and for each elevation feature type that needs to be computed, the

BELLMAN_FORD_GRID_DIST function is called once for each boundary edge in an

observed region. The result of these functions is a region cost matrix that specifies the

201

feature cost between each grid cell in a region and one of the boundary edges. One way to

significantly reduce the computation time is to eliminate the distance searches for each

boundary edge and instead use a single approximation of the distance from each grid cell

to the region boundary. This approach is similar to the method used to compute the terrain-

based region features using the 𝑉𝑑1 and 𝑉𝑑2 matrices defined by Equations 5.8 and 5.9.

The distance to the region boundary can be approximated quickly by using the

region centroids. The centroid of each region is computed using Algorithm 3.9 during the

creation of the region graph in Algorithm 5.5. Consider two regions 𝑅1 and 𝑅2 with

centroids (𝑐𝑥
1, 𝑐𝑦

1) and (𝑐𝑥
2, 𝑐𝑦

2). For every cell (𝑥, 𝑦) ∈ 𝑅1, the distance to the centroid of

𝑅2 can be approximated as

 𝐷𝑐
1(𝑥, 𝑦) = |𝑥 − 𝑐𝑥

2| + |𝑦 − 𝑐𝑦
2|. (5.54)

Likewise, for every cell (𝑥, 𝑦) ∈ 𝑅2, the distance to the centroid of 𝑅1 is

 𝐷𝑐
2(𝑥, 𝑦) = |𝑥 − 𝑐𝑥

1| + |𝑦 − 𝑐𝑦
1|. (5.55)

This is simply the Manhattan distance from the centroids of each region. The minimum

distance required to reach the region boundary from a cell (𝑥, 𝑦) ∈ 𝑅1 can be approximated

as

 𝑉𝑥𝑦
𝑑1 = 𝐷𝑐

1(𝑥, 𝑦) − min
(𝑢,𝑣)∈𝑅1

𝐷𝑐
1(𝑢, 𝑣). (5.56)

Likewise, for a cell (𝑥, 𝑦) ∈ 𝑅2,

 𝑉𝑥𝑦
𝑑2 = 𝐷𝑐

2(𝑥, 𝑦) − min
(𝑢,𝑣)∈𝑅2

𝐷𝑐
2(𝑢, 𝑣). (5.57)

These matrices can be reshaped into single column vectors that include only the distances

for the grid cells in each region. The distance cost matrix is then defined to approximate

202

the distance between all pairs of cells in the two regions. For a cell 𝑖 = (𝑥1, 𝑦1) ∈ 𝑅1 and

a cell 𝑗 = (𝑥2, 𝑦2) ∈ 𝑅2, the distance cost is defined as

 𝐶𝑖𝑗
𝑑 = 𝑉𝑥1𝑦1

𝑑1 + 𝑉𝑥2𝑦2
𝑑2 + 1, (5.58)

where 1 is added to account for the cost of crossing the boundary edge. If there are no walls

or obstacles to navigate around, then this is an accurate measure of the distance to a single

point on the region boundary. It becomes less accurate when the regions have irregular

shapes or when the shortest path between the regions is not a straight line. The region

distance feature and terrain-based features can be computed using these substitutions for

the 𝐶𝑑, 𝑉𝑑1, and 𝑉𝑑2 matrices.

Figure 5.14 shows this approximation approach applied to the example in Figure

5.3. The distances to each region centroid are shown in the top of each cell and the

estimated distances to the region boundary are shown in the bottom of each cell. Figure

5.15 shows the resulting cost matrices 𝑉𝑑1, 𝑉𝑑2, and 𝐶𝑑 for this example. Using the

approximated 𝐶𝑑 matrix with Equations 5.4-5.7, we compute an approximate fuzzy region

distance feature value of 𝑓𝑑(𝑒𝑅1𝑅2) = Tri(1, 5.38, 8). To compare, the original definition

was 𝑓𝑑(𝑒𝑅1𝑅2) = Tri(1, 5.03, 9). A comparison for all features is shown at the end of this

section in Table 5.2 and Table 5.3.

203

To get the approximations of the elevation difference features, we can use the

COMBINE_ELEVATION_COSTS function in Algorithm 5.15 with some substitutions for the

distance matrices. For the 𝑈𝑑1 and 𝑈𝑑2 matrices, we use 𝑉𝑑1 and 𝑉𝑑2 as computed above

Figure 5.14 Approximation of the region distances using the region centroids for the example in Figure 5.3.

The region centroids are marked with asterisks. The 𝐷𝑐
1 values (distance from the right centroid) are shown

in the top right of each cell. The 𝐷𝑐
2 values (distance from the left centroid) are shown in the top left of each

cell. The values in the bottom of each cell indicate the 𝑉𝑑1 and 𝑉𝑑2 values, which are the approximated

distances to the region boundary.

Figure 5.15 Approximation of the region distance cost matrices for the example in Figure 5.14.

204

using the region centroids. This implies only one boundary edge, so 𝑈bnd is computed as a

13 matrix of the minimum, mean, and maximum feature values over all boundary edges

between the two regions. The expeced aggregated elevation feature cost matrices 𝑈1 and

𝑈2 are approximated using the 𝑉𝑑1 and 𝑉𝑑2 matrices and any observed elevation values.

If a region is unobserved, the UNOBSERVED_ELEVATION_COST function from Algorithm

5.14 is used with the appropriate substitution of 𝑉𝑑1 or 𝑉𝑑2 for the 𝑈𝑑 matrix. For observed

regions, the most accurate cost measure requires a distance search with the

BELLMAN_FORD_GRID_DIST function from Algorithm 5.13, either from one (good) or all

(better) boundary edges. If just one boundary edge is used, it is prefereable to choose one

near the center of the region boundary. If all boundary edges are used, then the original

elevation feature definition from Algorithm 5.12 should be used. To avoid any iterative

distance search when computational resources are extremely limited, the following

procedure can be used to approximate the 𝑈1 and 𝑈2 matrices.

First, let 𝑉𝑖
𝑑 be the approximated distance to the region boundary of grid cell 𝑖.

Then, let 𝐸 be the set of all edges in a region where each edge 𝑒𝑖𝑗 ∈ 𝐸 represents the

transition from grid cell 𝑖 to 𝑗, and let 𝑓(𝑒𝑖𝑗) be the elevation feature cost of that edge.

Next, split the edge features into sets where set 𝑆𝑘 = {𝑓(𝑒𝑖𝑗)|𝑉𝑖
𝑑 < 𝑉𝑗

𝑑 = 𝑘}. Let 𝑈𝑖 be the

entry in the expeced aggregated elevation feature cost matrix 𝑈1 or 𝑈2 for grid cell 𝑖. When

using summation aggregation, define

 𝑈𝑖 =∑{
1

|𝑆𝑘|
∑ 𝑓(𝑒)

𝑓(𝑒)∈𝑆𝑘

}

𝑉𝑖
𝑑

𝑘=1

, (5.59)

205

and when using maximization aggregation, define

 𝑈𝑖 = max
𝑘=1,…,𝑉𝑖

𝑑
{ max
𝑓(𝑒)∈𝑆𝑘

𝑓(𝑒)}. (5.60)

This assigns the same cost value to each grid cell using the feature values of each edge set

up to the given distance value. For summation, the cost is the sum of the average feature

values in each edge set, and the cost is the overall maximum feature value in each edge set

for maximization. After defining 𝑈1 and 𝑈2, the elevation features can be computed using

the COMBINE_ELEVATION_COSTS function in Algorithm 5.15.

Figure 5.16 shows the edge sets used to approximate the elevation difference

features for the example in Figure 5.3. Using these feature sets, we compute the expeced

aggregated elevation feature cost matrices 𝑈1 and 𝑈2 for each feature type that needs to be

computed. For example, to compute the 𝑓ℎ_sum feature using the absolute elevation

difference and summation aggregation, we would assign the following values to each

element 𝑈(𝑘)
1 , where 𝑉𝑖

𝑑 = 𝑘:

• 𝑈(0)
1 = 0

• 𝑈(1)
1 = 0.2

• 𝑈(2)
1 = 0.2 +

1

2
(0.1 + 0.3) = 0.4

• 𝑈(3)
1 = 0.4 +

1

5
(0.3 + 0.2 + 0.4 + 0.2 + 0) = 0.62

• 𝑈(4)
1 = 0.62 +

1

5
(0.2 + 0.5 + 0.3 + 0.1 + 0.1) = 0.86

206

For elements 𝑈(𝑘)
2 in region 2, we compute

• 𝑈(0)
2 = 0

• 𝑈(1)
2 =

1

3
(0.1 + 0.5 + 0.1) = 0.233

• 𝑈(2)
2 = 0.23 +

1

5
(0.2 + 0.6 + 0.2 + 0.2 + 0.1) = 0.493

• 𝑈(3)
2 = 0.493 +

1

6
(0.3 + 0.2 + 0.4 + 0.2 + 0) = 0.627

The resulting 𝑈1 and 𝑈2 matrices are used in Algorithm 5.15 to compute an overall feature

value of 𝑓ℎ_sum = Tri(0.1, 1.46, 2.33). To compare, the original definition was 𝑓ℎ_sum =

Tri(0.1, 0.87, 2.1). Table 5.2 and Table 5.3 at the end of this section compare all the feature

values using the original and approximate definitions for observed and unobserved cases.

In the unobserved cases, we define the terrain type priors as 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) =

0.25.

Figure 5.16 Elevation feature edge sets used to approximate the elevation difference features for the example

in Figure 5.14. The numbers in the bottom corners of each cell show the approximate distances to the region

boundary. Only edges that increase in distance are used. The elevation values are shown for each cell, and

the feature sets are split based on the farthest distance of each edge. The sets 𝑆𝑘
1 and 𝑆𝑘

2 show the feature

values from regions 1 and 2 respectively with max distance 𝑘. The actual feature values depend on which

feature is being computed using one of the Equations 4.11-4.13.

𝑆1
1 = 𝑓 0, 0.2

𝑆2
1 =

𝑓 0.2, 0.3

𝑓 0.2, 0.5

207

All approximations result in some loss of accuracy, but these methods can be used

in many cases to reduce computation time. This can lead to significant time savings that

may allow for more analysis and planning to occur between updates. These approximations

work best when the regions are generally convex and have relatively smooth elevation

changes. When there are many sudden, unexpected elevation changes or when the region

boundary does not lie between the region centroids, the approximations become less

accurate.

Table 5.2 Original and approximate region features with both regions either observed or unobserved. For

unobserved cases, the terrain type priors are 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) = 0.25.

Both Regions Observed Both Regions Unobserved

Original Approximate Original Approximate

𝑓min 𝑓mean 𝑓max 𝑓min 𝑓mean 𝑓max 𝑓min 𝑓mean 𝑓max 𝑓min 𝑓mean 𝑓max

𝑓𝑑 1 5.03 9 1 5.38 8 1 5.03 9 1 5.38 8

𝑓𝑡(1) 0.5 2.5 4.5 0.5 3.05 4.5 0 3.70 9 0 4.03 8

𝑓𝑡(2) 0.5 2.17 4.5 0.5 2.33 3.5 0 1.12 9 0 1.34 8

𝑓𝑡{1,1} 0 2 4 0 2.55 4 0 3.52 9 0 3.85 8

𝑓𝑡{1,2} 1 1 1 1 1 1 0 0.38 1 0 0.38 1

𝑓𝑡{2,2} 0 1.67 4 0 1.83 3 0 1.00 9 0 1.16 8

𝑓𝑡〈1,1〉 0 2 4 0 2.55 4 0 3.52 9 0 3.85 8

𝑓𝑡〈1,2〉 1 1 1 1 1 1 0 0.19 1 0 0.19 1

𝑓𝑡〈2,1〉 0 0 0 0 0 0 0 0.19 1 0 0.19 1

𝑓𝑡〈2,2〉 0 1.67 4 0 1.83 3 0 1.00 9 0 1.16 8

𝑓ℎ_max 0.1 0.24 0.5 0.1 0.56 0.8 0 0.52 1 0 0.52 1

𝑓ℎ↑_max 0 0.20 0.5 0 0.50 0.8 0 0.35 1 0 0.35 1

𝑓ℎ↓_max 0 0.17 0.3 0 0.48 0.6 0 0.35 1 0 0.35 1

𝑓ℎ_sum 0.1 0.87 2.1 0.1 1.46 2.33 0 1.68 9 0 1.79 8

𝑓ℎ↑_sum 0 0.44 1.2 0 0.78 1.31 0 0.84 5 0 0.90 5

𝑓ℎ↓_sum 0 0.43 1.1 0 0.68 1.11 0 0.84 5 0 0.90 5

208

Table 5.3 Original and approximate region features with only one region observed. For unobserved cases,

the terrain type priors are 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) = 0.25.

Region 1 Observed; Region 2 Unobserved Region 1 Unobserved; Region 2 Observed

Original Approximate Original Approximate

𝑓min 𝑓mean 𝑓max 𝑓min 𝑓mean 𝑓max 𝑓min 𝑓mean 𝑓max 𝑓min 𝑓mean 𝑓max

𝑓𝑑 1 5.03 9 1 5.38 8 1 5.03 9 1 5.38 8

𝑓𝑡(1) 0.5 4.40 9 0.5 4.80 8 0 1.88 4.5 0 2.28 4.5

𝑓𝑡(2) 0 0.54 4.5 0 0.58 3.5 0.5 2.88 9 0.5 3.09 8

𝑓𝑡{1,1} 0 4.27 9 0 4.67 8 0 1.5 4 0 1.91 4

𝑓𝑡{1,2} 0 0.25 1 0 0.25 1 0 0.75 1 0 0.75 1

𝑓𝑡{2,2} 0 0.42 4 0 0.46 3 0 2.51 9 0 2.72 8

𝑓𝑡〈1,1〉 0 4.27 9 0 4.67 8 0 1.5 4 0 1.91 4

𝑓𝑡〈1,2〉 0 0.25 1 0 0.25 1 0 0.75 1 0 0.75 1

𝑓𝑡〈2,1〉 0 0 0 0 0 0 0 0 0 0 0 0

𝑓𝑡〈2,2〉 0 0.42 4 0 0.46 3 0 2.51 9 0 2.72 8

𝑓ℎ_max 0 0.48 1 0 0.48 1 0 0.45 1 0 0.57 1

𝑓ℎ↑_max 0 0.36 1 0 0.41 1 0 0.31 1 0 0.49 1

𝑓ℎ↓_max 0 0.28 1 0 0.35 1 0 0.29 1 0 0.48 1

𝑓ℎ_sum 0 1.38 5.7 0 1.56 4.86 0 1.28 5.4 0 1.57 5.47

𝑓ℎ↑_sum 0 0.70 3.2 0 0.71 3.12 0 0.65 3 0 0.90 3.19

𝑓ℎ↓_sum 0 0.69 3 0 0.85 3.24 0 0.64 2.8 0 0.67 2.87

5.5 Updating the Region Graph

Up to this point, the region graph 𝐺𝑅 has been defined for static problems where

the agent does not move. Section 5.1 gave the initial region boundaries and created the

graph structure. Sections 5.2 and 5.3 defined the fuzzy feature values for each graph edge,

and Section 5.4 provided a way to approximate these features quickly. These region

boundaries and features are valid until the agent moves. When the agent does move, new

parts of the environment may be discovered and the local region can change. These updates

209

need to be integrated into the existing region graph. Rather than recompute the entire region

graph from scratch after each agent movement, we utilize the existing region graph and

update only the parts of the graph that have changed, maintaining the existing graph

structure and features where possible. This drastically improves the runtime efficiency of

the algorithm by only changing portions of the region graph that have new information.

Consider an existing mental map structure ℳ and a new observation 𝒪 provided

by the environment server. Upon receiving the observation, the agent will update its current

position and the mental map grid layers using Algorithm 4.4. The updated mental map is

then passed to the UPDATE_MENTAL_MAP_REGIONS function in Algorithm 5.16 to update

the regions and the region graph. This function begins on line 1 by computing a new local

region from the agent's updated position using Algorithm 5.2. This is the same method

used to initialize the local region at the start of the simulation. However, since the agent

has just moved to a new location, the updated local region may have changed.

An additional option given is by opt.lrMemory that dictates whether the new local

region should replace or extend the existing local region in the mental map. If

opt.lrMemory is true, then the local region will continue to grow as the agent explores the

environment. This can be thought of as an agent that does not forget what it has learned

about the feature values of the action graph and can help to reduce ocilatory behavior.

Without this parameter setting, it becomes possible for the agent to wander back and forth

between two grid cells when the unique region graphs computed from each location

indicate that the best action is to move to the other cell. This will be explored further in

Section 6.6.

210

Algorithm 5.16 Update Mental Map Regions

UPDATE_MENTAL_MAP_REGIONS(ℳ, opt)

/* Get the new local region */

1: LR ← GET_LOCAL_REGION(ℳ, opt) // Algorithm 5.2

2: if opt.lrMemory

3: LR[ℳ.localRegion = 1] ← 1

/ * Determine the regions that need to be reclustered */

4: Q ← GET_REGION_CLUSTERING_MASK(ℳ, LR) // Algorithm 5.17

/* Create new region boundaries */

5: L ← CLUSTER_MENTAL_MAP_REGIONS(ℳ, LR, Q, opt) // Algorithm 5.3

/* Merge with existing regions */

6: L ← MERGE_REGION_LABELS(ℳ.𝐿, L, Q, LR) // Algorithm 5.18

/* Update the region graph */

7: 𝐺𝑅 ← UPDATE_REGION_GRAPH(ℳ, L) // Algorithm 5.19

/* Save the updated variables */

8: ℳ.L ← L

9: ℳ.localRegion ← LR

10: ℳ.𝐺𝑅 ← 𝐺𝑅

11: return ℳ

211

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 5.17 Step-by-step example of determining new regions. (a) Old regions before agent moves. (b) New

observation. (c) New local region. (d) Cells with new information. (e) Update mask before dilation. (f)

Update mask after dilation. (g) Removing walls and the new local region. (h) Old regions that need to be

reclustered. (i) New regions after clustering.

212

Figure 5.17 shows a step-by-step example of updating the region boundaries after

an agent moves. This is a continuation of the example in Figure 5.2. Subfigures (a) through

(c) show the definition of the new local region. (a) shows the old regions that were

computed at the initial agent location. (b) shows the new observation after the agent moves

one cell to the right. Grid cells that are no longer visible are darkened, whereas cells that

have never been observed are solid gray. (c) shows the new local region after the agent has

moved one grid cell to the right. The parameter opt.lrDist is set to 3, but notice that the

agent still cannot observe beyond one cell into the forest region directly to the north.

After determining the local region, the next step is to determine the set of cells that

need to be reclustered. The GET_REGION_CLUSTERING_MASK function is called on line 4

of Algorithm 5.16 and is defined in Algorithm 5.17. The function starts on lines 1-3 by

defining a mask U that identifies the cells that have just been observed. This is given by

the set ℳ.new, which was defined as part of Algorithm 4.4 and is shown in subfigure (d)

of Figure 5.17. These cells will need to be integrated into their adjacent regions, which may

affect where the region boundaries are drawn. Additionally, since the local region may

have changed, cells that have just been added to the local region will need to have their old

regions redrawn and cells that left the local region will need to be included in neighboring

regions. Line 4 of Algorithm 5.17 adds cells from the current and previous local region to

the mask U, which is shown in subfigure (e).

To identify the cells from the neighboring regions, the mask is dilated on line 5,

which is shown in subfigure (f). After dilation, line 6 removes from the mask any cells that

are known walls or are part of the new local region. The remaining cells are shown in

subfigure (g). These cells and their current regions will all need to be reclustered. Line 7

213

identifies K as the set of unique region labels in the updated mask. Finally, lines 8-10

construct the mask Q that will be used for clustering the regions. This mask consists of all

grid cells that are currently assigned one of the labels in K and are not part of the new local

region. Subfigure (h) shows the region clustering mask Q for the example with the old

region boundaries marked. The final regions obtained after re-clustering are shown in

subfigure (i).

Algorithm 5.17 Get the Region Clustering Mask

GET_REGION_CLUSTERING_MASK(ℳ, LR)

1: (n, m) ← ℳ.size

/* Get a mask of the cells that need to be updated */

2: U ← n  m grid initalized to 0

3: U [ℳ.new] ← 1

4: U [ℳ.localRegion = 1  LR = 1] ← 1

/* Dilate to include neighboring cells */

5: U' ← U  [0 1 0; 1 1 1; 0 1 0]

/* Remove cells that are walls and cells that are part of the new local region */

6: U' [ℳ.𝑊 = 0  LR = 1] ← 0

/* Get the labels of the regions that need to be reclustered */

7: K ← {k | k ∈ ℳ.𝐿[U' = 1]}

/* Construct a mask of all cells in the identified regions */

8: Q ← n  m grid initalized to 0

9: for each (i, j)  {(i, j) | ℳ.𝐿[i, j] ∈ K  LR[i, j] = 0}

10: Q[i, j] ← 1

11: return Q

214

Returning to Algorithm 5.16, we have now identified the local region LR and the

region clustering mask Q. The next step is to cluster the grid cells within the clustering

mask on line 5 using the CLUSTER_MENTAL_MAP_REGIONS function in Algorithm 5.3. As

opposed to the first time this function was called during the creation of the initial region

boundaries, the clustering mask Q now restricts where the new region labels are assigned

outside of the local region. Only cells within the new local region and the clustering mask

Q are assigned region labels greater than zero. These labels need to be merged with the

existing region labels in ℳ.𝐿. This is accomplished by the MERGE_REGION_LABELS

function on line 6, which is defined in Algorithm 5.18.

Algorithm 5.18 Merge Region Labels

MERGE_REGION_LABELS(U, L, Q, LR)

/* Remove old region labels that have been replaced */

1: S ← {(i, j) | Q[i, j] = 1  LR[i, j] = 1}

2: U[S] ← 0

/* Merge the old and new region labels */

3: L ← UPDATE_REGION_MAP(L, U) // Algorithm 5.4

/* Renumber regions */

4: K ← {k | ∃(i, j)(L[i, j] = k  k > 0)}

5: L' ← L

6: t ← 1

7: for each k  K

8: I ← {(i, j) | L[i, j] = k}

9: L' [I] ← t

10: t ← t + 1

11: return L'

215

The MERGE_REGION_LABELS function in Algorithm 5.18 takes a set of old region

labels U, a set of new region labels L, a clustering mask Q, and the current local region LR.

The first step in the algorithm is to eliminate old region labels that do not need to be

included in the new label map. Line 1 identifies the cells that belong to either the clustering

mask Q or the local region LR and line 2 sets these cells in U to zero. This allows us to use

the UPDATE_REGION_MAP function from Algorithm 5.4 to combine the two sets of region

labels (line 3). The combined region labels are likely not continuous, since some of the old

regions were removed. Lines 4-10 renumber these regions so that each region is assigned

a value between 1 and the total number of regions.

Once the new regions have been defined, the region graph itself can be updated.

Line 7 of Algorithm 5.16 calls the UPDATE_REGION_GRAPH function in Algorithm 5.19.

This function provides a high-level overview of the region graph update. First, the graph

vertices are reassigned on line 1 using Algorithm 5.20. Then the graph edges are updated

on line 2 using Algorithm 5.21. These functions use the existing region graph from the

mental map structure ℳ to avoid recomputing features that have not changed since the last

update. Once the new graph has been defined, it is saved and returned on lines 3-7 as 𝐺𝑅.

216

The UPDATE_REGION_GRAPH_VERTICES function in Algorithm 5.20 uses the

existing mental map structure ℳ and the new region label map L to construct a list of

vertices V and a lookup table B that maps new region indices to old region indices. The

function begins on line 1 by defining K as the number of regions in the new region map.

Lines 2 and 3 initialize the lookup table B and the vertex list V with K elements. Then the

algorithm loops on lines 4-16 for each region index k in K. Line 5 finds the grid cells in the

new region map L that have index k and saves these as the set S. Line 6 saves S as the

region cells of vertex V [k]. On line 7, we define T as the set of old region indices from

ℳ.𝐿 that are included in the set S. We examine each index t in T on lines 8-12. Line 9 gets

the set of cells from the old region map that have index t and saves these as the set U. If

the sets S and U are identical (line 10), then we save the index t to B[k] (line 11) and copy

the old vertex center from index t to the new vertex list at index k (line 12). The lookup

Algorithm 5.19 Update Region Graph

UPDATE_REGION_GRAPH(ℳ, L)

/* Create a lookup table between old and new regions and get vertices */

1: B, V ← UPDATE_REGION_GRAPH_VERTICES(ℳ, L) // Algorithm 5.20

/* Add edges for adjacent regions */

2: A, E ← UPDATE_REGION_GRAPH_EDGES(ℳ, L, B, V) // Algorithm 5.21

/* Save the graph structure */

3: 𝐺𝑅 ← empty graph structure

4: 𝐺𝑅 . 𝑉 ← V

5: 𝐺𝑅 . 𝐴 ← A

6: 𝐺𝑅 . 𝐸 ← E

7: return 𝐺𝑅

217

table B will contain the corresponding old region index for each new region index if there

is a matching region; otherwise it will be zero. Line 13 checks if B[k] = 0, which indicates

that there was no matching region. In this case, the region center needs to be recomputed

using Algorithm 3.9. Lines 14 and 15 prepare a grid R for the GET_REGION_CENTERS

function, which is called on line 16. The lookup table B and new vertex list V are returned

on line 17.

After creating the lookup table B and the new vertex list V, these variables are

passed to the UPDATE_REGION_GRAPH_EDGES function in Algorithm 5.21 along with the

current mental map structure ℳ and the new region label map L. This function also begins

on line 1 by defining K as the number of regions in L. Line 2 initializes the adjacency

Algorithm 5.20 Update Region Graph Vertices

UPDATE_REGION_GRAPH_VERTICES(ℳ, L)

1: K ← max(L)

2: B ← K-dimensional vector initialized to 0

3: V ← list of K uninitialized vertices

4: for k in 1 to K

5: S ← {(i, j) | L[i, j] = k} // Get cells with this new label

6: V [k].region ← S

7: T ← {ℳ.𝐿[i, j] | (i, j)  S} // Get all old labels assigned to these cells

8: for each t  T

9: U ← {(i, j) | ℳ.𝐿[i, j] = t} // Get cells with this old label

10: if S = U // New and old regions are identical

11: B[k] ← t

12: V [k].center ← ℳ.𝐺𝑅 . 𝑉[t].center

13: if B[k] = 0 // New region needs to be recomputed

14: R ← n  m grid initalized to 0

15: R[S] ← 1

16: V [k].center ← GET_REGION_CENTERS(R) // Algorithm 3.9

17: return B, V

218

matrix A as a K  K matrix set to all zeros and line 3 creates an empty edge list E. Line 4

starts the edge index counter at zero and lines 5-19 loop over each region index k in K. For

each index, lines 6 and 7 create a mask U of the grid cells in the region. Lines 8 and 9 get

the neighboring grid cells using image dilation and store the neighboring region labels as

the set N. Lines 10-19 loop over each neighboring region label n in N. An edge is created

for each neighbor between the vertices assigned to region indices k and n. For each

neighbor, the edge index i is incremented (line 11) and then stored in the adjacency matrix

at A[k][n] (line 12). We then use the lookup table B, to check if both regions already exist

in the region graph (line 13). If so, then line 14 gets the index of the existing edge using

the old adjacency matrix ℳ.𝐺𝑅 . 𝐴 and line 15 saves the features in the new edge list E. If

either region does not already exist in the old region graph, the features need to be

recomputed. Lines 17 and 18 prepare the region map R used to compute the region features

on line 19 using Algorithm 5.10. After evaluating all the neighbors for each region, the

final adjacency matrix A and edge list E are returned on line 20.

The UPDATE_REGION_GRAPH function in Algorithm 5.19 uses the vertex list

computed by the UPDATE_REGION_GRAPH_VERTICES function and the adjacency matrix

and edge list computed by the UPDATE_REGION_GRAPH_EDGES function to construct the

new region graph 𝐺𝑅 . This is returned to the UPDATE_MENTAL_MAP_REGIONS function on

line 7 of Algorithm 5.16. The updated region labels, local region, and region graph are all

saved to the mental map structure ℳ on lines 8-10 of Algorithm 5.16 and the new mental

map can then be used to plan future actions as will be discussed in the next chapter.

219

5.6 Summary

This chapter defined how an agent can represent the contents of its mental map as

a region graph. The region graph is a fuzzy weighted graph that represents the minimum,

maximum, and average feature values that an agent could expect to encounter when

moving between adjacent regions in the environment. The first step in creating the region

graph is to define the region boundaries. We start with a local region around the agent that

contains a copy of the action graph to ensure that the next immediate action chosen by the

agent corresponds to an edge in the region graph. Observed resources are also placed in

Algorithm 5.21 Update Region Graph Edges

UPDATE_REGION_GRAPH_EDGES(ℳ, L, B, V)

1: K ← max(L)

2: A ← K  K adjacency matrix initalized to 0

3: E ← empty list of edge features

4: i ← 0

5: for k in 1 to K

6: U ← n  m grid initalized to 0

7: U [V [k].region] ← 1

8: U' ← U  [0 1 0; 1 1 1; 0 1 0] // Dilate to get neighboring cells

9: N ← {l | l ∈ L[U' = 1]  l ≠ 0  l ≠ k}

10: for n in 1 to | N |

11: i ← i + 1

12: A[k][n] ← i

13: if B[k] > 0  B[n] > 0

14: t ← ℳ.𝐺𝑅 . 𝐴[B[k], B[n]] // Get index of existing edge

15: E [i] ← ℳ.𝐺𝑅 . 𝐸[t] // Save existing edge features

16: else

17: R ← U

18: R[V [n].region] ← 2

19: E [i] ← COMPUTE_REGION_FEATURES(ℳ, R) // Algorithm 5.10

20: return A, E

220

single-cell regions so that each vertex in the region graph will contain no more than one

resource. Observed terrain types and unobserved areas are clustered separately to make

sure that each region has only one type of terrain. The region graph is then constructed with

a vertex for each region and an edge connecting adjacent regions.

To compute the feature values, we begin by calculating the shortest path distance

between each pair of cells in two bordering regions. We presented an algorithm to compute

the distance matrices based on the distances within a region to each grid cell on the region

boundary. From these matrices, we can compute the distance and terrain-based features.

For the elevation features, we adapted the algorithm for non-uniform edge weights and

minimax paths. We derived an estimate of the elevation features for unobserved regions

using the expected feature values at different distances from the region boundary. A

method for approximating these features without computing the shortest path distances was

also presented.

Lastly, we looked at how the region graph is updated when the agent moves and

discovers new information. The local region is redefined and regions that border newly

observed grid cells are reclustered. Features between regions that have not changed are

copied into the new graph and new features are computed for the remaining edges. The

region graph provides the computational problem for the agent to solve each timestep in

the form of a least-cost path problem. The next chapter addresses how an agent can solve

these problems for a given set of objectives and decide a course of action.

221

6 LEAST-COST PATH PROBLEMS

This chapter shows how a fuzzy weighted graph, such as the region graph computed

in the previous chapter, can be used to solve least-cost path problems in gridded domains

and presents a greedy agent algorithm for solving these problems within the CMM

framework. We begin with a discussion on the issue of selection bias that can arise when

computing shortest paths in grid worlds. Next, we introduce the multiobjective fuzzy least-

cost path problem and present a method to solve it using a pre-scalarized decomposition

approach. This is then compared with an evolutionary method using MOEA/D. We show

several experiments to demonstrate these methods and conclude with a description of a

greedy algorithm that uses these techniques to solve generic problems in the CMM

framework.

6.1 Shortest Paths in Grid Worlds

The most straightforward pathfinding problem is to determine the shortest path

between two points in an environment. In the simplest case, where there are no obstacles

and the agent is permitted to travel freely in Euclidean space, the shortest path is just a

straight line. However, in grid-based environments, the agent can only move at right angles,

similar to how one navigates the grid layout of most city blocks. This geometry is

sometimes called a taxicab geometry, and the associated distance metric can be referred to

as the taxicab metric, city block distance, or Manhattan distance. Formally, the distance

222

𝑑1(𝑐𝑝, 𝑐𝑞) between two grid cells 𝑐𝑝 = 𝑐(𝑝𝑖, 𝑝𝑗) and 𝑐𝑞 = 𝑐(𝑞𝑖, 𝑞𝑗) is defined as the 𝐿1

norm,

 𝑑1(𝑐𝑝, 𝑐𝑞) = |𝑝𝑖 − 𝑞𝑖| + |𝑝𝑗 − 𝑞𝑗|. (6.1)

When two grid cells are not in the same row or column, there may be many paths between

the two cells that all have the same shortest distance. When the transition costs are all

identical, any path that has the minimum required number of horizontal and vertical steps

is a shortest path. If the two grid cells are far apart and diagonally separated, then the

number of equidistant paths can grow to be very large.

If all the shortest paths between two grid cells are otherwise equivalent1, they

should each have an equal likelihood of being selected by the agent. However, selection

bias can occur if the agent decides each step sequentially by randomly breaking ties

between cells with the same remaining distance to the goal. To see this, consider the 3x4

grid world shown in Figure 6.1 (a). There are 10 unique shortest paths between the grid

cells (1,1) and (3,4). The 𝐿1 distance from cell (3,4) is shown in subfigure (b). To select a

path, the agent starts at (1,1) and picks one of the adjacent cells with the smallest value.

Since there are two cells with a distance of 4, the agent picks one uniformly at random.

This process is repeated until the agent reaches the goal. Following this approach, the agent

has a (0.5)2 = 0.25 chance of passing through cell (3,1) and a (0.5)3 = 0.125 chance of

passing through cell (1,4) even though both cells only have a single path out of the 10

possible paths passing through them.

1 Even when all transitions have the same cost, a perceptive agent might notice that some paths have fewer

turns or some other desirable criteria. In the CMM framework, these preferences would be modeled as

additional objectives in addition to shortest distance, leading to a multiobjective problem in which the paths

are not considered identical.

223

This issue is known as the selection bias (or label bias) problem, and is commonly

addressed in the domain of conditional random fields (Lafferty, Mccallum, and Pereira

2001). A decision made early in the sequence can adversely affect the likelihood that

certain options will be available later. For example, once the agent reaches the cell (3,1),

Figure 6.1 Example of the selection bias problem for choosing paths in grid-world domains. (a) There are

10 unique shortest paths between grid cells (1,1) and (3,4). (b) The 𝐿1 distance is computed from (3,4). An

agent at (1,1) picks a (biased) shortest path by repeatedly picking an adjacent cell with the smallest remaining

distance, breaking ties uniformly at random. (c) The number of unique shortest paths leading to (3,4) is used

to compute the weighted probabilities for each cell transition. (d) The normalized transition probabilities.

224

there is only a single way to reach the goal in three steps, yet this path will be chosen 25%

of the time instead of 10%, which would better reflect the true likelihood of this path being

chosen out of the 10 total paths.

To resolve this issue, the options at each decision point can be weighted by the total

number of unique paths from each grid cell to the destination as shown in Figure 6.1 (c).

These values are calculated at the same time as the grid distance values for each cell using

the NORMALIZED_GRID_DISTANCE function in Algorithm 6.1. This function is similar to

the GRID_DISTANCE function in Algorithm 3.6, but includes an additional output N that

aggregates the number of unique paths from each grid cell to the target cell (i, j). This

matrix is initialized with zeros on line 3 and will be filled in along with the distance map

D as cells progressively farther from the target cell are examined. The algorithm sets the

distance counter d to 0 on line 4 and creates an open set on line 5 containing only the cell

(i, j). The main loop (lines 7-20) is evaluated for each distance d up to a maximum of dmax

while there are still cells in the open set. For each distance, a new frontier set is initialized

(line 8) and the current N matrix is copied as N' (line 9). Each cell (u, v) in the open set is

then examined (lines 10-18) and assigned the current distance value (line 11). The frontier

set is updated with all unprocessed neighboring cells (lines 12-14) and the number of

unique paths is calculated. For the first iteration, N [u, v] is set to 1 (lines 15 and 16), and

for later iterations, N [u, v] is set to the sum of the N' values of all neighboring cells (line

18). Since only the neighbors that were added in the previous iteration will have non-zero

values in N' at the time of calculation, their sum represents the total number of unique paths

to the target cell. It should be noted that this number can grow large very quickly if the grid

225

has large open spaces. For example, applying Algorithm 6.1 on a 100x100 open grid yields

2.3x1058 unique paths between the opposite corners!

Having computed the number of paths through each grid cell, the agent can use

these values to normalize the probability of selecting the next location. Rather than giving

equal weight to each option, the probability of transitioning from cell 𝑢 to cell 𝑣 is

computed as 𝑁(𝑣) 𝑁(𝑢)⁄ , where 𝑁(𝑢) is the number of paths passing through cell 𝑢 and

𝑁(𝑣) is the number of paths passing through cell 𝑣 as computed by Algorithm 6.1. These

transition probabilities are shown in Figure 6.1 (d).

Algorithm 6.1 Normalized Grid Distance

NORMALIZED_GRID_DISTANCE(W, i, j, dmax)

1: (n, m) ← size of W

2: D ← n  m matrix initalized to ∞

3: N ← n  m matrix initalized to 0

4: d ← 0

5: open ← {(i, j)}

6: closed ← ∅

7: while | open| > 0  d ≤ dmax

8: frontier ← ∅

9: N' ← N

10: for each (u, v)  open

11: D [u, v] ← d

12: closed ← closed ∪ (u, v)

13: B ← {(u−1, v), (u+1, v), (u, v−1), (u, v+1)}

14: frontier ← frontier ∪ {(u', v') | (u', v')  B  (u', v')  closed  W [u', v'] = 1}

15: if d = 0

16: N [u, v] ← 1

17: else

18: N [u, v] ← ∑ 𝑁′[𝑢′, 𝑣′](𝑢′,𝑣′)∈𝐵

19: open ← frontier

20: d ← d + 1

21: return D, N

226

 To demonstrate the effect of selection bias, consider the example in Figure 6.2.

Each of the subfigures shows 20 of the shortest paths sampled from the upper-left corner

to the lower-right corner of an open grid world. Subfigure (a) shows the paths produced by

using a uniform transition probability to select each subsequent grid cell. Notice how the

paths generally follow a 45° angle to the lower-right until reaching the bottom edge and

then follow the same path to the goal. With this selection strategy, the direction of the path

is clearly apparent as having originated in the upper-left and terminating in the lower-right.

It is very unlikely for a path to approach the lower-right corner from above with this

method. This contrasts with the paths sampled in subfigure (b), where the transition

probabilities are normalized using Algorithm 6.1. In this approach, the paths tend to lie on

the true diagonal between the two corners and the direction is symmetric.

Uniform Transition Probability Normalized Transition Probability

(a) (b)

Dijkstra’s Algorithm on Original Graph Dijkstra’s Algorithm with Noise

(c) (d)

Figure 6.2 Examples of shortest paths chosen between opposite corners of an open grid world. (a) Paths are

sampled by starting in the upper-left and selecting each transition step with uniform probability. (b) Paths

are sampled by starting in the upper-left and selecting each transition step according to the normalized

transition probabilities. (c) Dijkstra’s shortest path algorithm with a deterministic tie-breaking rule. (d)

Dijkstra’s shortest path algorithm on a graph with a small amount of uniform random noise applied to the

edge weights.

227

Clearly the normalized transition probabilities lead to a better sampling of the true

set of shortest paths without selection bias. In practice, however, we may wish to use an

existing implementation of Dijkstra’s algorithm to compute the shortest path between two

points1. This is especially true when the environment is represented as a graph rather than

a grid. Most implementations of Dijkstra’s algorithm will return only a single path from a

vertex to the source, if a path is returned at all. (Some implementations return only the

shortest path distances from which a path can be constructed by backtracking.) Figure 6.2

(c) shows the single path returned by the Matlab implementation of Dijkstra’s algorithm

when computing the shortest path between the opposite corners of an open world grid. The

path is constructed using a deterministic rule based on the lexicographic ordering of the

graph vertices and is not very representative of the distribution of all shortest paths. The

returned path can be improved by adding a small amount of uniform random noise2 to each

edge weight before computing the shortest path distances. This makes it highly unlikely

for any two paths to have the same distance, resulting in a single shortest path returned by

the algorithm. A sample of these paths are shown in Figure 6.2 (d), where each path is

found using different noise values. Notice that the path distribution closely matches the

ideal distribution in Figure 6.2 (b). This approach of adding a small amount of random

noise when computing shortest paths is used throughout our experiments with the CMM

framework to produce more natural looking paths when path length is otherwise equivalent.

1 Efficient implementations of Dijkstra’s algorithm will utilize a priority queue data structure such as a

Fibonacci heap and can make other domain-specific optimizations.

2 The noise values should be much smaller than the default edge weights, otherwise the shortest path

algorithm may return a longer path than the true shortest path distance. Unless otherwise stated, we sample

noise values from a uniform random distribution on the interval (0, 10-14).

228

6.2 The Multiobjective Fuzzy Least-Cost Path Problem

The fundamental component of any pathfinding algorithm in the CMM framework

is to find a least-cost path between two locations. This can be modeled as a multiobjective

fuzzy least-cost path problem (MO-FLCPP) between two vertices in the region graph

defined in Chapter 5. The region graph 𝐺𝑅 is a fuzzy weighted graph in which vertices

represent regions in the environment and edges between adjacent regions are weighted with

multiple fuzzy feature values indicating the minimum, maximum, and average costs

associated with traversing each edge. The set 𝑃(𝑠, 𝑡) includes all paths from vertex 𝑠 to

vertex 𝑡 through the graph. The goal of the MO-FLCPP is to find a path 𝑝 ∈ 𝑃(𝑠, 𝑡) that

minimizes the aggregated cost vector 𝑨(𝑝) = (𝐴1(𝑝),… , 𝐴𝑚(𝑝)), where each component

𝐴𝑖(𝑝) represents the aggregated cost of feature 𝑖 along path 𝑝. The agent specifies an

indicator vector 𝜸 = (𝛾1, … , 𝛾𝑚), where 𝛾𝑖 = 0 if feature 𝑖 should be aggregated by

summation and 𝛾𝑖 = 1 if feature 𝑖 should be aggregated using maximization. Recall from

Section 2.4 that the aggregated value of feature 𝑖 is defined as

 𝐴𝑖(𝑝) = {
∑ 𝐹𝑖(𝑒𝑗)

𝑛

𝑗=1
, 𝛾𝑖 = 0

max′
𝑗=1,…,𝑛

𝐹𝑖(𝑒𝑗) , 𝛾𝑖 = 1

,

 (6.2)

where 𝐹𝑖(𝑒𝑗) is a triangular fuzzy number Tri(𝑎𝑖𝑗, 𝑏𝑖𝑗 , 𝑐𝑖𝑗) that represents the cost of feature

𝑖 for edge 𝑗 in the path 𝑝 = (𝑒1, … , 𝑒𝑛). The max′ operator approximates the maximum of

a set of triangular fuzzy numbers as a triangular fuzzy number and is defined in Equation

2.11. We can find a path that solves the MO-FLCPP using multiobjective optimization

techniques.

229

6.2.1 Multiobjective Optimization for the MO-FLCPP

In the jargon of multiobjective optimization from Section 2.5, the MO-FLCPP is

defined as

minimize 𝑨(𝑝) = (𝐴1(𝑝), … , 𝐴𝑚(𝑝))

subject to 𝑝 ∈ 𝑃(𝑠, 𝑡),

where 𝑚 ≥ 2. If 𝑚 = 1, then there is only a single objective and the least-cost path can be

found using a standard implementation of Dijkstra's algorithm. When there are multiple

conflicting objectives, the minimum value of one objective cannot be obtained without

some tradeoff in the other objectives. Nevertheless, some solutions (paths) are clearly

better than others. We say that a path 𝑝 dominates path 𝑝′ (𝑝 ≺ 𝑝′) if and only if

𝐴𝑖(𝑝) ≤ 𝐴𝑖(𝑝
′) for all 𝑖 = 1, … ,𝑚 and there exists a 𝑗 ∈ {1, … ,𝑚} such that

𝐴𝑗(𝑝) < 𝐴𝑗(𝑝
′). A path that dominates another path is at least as good as the other path in

all objectives and is better in at least one objective. A path that is not dominated by any

other known solution is said to be Pareto optimal. Formally, the Pareto optimal set 𝑃𝑆 is

defined as

 𝑃𝑆 = {𝑝 ∈ 𝑃(𝑠, 𝑡) | {𝑝′ ∈ 𝑃(𝑠, 𝑡) | 𝑝′ ≺ 𝑝} = ∅}. (6.3)

The multiobjective cost vectors of the paths in 𝑃𝑆 define the Pareto front,

 𝑃𝐹 = {𝑨(𝑝) | 𝑝 ∈ 𝑃𝑆}. (6.4)

The native units of each objective may be incomparable, making it difficult to assess

the relative value of each solution. To make the comparison between solutions meaningful,

the original cost vectors are normalized into a unit hypercube. This ensures that each

objective is treated equally. For instance, if the distance cost is measured in meters and the

slope cost is measured as a percentage of some reference angle, the magnitudes of these

230

two dimensions should be normalized before being compared. To normalize the vectors,

the minimum value of each objective is defined as zero and the maximum value is defined

by the reference point 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗). Determining the optimal value of 𝒛∗ is not a trivial

task and the value that is chosen can greatly affect the resulting decision. Ideally, 𝒛∗ should

be the nadir vector of the Pareto front, in which each 𝑧𝑖
∗ is defined as

 𝑧𝑖
∗ = max

𝑝∈𝑃𝑆′
𝑐𝑖𝑝, (6.5)

where 𝐴𝑖(𝑝) = Tri(𝑎𝑖𝑝, 𝑏𝑖𝑝, 𝑐𝑖𝑝). Here, 𝑃𝑆′ is the current best approximation of the Pareto

optimal set since the true set may be unknown. The normalized cost vectors are then

computed as 𝑨′(𝑝) = (𝐴1
′ (𝑝),… , 𝐴𝑚

′ (𝑝)), where

 𝐴𝑖
′(𝑝) = Tri (

𝑎𝑖𝑝

𝑧𝑖
∗ ,
𝑏𝑖𝑝

𝑧𝑖
∗ ,
𝑐𝑖𝑝

𝑧𝑖
∗) (6.6)

for each 𝑖 = 1,… ,𝑚.

6.2.2 Scalarization

All solutions that are members of the Pareto optimal set would be rational choices

for the decision-maker. However, the agent must ultimately choose a single path to follow.

Typically, this decision is made using a scalarization function that reduces the

multiobjective optimization problem into a single objective optimization problem. Given a

multidimensional fuzzy cost vector 𝑿 = (𝑋1, … , 𝑋𝑚) where each 𝑋𝑖 is a fuzzy number, and

an objective weight vector 𝝀 = (𝜆1, … , 𝜆𝑚) where 𝜆𝑖 ≥ 0 and ∑ 𝜆𝑖𝑖 = 1 for 𝑖 = 1,… ,𝑚,

the scalarization function 𝑔(𝑿|𝝀) reduces the cost vector 𝑿 to a single fuzzy number. This

231

value can then be used to rank and compare various alternatives, with smaller values being

preferred. The scalarized MO-FLCPP is defined as

minimize 𝑔(𝑨′(𝑝)|𝝀)

subject to 𝑝 ∈ 𝑃(𝑠, 𝑡).

The path 𝑝 that minimizes the scalarized value of the normalized aggregated cost vector

𝑨′(𝑝) is chosen as the preferred solution. The objective weight vector 𝝀 represents the

relative importance of each objective to the decision-maker, with more important

objectives receiving higher weights. We consider three different scalarization functions:

weighted sum, Tchebycheff, and ordered weighted average.

One of the most common scalarization methods is the weighted sum, which

maintains a linear relationship between the decision-maker’s preferences and the scalarized

cost value. This is defined as

 𝑔ws(𝑿|𝝀) =∑𝜆𝑖𝑋𝑖

𝑚

𝑖=1

, (6.7)

where the multiplication of a scalar 𝜆 and a triangular fuzzy number Tri(𝑎, 𝑏, 𝑐) is defined

as Tri(𝜆𝑎, 𝜆𝑏, 𝜆𝑐). If the shape of the Pareto front is convex, then the weighted sum can be

a good choice because every Pareto optimal solution can be made to have the lowest

scalarized cost by changing the objective weight vector. However, if the shape of the Pareto

front is non-convex, then there will always be some Pareto optimal solution that can never

be chosen. For more details, refer to Section 2.5.5.

A simple alternative to the weighted sum approach is the Tchebycheff method, which

can be parameterized with different objective weight vectors to make any Pareto optimal

232

solution have the lowest scalarized cost. The Tchebycheff scalarization function is defined

as

 𝑔te(𝑿|𝝀) = max′
𝑖=1,…,𝑚

𝜆𝑖𝑋𝑖. (6.8)

This method evaluates the quality of a solution as the least satisfied weighted objective

value. A single high cost for one objective can penalize an otherwise good solution.

The last scalarization approach we consider is based on the ordered weighted average

operator (OWA) proposed by Yager (Yager 1988). This method requires the definition of

an additional scalar weight vector 𝜽 = (𝜃1, … , 𝜃𝑚) where 𝜃𝑖 ≥ 0 and ∑ 𝜃𝑖𝑖 = 1 for

𝑖 = 1, … ,𝑚. Each 𝜃𝑖 represents the weighted contribution of the 𝑖th largest scaled vector

component. First, the cost vector 𝑿 is scaled by the objective weight vector 𝜆 to give the

scaled cost vector 𝒀 = (𝑌1, … , 𝑌𝑚), where 𝑌𝑖 = 𝜆𝑖𝑋𝑖 = Tri(𝑎𝑖
𝑌, 𝑏𝑖

𝑌, 𝑐𝑖
𝑌) for 𝑖 = 1, … ,𝑚.

Next, we independently sort all the 𝑎𝑖
𝑌, 𝑏𝑖

𝑌, and 𝑐𝑖
𝑌 values and define the lists

(𝑎(1)
𝑌 , … , 𝑎(𝑚)

𝑌), (𝑏(1)
𝑌 , … , 𝑏(𝑚)

𝑌), and (𝑐(1)
𝑌 , … , 𝑐(𝑚)

𝑌), where 𝑎(𝑖)
𝑌 , 𝑏(𝑖)

𝑌 , and 𝑐(𝑖)
𝑌 , are the 𝑖th

largest values in their respective lists. Once this is done, the OWA scalarization function

is defined as

 𝑔OWA(𝑿|𝝀, 𝜽) =∑𝜃𝑖Tri(𝑎(𝑖)
𝑌 , 𝑏(𝑖)

𝑌 , 𝑐(𝑖)
𝑌)

𝑚

𝑖=1

. (6.9)

The OWA scalarization method can be made to represent many different functions by

changing the weight vector 𝜽. For instance, the OWA operator behaves as the weighted

sum when 𝜃𝑖 =
1

𝑚
 for all 𝑖 = 1,… ,𝑚. (Although the ordering of solutions in this case is

the same as the weighted sum, the actual values may be different due to the additional

scaling.) The Tchebycheff method is equivalent to setting 𝜃1 = 1 and 𝜃𝑖 = 0 for all 𝑖 ≠ 1.

233

We can implement a form of bounded rationality (Simon 1955) for the decision-maker by

defining a weight vector of the form 𝜃𝑖 =
1

𝑞
 for 𝑖 = 1,… , 𝑞 and 𝜃𝑖 = 0 for all 𝑖 > 𝑞. This

represents the case where the decision-maker does not have the necessary computational

resources to consider all objectives simultaneously and bases the decision on only the 𝑞

least satisfied objective values. Typically, 𝜽 is fixed for a given decision-maker, so for

notational conciseness, we omit the 𝜽 parameter of the OWA scalarization function when

referring to a general scalarization function.

We use one of these scalarization functions 𝑔(𝑿|𝝀) to reduce the fuzzy cost vector 𝑿,

representing a possible solution to the MO-FLCPP, to a single fuzzy value 𝑆(𝑿). To

compare different solutions, the decision-maker uses the weighted centroid approach

(Section 2.4.2) to defuzzify each alternative and ranks the resulting crisp values, favoring

solutions with smaller values. The weighted centroid method allows the decision-maker to

specify a degree of optimism or pessimism, given as the parameter 𝜉 ∈ [0, 1]. When 𝜉 = 0,

the decision-maker is extremely optimistic and uses the smallest possible value, whereas

when 𝜉 = 1, the decision-maker is extremely pessimistic and uses the largest possible

value. A value of 𝜉 = 0.5 provides a balanced approach using the centroid of the fuzzy

number. The crisp defuzzified value is computed as 𝐶(𝑆(𝑿)|𝜉) using Equation 2.14.

6.2.3 Example

To demonstrate the MO-FLCPP, consider the example graph in Figure 6.3. This

graph has two features assigned to each edge representing distance and slope. The features

come from different unrelated domains and are represented as linguistic variables defined

234

by the triangular fuzzy numbers in Figure 6.4. One can imagine that this graph represents

an environment with a tall hill at vertex 3 and various ways of navigating over or around

the hill to get from vertex 1 to vertex 5. The multiobjective cost function consists of a

distance feature and a slope feature, where the decision-maker seeks to find a path with the

shortest total distance and the smallest maximum slope. In this case, the distance feature is

aggregated using summation, whereas the slope feature uses maximization. There are five

unique paths between vertices 1 and 5 in the example graph. The aggregated feature values

of the paths are given in Table 6.1 and are plotted in Figure 6.5. All paths except the yellow

path (1-3-4-5) are members of the Pareto optimal set. The yellow path is dominated by

both the red (1-3-5) and green (1-2-3-5) paths.

Figure 6.3 An example fuzzy weighted graph with two features per edge, distance and slope, represented as

triangular fuzzy numbers given in Figure 6.4. There are five unique paths between the vertices 1 and 5

colored red, yellow, green, blue, and purple.

235

Table 6.1 Aggregated feature values of the example graph in Figure 6.3

Path Color Total Distance Max Slope

1-3-5 Red Tri(1, 3, 10) Tri(0.6, 1, 1)

1-3-4-5 Yellow Tri(6, 16, 22) Tri(0.6, 1, 1)

1-2-3-5 Green Tri(5, 14, 21) Tri(0.3, 0.6, 0.9)

1-2-3-4-5 Blue Tri(10, 27, 33) Tri(0.1, 0.2, 0.4)

1-2-4-5 Purple Tri(11, 21, 25) Tri(0, 0, 0.3)

Figure 6.4 Triangular fuzzy numbers used to represent the distance and slope features for the example graph

in Figure 6.3.

236

Since there are only five paths to consider, the Pareto optimal set can be determined

directly and the reference point is evaluated as the nadir vector 𝒛∗ = (33, 1), as these are

the largest possible values of the aggregated distance and slope features. Figure 6.6 shows

each of the normalized cost vectors after applying weighted centroid defuzzification to

each feature. (We typically wait until after scalarizing the cost vectors to apply

defuzzification, but this example helps show the process.) The black dotted lines show the

location of the Pareto front for different values of 𝜉. From this we can see that the yellow

path is always dominated, whereas the blue path (1-2-3-4-5) is dominated by the purple

path (1-2-4-5) when 𝜉 = 0.5 and 𝜉 = 1. The blue path is only Pareto optimal when the

decision-maker is very optimistic (i.e. expects the true cost of each path segment to be

small).

Figure 6.5 Plots of the two-dimensional aggregated fuzzy cost vectors for each path in the example graph

from Figure 6.3.

237

To demonstrate the scalarization process, consider three different decision-makers that

must choose a solution for this example problem. The first uses the weighted sum

scalarization method with 𝝀 = (0.5, 0.5) and 𝜉 = 0.5. Applying 𝑔ws to each of the

aggregated fuzzy path cost vectors in Table 6.1 gives the fuzzy values shown in Figure

6.7 (a). The weighted centroid of each path is shown with a circle and a vertical line. The

decision-maker chooses the path with the smallest defuzzified cost, which is the purple

path. A different decision-maker using the Tchebycheff method with 𝝀 = (0.25, 0.75) and

𝜉 = 0 computes the values shown in Figure 6.7 (b). This is one of the few conditions where

the blue path is evaluated as the lowest cost option. The last decision-maker shown in

Figure 6.7 (c) uses the OWA scalarization method with 𝝀 = (0.9, 0.1), 𝜽 = (0.7, 0.3) and

Figure 6.6 The aggregated fuzzy cost vectors from Figure 6.5 are normalized using the nadir vector and

defuzzified using weighted centroid defuzzification. The black dotted lines show the Pareto fronts for

different values of 𝜉.

238

𝜉 = 1. This represents extreme pessimism with a strong bias towards minimizing the

distance feature, which results in giving the red path the lowest cost.

6.3 Decomposition of the MO-FLCPP

In the previous section, we assumed that the candidate paths to be evaluated have

already been provided or are straightforward to determine, but in larger problems such as

those generated by the CMM framework, this may not be the case. If a decision-maker can

express their preferences a priori, then we can scalarize the MO-FLCPP into a single-

objective shortest path problem (SPP) that can be solved directly using Dijkstra’s algorithm

(Dijkstra 1959). However, this may not find the same ideal solution that would be obtained

(a)

(b)

(c)

Figure 6.7 Examples of different scalarization methods applied to the aggregated fuzzy cost vectors given

in Table 6.1. Each method represents a decision-maker with different preferences. The scalarized fuzzy

numbers shown in the plots are defuzzified (shown as a circle and vertical line) and the decision-maker

chooses the path with the lowest defuzzified cost.

239

if the same preferences were to be applied to all possible paths using the multiobjective

approach presented in the previous section. Nevertheless, it can still be useful to decompose

a multiobjective problem into many simpler single-objective problems that are easier to

solve. These can be used to construct initial candidate solutions and may be sufficient for

some applications.

6.3.1 Edge Normalization

Each subproblem in the decomposition is defined by a unique objective weight

vector 𝝀. In addition, the following parameters are required to specify how the edge costs

of the SPP should be computed:

• 𝑔: a scalarization function (either 𝑔ws, 𝑔te, or 𝑔OWA);

• 𝒛∗: a reference point for normalizing the edge features;

• 𝜸: an aggregation indicator vector;

• 𝜉: a defuzzification parameter;

• 𝜽: an OWA weight vector if using 𝑔OWA.

Except for the reference point 𝒛∗, these parameters are defined by the decision-maker

a priori. If 𝒛∗ is not clear from the problem context, it will need to be estimated from the

cost vectors of the graph edges.

Given a MO-FLCPP defined between two vertices 𝑠 and 𝑡 in a graph 𝐺, the feasible

region of the decision space is defined as all paths in the set 𝑃(𝑠, 𝑡). The cost vectors 𝑨(𝑝)

are normalized after aggregating the individual edge costs 𝑭(𝑒) for each edge 𝑒 in a path

𝑝 ∈ 𝑃(𝑠, 𝑡). However, to decompose the problem as a SPP, each edge must be scalarized

to a single value before aggregating. Since the nadir vector of the Pareto front is unknown

240

beforehand, we use the maximum values of each objective feature over all edges to define

𝒛∗. Each value of 𝑧𝑖
∗ is then defined as

 𝑧𝑖
∗ = max

𝑒∈𝐸(𝐺)
𝑐𝑖𝑒 , (6.10)

where the value of feature 𝑖 for edge 𝑒 is given as 𝐹𝑖(𝑒) = Tri(𝑎𝑖𝑒, 𝑏𝑖𝑒 , 𝑐𝑖𝑒). The normalized

edge costs are computed as 𝑭′(𝑒) = (𝐹1
′(𝑒),… , 𝐹𝑚

′ (𝑒)), where

 𝐹𝑖
′(𝑒) = Tri (

𝑎𝑖𝑒
𝑧𝑖
∗ ,
𝑏𝑖𝑒
𝑧𝑖
∗ ,
𝑐𝑖𝑒
𝑧𝑖
∗) (6.11)

for each 𝑖 = 1,… ,𝑚. Note that this method can cause summation objectives (𝛾𝑖 = 0) to

become greater than one when aggregated over an entire path. This is not a great concern

for the decomposed problem, since length of a path in the SPP just needs to be proportional

to the aggregated cost of that path in the MO-FLCPP. Still, the difference between the

value of 𝒛∗ that is found by Equation 6.10 and the value found by Equation 6.5, which was

based on the objective values in the Pareto front, can change which path is found as the

optimal solution. For the example problem in Section 6.2.3, 𝒛∗ would be computed as

(10, 1) using max-edge normalization, as opposed to the nadir vector of (33, 1). In

general, the reference point should be defined as the nadir vector of the Pareto front when

possible and the max-edge normalization should only be used to create initial solutions.

6.3.2 Exponential Scaling

When scalarization is performed after the path costs have already been aggregated, the

scalarization function can ignore which aggregation operator was used for each objective.

However, the SPP only uses total path length as the objective to minimize. To decompose

the problem, the edge costs need to be scalarized so that maximization objectives (𝛾𝑖 = 1)

241

can be summed. While there is no perfect encoding that can achieve this, a sufficiently

good approximation can be found using exponential scaling.

Consider a crisp single-objective minimax path problem where the goal is to find a

path 𝑝 that minimizes the maximum value of each edge 𝑒 ∈ 𝑝. The total cost of the path is

defined as

 𝐴(𝑝) = max
𝑒∈𝑝

𝐹′(𝑒), (6.12)

where 𝐹′(𝑒) ∈ [0, 1] is the normalized crisp scalar cost of edge 𝑒. The purpose of

exponential scaling is to adjust the individual edge costs so that only the largest (maximum)

values have any significant contribution when the costs are summed over the length of a

path. Each edge cost 𝑥 is scaled exponentially as

 ℎ(𝑥) =
exp(− 𝑙𝑜𝑔(𝜀) (𝑥 − 1)) − 𝜀

1 − 𝜀
, (6.13)

where 𝜀 is a small positive number (≪ 1) that defines the amount of scaling. The effect of

this scaling is shown in Figure 6.8, where smaller values of 𝑥 are pushed closer to zero and

larger values are distributed across a wider output range. If the edge costs are fuzzy values,

then exponential scaling is applied using the extension principle,

 ℎ(Tri(𝑎, 𝑏, 𝑐)) = Tri(ℎ(𝑎), ℎ(𝑏), ℎ(𝑐)). (6.14)

The resulting edge costs can then be defuzzified to crisp values using the weighted centroid

method and a defuzzification parameter 𝜉. A shortest path algorithm (i.e. Dijkstra) will find

a path that minimizes the sum of all ℎ(𝑥) values, which is an approximation of the minimax

path. Smaller values of the scaling parameter 𝜀 give better approximations, but care should

242

be taken to avoid numerical underflow. We set 𝜀 = 10−12 in our experiments with the

CMM framework.

When there are multiple objectives, the scalarization function is applied to each edge

before running a shortest path algorithm. If both summation and maximization aggregation

operators are used, the objective weight vector 𝝀 needs to be adjusted to account for the

exponential scaling of the maximized edge costs. Let 𝜂 = ∑ 𝜆𝑖(1 − 𝛾𝑖)
𝑚
𝑖=1 be the fraction

of the original objective weight vector that represents summation objectives. Instead of

scaling the cost values associated with these objectives, we scale the objective weights

Figure 6.8 Exponential scaling of a normalized edge cost 𝑥. The resulting ℎ(𝑥) values can be used to find

an approximate minimax path via summation.

243

using the same function given in Equation 6.13. A new scaled objective weight vector

𝝀′ = (𝜆1
′ , … , 𝜆𝑚

′) is defined where

 𝜆𝑖
′ =

{

 ℎ(𝜂)𝜆𝑖

𝜂
, 𝛾𝑖 = 0

(1 − ℎ(𝜂))𝜆𝑖
1 − 𝜂

, 𝛾𝑖 = 1 .

 (6.15)

This effectively redistributes the objective weights so that summation objectives are given

exponentially smaller weights to compensate for the exponentially smaller maximization

cost values.

6.3.3 Pre-scalarized Decomposition

Once the edge features of a fuzzy weighted graph have been scalarized and

defuzzified into non-negative crisp values, any shortest path algorithm can be used to find

an approximate solution to the MO-FLCPP. Algorithm 6.2 gives an overview of the pre-

scalarized decomposition approach for solving the MO-FLCPP as a shortest path problem.

244

The pre-scalarized decomposition method can be used to find solutions to the example

problem from Section 6.2.3 with various decision-maker preferences. Table 6.2 shows the

best paths found using this approach and compares them to those found using the post-

aggregation scalarization method over all paths as in Section 6.2. The columns labeled 𝑝D

indicate which path has the lowest cost after pre-scalarizing each edge. This method uses

max-edge normalization to compute 𝒛∗ using Equation 6.10. The columns labeled 𝑝M and

Algorithm 6.2 Pre-scalarized Decomposition of the MO-FLCPP

Input:

• MO-FLCPP

• 𝑔: a scalarization function (either 𝑔ws, 𝑔te, or 𝑔OWA)

• 𝝀: an objective weight vector

• 𝜸: an aggregation indicator vector

• 𝜉: a defuzzification parameter

• 𝜽: an OWA weight vector if using 𝑔OWA

Step 1) Get reference point: Compute 𝒛∗ from Equation 6.10

Step 2) Compute edge costs:

For each edge 𝑒 ∈ 𝐸(𝐺), do

Step 2.1) Normalize: Get 𝑭′(𝑒) from Equation 6.11.

Step 2.2) Apply exponential scaling:

Step 2.2.1) For all 𝑖 where 𝛾𝑖 = 1, set 𝐹𝑖
′(𝑒) = ℎ(𝐹𝑖

′(𝑒))

Step 2.2.2) Get 𝝀′ from Equation 6.15.

Step 2.3) Scalarize: Compute 𝑆(𝑒) = 𝑔(𝑭′(𝑒)|𝝀′).

Step 2.4) Defuzzify: Set the edge cost as 𝐶(𝑆(𝑒)|𝜉).

Step 3) Find the shortest path: Use Dijkstra’s algorithm to find the shortest path

𝑝 ∈ 𝑃(𝑠, 𝑡) using the computed edge costs.

Output: A path 𝑝 that approximates the ideal path that minimizes the scalarized

MO-FLCPP objective function, 𝑔(𝑨′(𝑝)|𝝀).

245

𝑝∗ show the paths that minimize the post-aggregation scalarized cost, where 𝑝M uses max-

edge normalization to compute 𝒛∗ and 𝑝∗ uses the known nadir vector. Comparing 𝑝D with

𝑝M shows how well exponential scaling applied to each edge can approximate the true cost

of a path, whereas the difference between 𝑝M and 𝑝∗ shows the effect of choosing the

appropriate reference point. If we assume that 𝑝∗ represents the ideal path chosen with the

best possible information (knowledge of the true Pareto front), then it is clear that the pre-

scalarized decomposition approach does not always find the ideal path. We also note that

the weighted sum scalarization approach only finds the red and purple paths in the ideal

case (the endpoints of the Pareto front), whereas the Tchebycheff method is able to find

other non-dominated paths.

246

Table 6.2 Best paths found in the example graph in Figure 6.3 using various methods. 𝑝D is the path found

using pre-scalarized decomposition. 𝑝M and 𝑝∗ are the best paths found using post-aggregation

scalarization, where 𝑝M uses max-edge normalization and 𝑝∗ uses the nadir vector to normalize. Paths are

notated with the first letter of their color.

 Weighted Sum Tchebycheff

𝜉 𝝀 𝑝D 𝑝M 𝑝∗ 𝑝D 𝑝M 𝑝∗

0 (0, 1) P P P P P P

 (0.25, 0.75) B P P B G B

 (0.5, 0.5) G R P G G G

 (0.75, 0.25) R R R R R G

 (1, 0) R R R R R R

0.5 (0, 1) P P P P P P

 (0.25, 0.75) P P P P G P

 (0.5, 0.5) P R P P R P

 (0.75, 0.25) P R R P R R

 (1, 0) R R R R R R

1 (0, 1) P P P P P P

 (0.25, 0.75) P P P P P P

 (0.5, 0.5) P R P P R P

 (0.75, 0.25) P R R P R R

 (1, 0) R R R R R R

By scalarizing the multidimensional edge costs before aggregating all the costs in a

path, the edges are evaluated in isolation, independent of their contributions to complete

paths. If only the summation aggregation method is used and the scalarization function is

the weighted sum, then the problem is linear and the cost of a full path can be represented

exactly as the sum of the scalarized edge costs. However, in the non-linear case, some

approximation is required. While the pre-scalarized decomposition approach can provide

some initial candidate solution for a given objective weight vector, this solution can often

be improved by conducting a more thorough search using the MOEA discussed in the next

section.

247

6.4 MOEA/D for the MO-FLCPP

Each decomposition of the MO-FLCPP can only find a single solution based on the

predefined parameters of the scalarization method. To gain a better understanding of the

tradeoffs between the various objectives, we can search for an approximation of the Pareto

optimal set of solutions. Multiobjective evolutionary algorithms (MOEAs) are well-suited

for this task, since they maintain a population of solutions that can approximate the true

Pareto optimal set. Rather than search for a single optimal solution, MOEAs use diversity

preserving techniques to keep the population distributed along the Pareto front. In the

CMM framework, we use decomposition as the primary way of maintaining population

diversity using the MOEA/D algorithm (Qingfu Zhang and Hui Li 2007). This approach

uses a set of many different objective weight vectors to create several single-objective

problems that are optimized simultaneously.

The MOEA/D algorithm for the MO-FLCPP takes a set of 𝑁 weight vectors

𝝀1, … , 𝝀𝑁 and uses the pre-scalarized decomposition approach of the previous section to

construct solutions to each subproblem. Each generation of MOEA/D for the MO-FLCPP

maintains the following:

• a population of 𝑁 solution paths 𝑝1, … , 𝑝𝑁, where 𝑝𝑖 ∈ 𝑃(𝑠, 𝑡) is the current

solution to the 𝑖𝑡ℎ subproblem;

• the aggregated cost values 𝑨(𝑝1),… , 𝑨(𝑝𝑁) of each path in the population;

• an external population (𝐸𝑃) that stores the most recent set of nondominated

solutions;

248

• the reference point 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗) defined by Equation 6.5 where 𝐸𝑃 is used as

the approximation of the Pareto optimal set 𝑃𝑆′.

An overview of the procedure is given in Algorithm 6.3.

Algorithm 6.3 MOEA/D for the MO-FLCPP

Input:

• MO-FLCPP

• a stopping criterion

• 𝑁: the number of subproblems considered

• 𝝀1, … , 𝝀𝑁: 𝑚-dimensional objective weight vectors

• 𝑇: the size of each weight vector neighborhood

• 𝑔: a scalarization function (either 𝑔ws, 𝑔te, or 𝑔OWA)

• 𝜸: an aggregation indicator vector

• 𝜉: a defuzzification parameter

• 𝜽: an OWA weight vector if using 𝑔OWA

Output: 𝐸𝑃

Step 1) Initialization:

Step 1.1) Compute the Manhattan distances (L1 norm) between all pairs of objective

weight vectors and determine each vector’s 𝑇 closest neighbors. For each 𝑖 = 1,… ,𝑁,

set 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇}, where 𝝀𝑖1 , … , 𝝀𝑖𝑇 are the 𝑇 closest weight vectors to 𝝀𝑖, self-

inclusive.

Step 1.2) Create the initial population of solutions 𝑝1, … , 𝑝𝑁 using the decomposition

method presented in Section 6.3. The reference point 𝒛∗ is computed using Equation 6.10

and each path 𝑝𝑖 for 𝑖 = 1,… ,𝑁 is a solution to the scalarized SPP defined by the weight

vector 𝝀𝑖.

Step 1.3) Define the initial external population 𝐸𝑃 as all nondominated paths in

𝑝1, … , 𝑝𝑁.

Step 1.4) Update the reference point 𝒛∗ using Equation 6.5 where 𝐸𝑃 is used as the

approximation of the Pareto optimal set 𝑃𝑆′.

(continued on next page)

249

The first step in MOEA/D is to construct the initial population of solutions. We

begin by defining a set 𝝀1, … , 𝝀𝑁 of objective weight vectors. For problems with only a

small number of objectives (𝑚 ≤ 3), it is straightforward to produce a set of evenly spaced

(continued from previous page)

Step 2) Update:

For 𝑖 = 1, … , 𝑁, do

Step 2.1) Crossover: Randomly select two indices 𝑘 and 𝑙 from 𝐵(𝑖). Perform crossover

on the paths 𝑝𝑘 and 𝑝𝑙 to produce a new path 𝑝′.

Step 2.2) Mutation: Randomly select a vertex 𝑣 from the path 𝑝′ and replace it with a

valid substitute vertex 𝑣′.

Step 2.3) Improve: Remove any loops from path 𝑝′.

Step 2.4) Evaluate: Compute the aggregated cost 𝑨(𝑝′).

Step 2.5) Normalize: Use Equation 6.6 to compute 𝑨′(𝑝′) with 𝒛∗.

Step 2.6) Compare:

For each neighboring weight index 𝑗 ∈ 𝐵(𝑖), do

Step 2.6.1) Get the normalized cost vector 𝑨′(𝑝𝑗) using 𝒛∗

Step 2.6.2) Scalarize the cost vectors:

𝑆𝑗(𝑝′) = 𝑔(𝑨′(𝑝′)|𝝀𝑗) and 𝑆𝑗(𝑝𝑗) = 𝑔(𝑨′(𝑝𝑗)|𝝀𝑗)

Step 2.6.3) Defuzzify:

 𝑓′ = 𝐶(𝑆𝑗(𝑝′)|𝜉) and 𝑓𝑗 = 𝐶(𝑆𝑗(𝑝𝑗)|𝜉)

Step 2.6.4) If 𝑓′ ≤ 𝑓𝑗, then

set 𝑝𝑗 = 𝑝′ and 𝑨(𝑝𝑗) = 𝑨(𝑝′).

Step 2.7) Update external population:

Step 2.7.1) Remove all paths from 𝐸𝑃 that 𝑝′ dominates.

Step 2.7.2) Add 𝑝′ to 𝐸𝑃 if no paths in 𝐸𝑃 dominate 𝑝′.

Step 2.7.3) Update the reference point 𝒛∗.

Step 3) Stopping criteria: If the stopping criteria has been satisfied, then stop and output

𝐸𝑃. Otherwise repeat Step 2.

250

vectors. However, as the number of objectives increases, it becomes increasingly desirable

to limit the total number of vectors to some value 𝑁. For many-objective problems

(MaOPs) where 𝑚 > 3, we can uniformly sample 𝑁 weight vectors from the unit simplex

(Smith and Tromble 2004). It may be desirable to combine this approach with Mitchell’s

best-candidate sampling algorithm (Mitchell 1991) to ensure that the resulting vectors are

well-distributed. When using random weight vectors, we often include the weight vectors

at the corners of the unit simplex (i.e. all 𝜆𝑖 values set to zero except one) to help find the

extrema points along the Pareto front. Each weight vector defines a different decomposition

of the MOP as a single-objective problem.

In the initialization step, we first determine the neighborhood of each weight vector

using the Manhattan distance metric. While the Euclidean distance can be used if there are

only a few objectives, the Manhattan distance has better performance in high dimensional

space (Aggarwal, Hinneburg, and Keim 2001). For each weight vector 𝝀𝑖, we define 𝐵(𝑖)

as the indices of the 𝑇 closest neighbors, including 𝝀𝑖, so that 𝑖 ∈ 𝐵(𝑖).

The initial population is constructed by decomposing the MO-FLCPP into 𝑁

subproblems corresponding to the 𝑁 weight vectors and solving each scalarized SPP. The

initial external population is determined from the nondominated paths and the reference

point is updated to reflect the range of the Pareto front.

In each update step, we cycle over each weight vector index 𝑖 and construct a new

child solution 𝑝′ from two of the neighbors in 𝐵(𝑖). Crossover on two paths 𝑝𝑘 and 𝑝𝑙 can

be implemented by first selecting a vertex 𝑣 that is common to both paths and is neither

the starting vertex 𝑠 nor the ending vertex 𝑡. If no such vertex exists, 𝑝′ is set to either 𝑝𝑘

251

or 𝑝𝑙 randomly. Otherwise, 𝑝′ is defined as (𝑠, 𝑝1
𝑘, 𝑣, 𝑝2

𝑙 , 𝑡) where 𝑝1
𝑘 is the first part of 𝑝𝑘

from 𝑠 to 𝑣 and 𝑝2
𝑙 is the second part of 𝑝𝑙 from 𝑣 to 𝑡. Mutation can be applied to paths

with at least one vertex 𝑣 ∉ {𝑠, 𝑡}. We select one of these vertices randomly and define the

previous vertex as 𝑣−1 and the following vertex as 𝑣+1. We then identify all vertices 𝑣′

that could replace 𝑣 for which there exists an edge (𝑣−1, 𝑣
′) and (𝑣′, 𝑣+1). We pick one of

these vertices randomly and set 𝑣 = 𝑣′ (It may be the same vertex.) Figure 6.9 shows an

example of path crossover and mutation.

 (a) (b) (c)

Figure 6.9 Example of crossover and mutation on paths. (a) There are two paths between vertices 1 and 11,

𝑝𝑘 (red) and 𝑝𝑙 (blue). (b) Crossover between 𝑝𝑘 and 𝑝𝑙 occurs at vertex 6 and results in a new path 𝑝′

(yellow). (c) Mutation on 𝑝′ changes vertex 4 to vertex 3.

252

After constructing a child path using crossover and mutation, we remove any loops

in the path and compute the normalized cost 𝑨′(𝑝′) using the current value of 𝒛∗. This cost

vector is compared with the current best normalized solution cost 𝑨′(𝑝𝑗) for each

neighboring solution 𝑗 ∈ 𝐵(𝑖). If the scalarized and defuzzified value of the new path is

less than that of the current best path for index 𝑗 when using weight vector 𝝀𝑗, then the new

path is a better solution than the current one for index 𝑗. We replace any neighboring

solutions that are outperformed with the new path 𝑝′.

Once the new path has been compared with all neighboring solutions, we update

the external population. Any paths in 𝐸𝑃 that are dominated by 𝑝′ are removed, and if no

path in 𝐸𝑃 dominates 𝑝′, it is added to the set.

Finally, after generating new solutions for each weight vector, we check to see if

the stopping criteria has been met. If a maximum number of iterations has been reached or

there is no clear improvement, then the algorithm stops and 𝐸𝑃 is returned. The decision-

maker can evaluate the quality of 𝐸𝑃 directly, or choose the solution that minimizes some

predefined preferred scalarization method.

6.5 Experiments

To evaluate the MOEA/D algorithm for the MO-FLCPP, we create several different

test scenarios using the CMM framework. First, we consider problems with only two

objectives since they are easier to interpret and visualize. We consider different region

clustering approaches and scalarization methods, finding a set of Pareto optimal solutions

for each configuration in a binary terrain environment. We then investigate both summation

and maximization elevation features in a hilly environment, and show a pair of examples

253

using the terrain transition features. Finally, we show some of the challenges of assessing

the results of problems with many objectives. We conclude these experiments with a series

of tests designed to show improvement by the MOEA/D algorithm over the pre-scalarized

decomposition approach.

6.5.1 Two Objective Shortest Paths in Binary Terrain Environments

The first scenario we consider is a two objective shortest path problem in a flat

environment with two terrain types. The two features to minimize are the terrain distance

features 𝑓𝑡(1) and 𝑓𝑡(2). Both features are aggregated over the solution paths using

summation. Figure 6.10 shows the solutions found by MOEA/D using Algorithm 6.3 with

the weighted sum scalarization method. A different region clustering method is used in

each of the three subfigures. For each problem instance, 20 initial reference weight vectors

are uniformly sampled, including the “one-hot” vectors (1, 0) and (0, 1). The algorithm

proceeds for 100 iterations before returning the external population containing the Pareto

optimal solutions.

254

Subfigure (a) shows the results found when no region clustering is used. (This can

be obtained by setting opt.lrMethod = “all” in Algorithm 5.2.) Since the environment is

fully observable in this case, there is no uncertainty and the solution costs are crisp values.

The weighted sum scalarization method finds the extrema Pareto optimal solutions that

minimize each of the objectives. The red path stays in the forest and the blue path stays in

the meadow terrain as much as possible. In this scenario, there is no solution that only stays

in one terrain type, so each solution travels some amount through both terrain types. As

discussed in Section 6.1, the edge costs are modified by a very small random value (on the

 (a) (b) (c)

Figure 6.10 Shortest paths found by the MOEA/D algorithm for the MO-FLCPP in a binary terrain

environment using the weighted sum scalarization method to minimize 𝑓𝑡(1) and 𝑓𝑡(2). (a) No region

partitioning. (b) Region cluster size = 3. (c) Region cluster size = 10.

255

order of 10-14) to mitigate the selection bias problem and select a single path out of the

many equivalent cost solutions.

Subfigure (b) shows the results found using a region clustering size of 3, set with

opt.regionSize in Algorithm 5.3. There are several nondominated paths that are found,

drawn with colors ranging from red to blue. As with the previous subfigure, paths that favor

the forest terrain are drawn in red and paths that favor the meadow are drawn in blue, with

several compromise paths drawn in purple. Paths are drawn through the environment

between the centers of each region, so there may be some regions that appear to be crossed

that are not actually part of the path. The fuzzy cost of each solution in the objective space

is shown in a plot below the environment figure. The triangular fuzzy numbers of the two

cost values form a box, with the minimum value marked as a circle, the maximum value

marked as a square, and the peak (mean value) marked as a triangle. Recall that only one

of these points needs to be nondominated among the same type of points (min, mean, or

max) for the entire solution to be considered nondominated. These objective space plots

are analogous to a top-down view of the example in Figure 6.5.

Subfigure (c) shows the results found when the region cluster size is set to 10. This

results in larger regions and an overall smaller search space. Only three nondominated

solutions are found, but they provide a reasonable summary of the paths found using the

smaller region size. Note that we use these examples only to demonstrate the differences

between the various path planning options. To follow one of these paths, the agent would

need to define a preference weight vector and select the path that minimizes the scalarized

cost. A local region would also need to be defined. In subfigures (b) and (c), it is not clear

256

in which direction the agent should move to follow one of the paths. Using a local region

ensures that the next immediate step in the path is one that the agent can actually take.

Figure 6.11 shows the same scenario setup solved using Algorithm 6.3 with the

Tchebycheff scalarization method. As expected from the discussion in Section 2.5.5, this

method returns many more solutions along the Pareto front. In subfigure (a), all the paths

have the same total crisp length since there is no region partitioning, and nearly every

possible combination of forest and meadow terrain is represented. Subfigures (b) and (c)

have additional paths compared to Figure 6.10, but they generally follow the same route.

Most differences arise from moving between the two terrain types at different locations.

 (a) (b) (c)

Figure 6.11 Shortest paths found by the MOEA/D algorithm for the MO-FLCPP in a binary terrain

environment using the Tchebycheff scalarization method to minimize 𝑓𝑡(1) and 𝑓𝑡(2). (a) No region

partitioning. (b) Region cluster size = 3. (c) Region cluster size = 10.

257

As a balance between the weighted sum (WS) and Tchebycheff (TE) scalarization

methods, we consider the same problem scenario using an ordered weighted average

(OWA) operator. In the two objective case, the weighted sum and Tchebycheff methods

are equivalent to OWA weight vectors of 𝜽𝑊𝑆 = (0.5, 0.5) and 𝜽𝑇𝐸 = (1, 0) respectively.

We consider a hybrid of these two weight vectors and set 𝜽 = (0.67, 0.33), giving twice

as much weight to the least satisfied objective as the most satisfied one. Figure 6.12 shows

the resulting paths found using Algorithm 6.3. The number of solutions for the first two

configurations is greater than the WS method, but less than the TE method, and the

solutions for the last configuration is the same as the WS method. This shows that the OWA

scalarization method does act as a hybrid operator with this parameterization and finds a

balance of solutions between those found by the weighted sum and Tchebycheff methods.

258

6.5.2 Two Objective Least-Cost Paths Using Elevation

The second scenario we consider is a two objective least-cost path problem in a

hilly environment with only one terrain type. The two features to minimize are the total

distance 𝑓𝑑 and the maximum absolute value of the elevation change 𝑓ℎ_max. Figure 6.13

shows the solutions found in an example environment by MOEA/D using Algorithm 6.3

with the OWA scalarization method with 𝜽 = (0.67, 0.33). The red path shows a route

that minimizes the maximum slope in the shortest distance possible. The blue path shows

 (a) (b) (c)

Figure 6.12 Shortest paths found by the MOEA/D algorithm for the MO-FLCPP in a binary terrain

environment using the ordered weighted average (OWA) scalarization method with weight vector

𝜽 = (0.67, 0.33) to minimize 𝑓𝑡(1) and 𝑓𝑡(2). (a) No region partitioning. (b) Region cluster size = 3. (c)

Region cluster size = 10.

259

a route that prioritizes a gentle slope over distance and contains switchbacks to minimize

the elevation change. The purple path shows a route that is a compromise between these

two extremes.

Figure 6.14 shows a scenario with the same objectives, but with multiple goal

locations. The agent is placed at a middle elevation and the goals are placed at minimum

and maximum extrema locations. This can be implemented in the CMM framework as a

TSP-type problem in which the agent only needs to collect one resource. In subfigure (a),

each of the four resources are selected by different paths, with bluer paths favoring slope

over distance and redder paths favoring distance over slope. Subfigure (b) shows the same

scenario with a region size of 3. The solutions are similar to those found without region

clustering, but the path costs in objective space show much greater uncertainty with lots of

 (a) (b)

Figure 6.13 Least-cost paths found by the MOEA/D algorithm for the MO-FLCPP in a hilly environment

using the ordered weighted average (OWA) scalarization method with weight vector 𝜽 = (0.67, 0.33) to

minimize 𝑓𝑑 and 𝑓ℎ_max. (a) Pareto optimal paths found from the starting agent location to the goal. (b)

Solution costs plotted in objective space.

260

overlap between the minimum and maximum values of each Pareto optimal solution.

Subfigure (c) uses a region size of 10, which simplifies the resulting region graph and

results in a summary of fewer solutions. However, the difference between solutions is less

clear as the amount of uncertainty has increased.

In Figure 6.15, we consider an example that minimizes different pairs of elevation

features. In subfigure (a), the maximum uphill and downhill elevation features are used.

There are a total of four Pareto optimal solutions found by MOEA/D for this example. The

red paths prioritize minimizing the uphill slope and find routes that mainly go downhill,

 (a) (b) (c)

Figure 6.14 Least-cost paths to the nearest goal found by the MOEA/D algorithm for the MO-FLCPP in a

hilly environment using the ordered weighted average (OWA) scalarization method with weight vector

𝜽 = (0.67, 0.33) to minimize 𝑓𝑑 and 𝑓ℎ_max. (a) No region partitioning. (b) Region cluster size = 3. (c)

Region cluster size = 10.

261

whereas the blue paths prioritize minimizing the downhill slope and find routes that mainly

go uphill. In subfigure (b), the total uphill and downhill elevation features are used. Here,

any path that has the same starting and ending point and goes either entirely uphill or

downhill will have the same feature value. Because of this, it is possible to have many

unique paths that all evaluate to the same point in objective space. We keep only one

representative path from any set of paths with the same feature value. This is accomplished

by rounding feature values to a very fine grid (on the order of 10-12) when computing

dominance to avoid small errors in numerical precision. The result is that only two Pareto

optimal paths are found for this example when using the uphill and downhill summation

elevation features, one going up and the other down. In subfigure (c), we use the maximum

and total absolute elevation difference features. This results in solutions that either

minimize the slope or the total elevation change. The red path in this example shows a

longer downhill route with a gentle slope, and the blue and purple paths show shorter uphill

routes that have steeper slopes. Some of the routes are found using several different

elevation feature objectives, suggesting that an agent does not need to use all of these

features simultaneously.

262

6.5.3 Shortest Paths Using Terrain Transition Features

The terrain transition features offer a way for the agent to indicate additional

specific preferences for finding paths through multiple types of terrain. Using these features

quickly increases the number of objectives and can make it difficult to visualize the entire

Pareto optimal set of solutions. To demonstrate the effect of both the symmetric and

directional terrain transition features, Figure 6.16 shows two example scenarios that are

solved using specific agent preferences. The preferences are encoded by the objective

 (a) (b) (c)

Figure 6.15 Least-cost paths to the nearest goal found by the MOEA/D algorithm for the MO-FLCPP in a

hilly environment with no region clustering using the ordered weighted average (OWA) scalarization method

with weight vector 𝜽 = (0.67, 0.33). (a) Minimizing features 𝑓ℎ↑_max and 𝑓ℎ↓_max. (b) Minimizing features

𝑓ℎ↑_sum and 𝑓ℎ↓_sum. (c) Minimizing features 𝑓ℎ_max and 𝑓ℎ_sum.

263

weight vector 𝝀, which we arrange as a matrix 𝝀𝐓, where 𝝀𝑖𝑗
𝐓 is the weight of the terrain

transition feature from terrain type 𝑖 to terrain type 𝑗. A greater weight indicates a higher

cost when using this type of transition.

In subfigure (a), a shortest path problem in a binary terrain environment is solved

by three different agents. The blue agent uses an objective weight matrix of [
0.1 0.6
0.6 0.3

],

indicating a low cost of 0.1 for staying in the meadow and a slightly higher cost of 0.3 for

staying in the forest. The cost of the transition between the two types is symmetric and has

a higher cost value of 0.6. (Note that only the upper triangular part of the matrix is used

and these three costs sum to one.) The resulting path chosen by the blue agent stays in the

 (a) (b)

Figure 6.16 Shortest paths found using terrain transition features. (a) Three agents solve this problem using

symmetric terrain transition features. The blue agent prefers the meadow, the red agent prefers the forest, and

the yellow agent prefers the transitions between the two terrain types. (b) Two agents solve this problem

using directional terrain transition features. The red agent prefers the transitions from meadow to water and

from water to forest, whereas the blue agent prefers the transitions from forest to water and from water to

meadow.

264

meadow as much as possible and avoids the forest. The red agent uses a reverse weight

matrix of [
0.3 0.6
0.6 0.1

], which favors the forest over the meadow. Both agents use the fewest

number of transitions between terrain types as possible. The yellow agent uses an objective

weight matrix of [
0.4 0.2
0.2 0.4

], which gives a lower cost to transitioning between terrain types

than staying in one type of terrain. The path chosen by the yellow agent stays on the border

between terrain types as much as possible while still choosing one of the shortest paths.

To demonstrate the effect of the directional terrain transition features, at least three

terrain types are required. Subfigure (b) shows a shortest path problem in a trinary terrain

environment solved by two different agents using the directional terrain transition features.

The blue agent uses an objective weight matrix of [
1 2 9
9 1 2
2 9 1

] 36⁄ , where all nine features

are used. This matrix gives a low cost to staying in the same type of terrain, but different

higher costs for terrain transitions. A high cost is given to transitions from type 1 to 3

(meadow to water), type 2 to 1 (forest to meadow), and type 3 to 2 (water to forest). The

resulting path chosen by the blue agent never uses these terrain transition types. The red

agent uses a reversed objective weight matrix of [
1 9 2
2 1 9
9 2 1

] 36⁄ . This agent uses only the

above terrain transition types. These features give even greater control over the types of

paths produced and offer a way to explore problems with many objectives.

265

6.5.4 Many-Objective Least-Cost Paths

When there are many objectives to optimize, the number of Pareto optimal solutions

can grow very large. This is especially true when region clustering is used to add

uncertainty to the feature values. We consider two additional types of environments,

designed to provide a high number of features for many-objective problems. Figure 6.17

shows two example least-cost path problems in environments that combine multiple terrain

types and elevation.

Subfigure (a) shows a hilly binary terrain environment that is solved by an agent

using three symmetric terrain transition features and the maximum absolute elevation

difference feature using the weighted sum scalarization method. Using 40 uniformly

sampled reference weight vectors for the MOEA/D algorithm, including the one-hot

 (a) (b)

Figure 6.17 Pareto optimal least-cost paths found by the MOEA/D algorithm for the MO-FLCPP in many-

objective environments. Solutions are colored based on objective weight similarity. (a) A hilly binary terrain

environment. (b) A full world environment with five terrain types and elevation.

266

vectors, a total of 71 Pareto optimal paths were found. These are shown in different colors

based on objective weight similarity. To compute the colors, the objective values are

projected into two dimensions using PCA and assigned hue and saturation values based on

the 2D coordinates. In this example, red paths favor the forest terrain and green paths favor

the meadow. A spectrum of other solutions shows the variety of different agent preferences

that can lead to unique paths.

Subfigure (b) shows a full world environment with five terrain types and elevation.

In this example, the agent uses 15 symmetric terrain transition features and the maximum

absolute elevation difference feature for a total of 16 objectives. The weighted sum

scalarization method is used for the MOEA/D algorithm with 160 reference weight vectors

(10 times the number of objectives), including the one-hot vectors. A total of 176 Pareto

optimal paths were found for this problem, spanning all different agent preferences. The

solutions are colored based on similarity, although it can be difficult to distinguish what

exactly each path is optimizing based on color alone. Here, the red paths seem to prefer

paths through open meadow, and blue paths prefer forest and water. The pink paths in the

upper left show some switchbacks that indicate a preference for gentle slopes. Although

any one agent can specify a particular set of objective weight preferences and choose one

of these solutions, the quality of the entire solution set is difficult to quantify. The next

section discusses a set of experiments to measure the effectiveness of the MOEA/D

algorithm for the MO-FLCPP in various configurations.

267

6.5.5 Comparing MOEA/D to Pre-scalarized Decomposition

The MOEA/D algorithm for the MO-FLCPP presented in Algorithm 6.3 uses an

iterative evolutionary procedure to find Pareto optimal solutions over the entire set of

possible decision-maker preferences. For a specific set of preferences, the pre-scalarized

decomposition method presented in Algorithm 6.2 can be used to quickly find a single

solution that may be satisfactory in some cases. In this section, we evaluate many different

problem scenarios to determine how much of an improvement in solution quality the

MOEA/D approach offers over the pre-scalarized decomposition method.

We chose 10 problem configurations to evaluate, which are summarized in Table

6.3. Each problem configuration represents an environment type and a specified feature

set. Figure 6.18 shows the five different environment types used in these experiments. The

first type (a) is a flat binary terrain environment used to study problems with two objectives.

The next type (b) is a hilly environment with a single type of terrain used to study elevation

features. The third type (c) is a flat trinary terrain environment used to study the directional

terrain transition features. The fourth type (d) is a hilly binary terrain environment that

combines the terrain type and elevation features. The last type (e) is a full world

environment that has five terrain types and elevation, which is used to study problems with

many objectives.

268

The environment type of each problem is listed in the second column of Table 6.3.

The third column lists the total number of objectives used, and the fourth and fifth columns

indicate how many of these are summation objectives and how many are maximization

objectives. The sixth column lists how many reference vectors (𝑁) are used in the

MOEA/D algorithm. This is set to be 10 times the total number of objectives for each

problem. The last column gives the features that are used for each problem type.

 (a) (b) (c) (d) (e)

Figure 6.18 Environment types used to evaluate the MOEA/D algorithm for the MO-FLCPP. (a) Flat binary

terrain. (b) Hilly uniform terrain. (c) Flat trinary terrain. (d) Hilly binary terrain. (e) Full world environment.

269

Table 6.3 Summary of problem types used to compare MOEA/D to pre-scalarized decomposition

Prob. #

Env.

Type

Total #

of Obj.

of Sum

Obj.

of Max

Obj. N Features

1 a 2 2 0 20 𝑓𝑡(1), 𝑓𝑡(2)

2 b 2 1 1 20
𝑓𝑑,

𝑓ℎ_max

3 b 2 0 2 20 𝑓ℎ↑_max, 𝑓ℎ↓_max

4 b 3 3 0 30
𝑓𝑑,

𝑓ℎ↑_sum, 𝑓ℎ↓_sum

5 d 3 2 1 30
𝑓𝑡(1), 𝑓𝑡(2),

𝑓ℎ_max

6 e 6 5 1 60
𝑓𝑡(𝑖) ∀ 𝑖 ∈ {1, … , 5},

𝑓ℎ_max

7 c 6 6 0 60 𝑓𝑡{𝑖,𝑗} ∀ 𝑖, 𝑗 ∈ {1, … , 3} 𝑠. 𝑡. 𝑖 ≤ 𝑗

8 e 15 15 0 150 𝑓𝑡{𝑖,𝑗} ∀ 𝑖, 𝑗 ∈ {1, … , 5} 𝑠. 𝑡. 𝑖 ≤ 𝑗

9 e 17 15 2 170
𝑓𝑡{𝑖,𝑗} ∀ 𝑖, 𝑗 ∈ {1, … , 5} 𝑠. 𝑡. 𝑖 ≤ 𝑗,

𝑓ℎ↑_max, 𝑓ℎ↓_max

10 e 29 26 3 290

𝑓𝑡〈𝑖,𝑗〉 ∀ 𝑖, 𝑗 ∈ {1, … , 5},

𝑓ℎ↑_max, 𝑓ℎ↓_max,

𝑓ℎ↑_sum, 𝑓ℎ↓_sum

The first three problem types are two objective problems. Problem 1 uses the terrain

type features in binary terrain as two summation objectives. Problems 2 and 3 use the hilly

uniform terrain environment to investigate maximization objectives. Problem 2 uses one

summation objective, 𝑓𝑑, and one maximization objective, 𝑓ℎ_max. Problem 3 uses the two

directional elevation features 𝑓ℎ↑_max and 𝑓ℎ↓_max as maximization objectives. Problems 4

and 5 use different combinations of the distance, terrain type, and elevation features to

investigate three objective problems. Problems 6 and 7 consider problems with six

objectives in either the trinary terrain for full world environments. Problems 8-10 use

270

terrain transition and directional elevation features to study problems with many objectives

in full world environments.

For each problem configuration, we generate 30 environments of the specified type

with an agent and a single resource in opposite corners. Each environment is used to define

a MO-FLCPP using either no region clustering, or a cluster size of 3 or 10. These problems

are then evaluated by nine different sets of decision-maker parameters. We consider

defuzzification values of 0, 0.5, and 1. For scalarization, we consider the weighted sum

(WS), Tchebycheff (TE), and ordered weighted average (OWA) methods. The OWA

method acts as a hybrid between the WS and TE methods, and we define the OWA weights

as

 𝜽 = (
1

𝐻𝑚
,
1

2𝐻𝑚
, … ,

1

𝑚𝐻𝑚
), (6.16)

where 𝐻𝑚 = ∑ 1 𝑘⁄𝑚
𝑘=1 is the 𝑚-th harmonic number and 𝑚 is the total number of

objectives. This gives a harmonic sequence that assigns greater weight to the first (largest)

terms and is roughly equivalent to a decision-maker that prioritizes only a few objectives.

Next, we randomly sample a set of 𝑁 weight vectors for each problem, where

𝑁 = 10𝑚. These include the one-hot weight vectors where all values are zero except one.

For each weight vector, apply the pre-scalarized decomposition method in Algorithm 6.2

to create an initial candidate solution. This solution is scored using the max-edge reference

point where 𝒛∗ is defined by Equation 6.10.

The 𝑁 solutions are then used as the initial population for MOEA/D in Algorithm

6.3. We use a neighborhood size of 𝑇 = 5 for each weight vector and run the algorithm for

100 iterations. The resulting 𝐸𝑃 contains a set of Pareto optimal solutions and lets us

271

compute a new reference point where 𝒛∗ is defined by Equation 6.5 using the nadir vector.

Each of the original weight vectors 𝝀𝑗 where 𝑗 = 1,… ,𝑁 is then used to find two solutions

to the MO-FLCPP:

1) The path 𝑝∗ ∈ 𝐸𝑃 that minimizes 𝑔(𝑨′(𝑝∗)|𝝀𝑗) using the nadir vector reference

point 𝒛∗.

2) The path 𝑝𝑃𝑆𝐷 ∈ 𝑃(𝑠, 𝑡) found using pre-scalarized decomposition and the

same reference point 𝒛∗.

The scalarized values of the two paths are defined as 𝑆∗ and 𝑆𝑃𝑆𝐷 respectively, and since

both solutions use the same value for 𝒛∗, the values can be compared directly. We measure

the percent improvement of the MOEA/D algorithm over the pre-scalarized approach as

 𝑃𝐼 = (
𝑆𝑃𝑆𝐷 − 𝑆∗

𝑆𝑃𝑆𝐷
) ∗ 100. (6.17)

Table 6.4 shows the average PI values of each MO-FLCPP configuration, for each

decision-maker, averaged over all weight vectors from the 30 problem instances of all 10

problem types when using a region clustering size of 3. The first column gives the problem

number and the second and third columns give the number of summation and maximization

objectives respectively. The fourth and fifth columns list the average number of nodes and

edges over the 30 graphs created for each problem type. The results show an overall

improvement in the scalarization scores of the MOEA/D algorithm over the pre-scalarized

decomposition method. In general, we note the largest improvement for problems that

contain at least one maximization objective. The Tchebycheff scalarization method also

tends to show the greatest improvement compared to the weighted sum. The OWA method

272

usually scores somewhere between the other two approaches, reflecting its role as a hybrid

operator.

Table 6.4 Average percent improvement of MOEA/D over pre-scalarization (region cluster size = 3)

Prob.

of

Sum

Obj.

of

Max

Obj.

Avg.

Nodes

Avg.

Edges

 𝜉 = 0 𝜉 = 0.5 𝜉 = 1

 WS OWA TE WS OWA TE WS OWA TE

1 2 0 103 507 0.00 1.39 8.49 0.00 1.67 9.30 0.00 1.78 9.94

2 1 1 66 318 5.35 7.10 13.12 5.27 5.08 5.44 5.57 5.75 7.02

3 0 2 64 300 12.43 12.01 12.94 5.71 5.87 6.55 0.93 0.79 1.17

4 3 0 65 311 -0.02 0.83 5.03 0.00 0.14 0.67 0.00 0.09 0.56

5 2 1 92 447 9.64 13.73 20.53 7.93 7.08 8.51 9.80 8.55 9.27

6 5 1 93 454 17.02 21.75 30.27 5.32 5.93 11.00 5.46 5.17 9.91

7 6 0 109 545 -0.47 2.32 8.87 -0.15 2.39 9.82 -0.15 3.06 12.35

8 15 0 93 454 -0.08 1.64 8.02 -0.03 1.53 8.00 -0.04 2.02 11.73

9 15 2 91 445 26.31 31.75 42.06 7.14 9.14 16.35 4.36 5.38 12.22

10 26 3 93 450 15.68 21.66 29.27 6.34 8.01 13.46 4.55 5.85 11.46

We can conclude that problems that have many nonlinearities, either from the

aggregation method or the scalarization function, benefit the most from performing a

search with the MOEA/D algorithm. In contrast, when the problem contains only

summation objectives, or the weighted sum is used to scalarized, there is less reason to use

MOEA/D. If both are true, then the problem is entirely linear and the pre-scalarized

decomposition method can find the ideal solution directly. In this case, the MOEA/D

algorithm can perform worse if the reference point changes from the initial solutions and

the ideal path is never encountered through the crossover and mutation operators. This is

the primary cause for the negative improvement scores in the table. One way this effect

could be ameliorated is by re-running the initialization procedure each time the reference

point changes to migrate the population toward solutions that are evaluated better with the

new reference point.

273

Table 6.5 shows the average PI values when using no region clustering and Table

6.6 shows the values when using a region cluster size of 10. The outcomes are mostly the

same as the results using a region cluster size of 3 with a few notable exceptions. With no

region clustering, all graphs are the same size and there is no uncertainty in these fully-

observable problems, so all feature values are crisp. The results are therefore the same for

each value of the defuzzification parameter 𝜉. Problems 3 and 4 have very low

improvement scores across all scalarization methods. This would suggest that the pre-

scalarized approach produces very good results using crisp distance and elevation features

when all objectives use either summation or maximization aggregation. Problems 7 and 8

show both worse scores for the WS method and better scores for the OWA and TE methods

than when using a region cluster size of 3. These problems use only the terrain transition

features with summation aggregation, which suggests that the MOEA/D method is most

effective for problems with nonlinear operators. The improvement is more noticeable in

problems with less uncertainty, which is confirmed by the corresponding rows in Table 6.6

that show less difference between scalarization methods when using a region cluster size

of 10. This effect is observed throughout Table 6.6, where the improvement scores for each

scalarization method tend to be more similar than in the other two tables. We also note a

few instances in the later problems of Table 6.6 where the OWA method shows less

improvement than the other two approaches, rather than behaving as a hybrid operator that

gives a result somewhere in-between. The additional parameters of the OWA method, the

added complexity of the many-objective problems, and the increased uncertainty from a

larger region size could render the MOEA/D search less effective than the pre-scalarized

approach in these instances.

274

Table 6.5 Average percent improvement of MOEA/D over pre-scalarization (no region clustering)

Prob.

of

Sum

Obj.

of

Max

Obj.

Avg.

Nodes

Avg.

Edges

 𝜉 = 0 𝜉 = 0.5 𝜉 = 1

 WS OWA TE WS OWA TE WS OWA TE

1 2 0 784 3024 0.00 1.69 12.00 0.00 1.69 12.00 0.00 1.69 12.00

2 1 1 784 3024 9.62 11.53 14.37 9.62 11.53 14.37 9.62 11.53 14.37

3 0 2 784 3024 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

4 3 0 784 3024 0.00 0.10 0.36 0.00 0.10 0.36 0.00 0.10 0.36

5 2 1 784 3024 6.44 5.50 10.21 6.44 5.50 10.21 6.44 5.50 10.21

6 5 1 784 3024 5.00 7.67 18.25 5.00 7.67 18.25 5.00 7.67 18.25

7 6 0 784 3024 -1.49 4.97 19.53 -1.49 4.97 19.53 -1.49 4.97 19.53

8 15 0 784 3024 -2.18 4.00 17.49 -2.18 4.00 17.49 -2.18 4.00 17.49

9 15 2 784 3024 1.57 7.74 22.34 1.57 7.74 22.34 1.57 7.74 22.34

10 26 3 784 3024 2.31 7.68 19.35 2.31 7.68 19.35 2.31 7.68 19.35

Table 6.6 Average percent improvement of MOEA/D over pre-scalarization (region cluster size = 10)

Prob.

of

Sum

Obj.

of

Max

Obj.

Avg.

Nodes

Avg.

Edges

 𝜉 = 0 𝜉 = 0.5 𝜉 = 1

 WS OWA TE WS OWA TE WS OWA TE

1 2 0 35 139 0.00 0.85 4.81 0.00 0.99 5.90 0.00 0.97 6.48

2 1 1 12 40 8.79 9.57 14.71 6.16 6.19 6.38 9.34 9.08 9.46

3 0 2 12 40 1.69 1.13 2.27 0.66 0.76 1.27 0.12 0.37 1.18

4 3 0 11 38 0.00 0.16 0.71 0.00 0.00 0.09 0.00 0.01 0.08

5 2 1 34 129 8.99 13.08 20.73 11.20 9.24 9.92 9.38 9.45 11.74

6 5 1 35 146 17.12 20.55 26.42 15.41 12.94 13.23 17.12 14.73 14.02

7 6 0 44 191 -0.12 1.61 6.12 -0.01 2.02 8.01 -0.01 2.43 9.56

8 15 0 35 146 -0.01 1.10 5.04 -0.01 0.80 4.69 -0.01 1.11 7.47

9 15 2 32 126 12.99 12.49 16.51 6.64 7.42 9.26 3.77 4.08 5.41

10 26 3 35 144 18.52 20.34 24.47 10.94 7.18 8.11 8.41 5.43 8.85

6.6 A Greedy Algorithm for the CMM Framework

A problem in the CMM framework can be expressed as a resource gathering task.

The agent begins with a list of demanded resources and begins to move through the

environment in pursuit of these goals. In this chapter, we have considered fully observable

least-cost path problems. To solve one of these problems in the CMM framework, the agent

starts with only one resource in its list of demands. The agent then uses one of the methods

275

presented in this chapter to plan a least-cost route to one of the resource locations. The set

of options can be evaluated in terms of the quality of the Pareto optimal set, but to solve

the problem, the agent must pick one of these path options and physically move to the goal

location. In fully observable problems with no region clustering the region graph does not

change as the agent moves, so there may be no need to iteratively step through the

simulation server. However, in partially observable environments or those using region

clustering, the region graph can change, so a new plan needs to be developed after each

step.

Algorithm 6.4 shows a greedy algorithm for the CMM framework that can be used

to solve generic resource gathering problems. The algorithm is greedy in the sense that it

always moves toward the closest objective without any additional planning. Steps 1 and 2

of the algorithm take the current mental map data structure ℳ and use the latest observation

from the simulation server 𝒪 to recompute the region graph ℳ.𝐺𝑅. In Step 3, any observed

resources that are still in demand are set as target locations, and if no visible resources are

in demand, all unobserved regions are used instead. Step 4 uses either the pre-scalarized

decomposition method from Algorithm 6.2 or the MOEA/D method from Algorithm 6.3

to find a solution path 𝑝 that minimizes the cost to one of the target locations determined

in Step 3. In problems where computation time is a factor, it may be desirable to use the

pre-scalarized approach, rather than the more exhaustive MOEA/D search. Finally, in Step

5, the path 𝑝 is saved to ℳ as the current plan and the first step in the plan is returned to

the simulation server as the agent’s action. This algorithm is called any time the region

graph changes, either from observing new areas of the environment or when the agent

moves and the regions are reclustered.

276

The greedy algorithm can be used to solve any generic problem in the CMM

framework. To demonstrate, we show an overview of the steps taken by an agent solving

a travelling purchaser problem (TPP) in a simulated world environment. The environment

is a 3030 grid constructed with five region types using the method outlined in Section

3.5.3. Each region type is assigned a unique type of resource, and these resources are

Algorithm 6.4 A Greedy Algorithm for the CMM Framework

Input:

• ℳ: a mental map data structure

• 𝒪: the most recent observation of the environment

• opt: region clustering options

Step 1) Update the mental map: Use Algorithm 4.4 to integrate the most recent

observation 𝒪 into the mental map ℳ.

Step 2) Update the region graph: Use Algorithm 5.16 to update the region graph ℳ.𝐺𝑅

using the options defined in opt.

Step 3) Determine the target locations:

If there are visible resources that are still in demand,

Set each of these resources as a target location.

Otherwise,

Set all unobserved regions as target locations.

Step 4) Solve the MO-FLCPP: Using the target locations from Step 3 and the current

agent location, use either the pre-scalarized decomposition method from Algorithm 6.2 or

the MOEA/D method from Algorithm 6.3 to find a solution path 𝑝.

Step 5) Choose an action: Save the path 𝑝 to the mental map ℳ as the current plan and

set the next action as the first step in the plan.

Output: A movement action

277

distributed randomly throughout the environment. The agent’s list of demands requires it

to collect one of each type of resource. The environment is only partially observable, so to

discover and collect all the necessary resources, the agent will need to explore the

environment. We define six objectives for the agent to minimize, the same as Problem 6

from Table 6.3: five terrain type features and the maximum absolute value of the elevation

change. The feature weights are defined in Table 6.7. The agent uses the OWA

scalarization method with harmonic weights defined by Equation 6.16 and a

defuzzification value of 𝜉 = 0.5. Figures 6.19-6.22 show the simulation output for the

greedy agent using four different region clustering methods.

Table 6.7 Feature weights for the example greedy agent

 𝑓𝑡(1)

meadow

𝑓𝑡(2)

forest

𝑓𝑡(3)

water

𝑓𝑡(4)

rock

𝑓𝑡(5)

snow

𝑓ℎ_max

slope

Unnormalized 1 5 10 3 8 2

Normalized 0.0345 0.1724 0.3448 0.1034 0.2759 0.0690

Figure 6.19 shows the path traveled by the agent using the greedy algorithm with

no region clustering. The last image shows the winding route that the agent took, searching

nearly the entire environment before discovering the final two resources on top of the hill.

The agent makes several sweeps through the forest region since observability is limited to

only the adjacent grid cells in the forest, taking a total of 233 simulation steps. The final

scalarized path cost is given in Table 6.8 as 0.1611 when normalized with the other three

approaches.

278

Figure 6.20 shows the solution path when using a local region size of 3, an observed

cluster size of 5, and an unobserved cluster size of 20. Because of the way the environment

is dynamically partitioned as the agent moves, the agent takes a different route than when

using no region clustering, occasionally taking less direct paths. The solution takes 125

simulation steps and has a scalarized cost of 0.1854.

Figure 6.21 shows the path followed by an agent using the same region clustering

parameters as above, but while keeping a memory of the local region. This approach grows

the size of the graph as the environment is explored and can provide more efficient planning

through previously explored terrain. The solution takes 96 simulation steps and has a

scalarized cost of 0.1666.

Lastly, Figure 6.22 shows the path of an agent that only uses region clustering for

the unobserved regions (cluster size = 20). This is accomplished by setting the local region

size to infinity, allowing all observed areas to be represented with no imprecision. The

solution of this agent is the most efficient, taking 78 simulation steps with a scalarized cost

of 0.1341.

279

Table 6.8 Solution costs of the example greedy agent

Simulation

Steps

Normalized

and

Scalarized

Cost

Aggregated Feature Costs

Region Clustering

Type

𝑓𝑡(1)

meadow

𝑓𝑡(2)

forest

𝑓𝑡(3)

water

𝑓𝑡(4)

rock

𝑓𝑡(5)

snow

𝑓ℎ_max

slope

No region

clustering
233 0.1611 88.5 124 13 4 3.5 0.1385

Small local region

with no memory
125 0.1854 70.5 27 19 5 3.5 0.1200

Small local region

with memory
96 0.1666 71.5 1 8.5 6 9 0.1200

Region clustering

only if unobserved
78 0.1341 52.5 6 6.5 6 7 0.1200

280

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 6.19 An agent solving a TPP in the CMM framework with no region clustering. (a) The agent plans

a route to the nearest observed resource in the open meadow. (b) The remaining resource types have not yet

been observed, so the agent plans a route to the nearest unobserved region. (c) After exploring part of the

unobserved region, two new resources are discovered. The agent plans a route to the closest one in a forest.

(d) The agent plans a route to the resource in the water. (e) The agent continues to explore the unobserved

region at the top of the map. (f) The agent decides to begin exploring the unobserved region at the bottom of

the map. (g) After wandering through the forest at the bottom of the map, the agent finally discovers one of

the remaining needed resources at the top of the hill. (h) The agent collects the final resources and ends the

problem. (i) Final path traveled by the agent.

281

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 6.20 An agent solving a TPP in the CMM framework using a small local region with no memory and

region clustering in all areas. (a) The agent plans a route to the nearest observed resource in the open meadow.

(b) The remaining resource types have not yet been observed, so the agent plans a route to the nearest

unobserved region. (c) En route to the unobserved region, the agent discovers the forest resource and plans

a new route. (d) After collecting the forest resource, the agent plans a route to the newly discovered water

resource. (e) The agent decides to explore the unobserved region at the top of the map. (f) After exploring

this area, the agent plans a route to the unobserved region on top of the hill. (g) The agent discovers the snow

resource and plans a new route. (h) The agent discovers and collects the rock resource on the way to the snow

resource, finishing the problem. (i) Final path traveled by the agent.

282

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 6.21 An agent solving a TPP in the CMM framework using a small local region with memory and

region clustering in all areas. (a) The agent plans a route to the nearest observed resource in the open meadow.

(b) After collecting the meadow resource, the agent plans a route to the unobserved area on top of the hill.

(c) The agent discovers the snow and rock resources and plans a new route to collect them. (d) The agent

plans a route to the large unobserved region in the top center of the map. (e) The agent discovers the water

resource and plans a route to collect it. (f) On the way, the agent discovers the forest resource and plans a

new route. (g) After collecting the forest resource, the agent plans a route to the final water resource. (h) The

agent wanders along the shore, trying to find the least-cost path to the last resource. (i) Final path traveled by

the agent.

283

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 6.22 An agent solving a TPP in the CMM framework using region clustering only for unobserved

regions and no region clustering elsewhere. (a) The agent plans a route to the nearest observed resource in

the open meadow. (b) After collecting the meadow resource, the agent plans a route to the unobserved area

on top of the hill. (c) On the way, the agent discovers the rock resource and decides to turn around to collect

it. (d) After collecting both the rock and snow resources, the agent plans a route to the large unobserved

region in the top center of the map. (e) The agent discovers the water resource and plans a route to collect it.

(f) On the way, the agent discovers the forest resource and plans a detour to retrieve it first. (g) After

collecting the forest resource, the agent plans a route to the last water resource. (h) The agent travels along

the shore and travels directly to the final resource, ending the problem. (i) Final path traveled by the agent.

284

In this example scenario, the effect of region clustering seems to offer the greatest

benefit when applied only to the unobserved regions. However, it is difficult to make

general claims as to the effect of various region clustering approaches. In some

environments, applying region clustering to observed regions can degrade performance, as

the agent must continually recluster these areas and may end up taking less direct routes.

If no memory is used for the local region, the agent can get stuck in a cycle moving back

and forth between two grid cells as the regions are reclustered. This can still occur in some

instances when using local region memory, but it is less common. Increasing the size of

the local region can also help to avoid oscillatory behavior. Ultimately, the individual

differences in each environment can make any one region clustering method perform better

than another.

Perhaps the best reason to use region clustering is to reduce the size of the planning

search space. The greedy algorithm does not utilize this property to its full potential, but

more advanced planning algorithms may benefit greatly from this. For example, the

approach used in (Buck and Keller 2016) for solving the partially observable traveling

salesman problem used a Monte Carlo sampling method to construct a distribution of

possible target locations. By reducing the number of possible locations and adopting a

fuzzy methodology, it may be possible to improve upon this approach and allow for the

development of long-term agent strategies. This is a possible topic for future work with the

CMM framework and will be discussed further in the next and final chapter.

285

6.7 Summary

This chapter defined the multiobjective least-cost path problem (MO-FLCPP) and

presented a greedy agent strategy for solving generic problems in the CMM framework.

We first showed the issues regarding selection bias in grid world domains and proposed to

overcome these issues by adding a small amount of random noise to the graph edge

weights. The MO-FLCPP was introduced with an example that demonstrated how to

determine the set of Pareto optimal solutions using different aggregation and scalarization

methods. We showed that a decision-making agent could choose different solution paths

depending on its preferences and that the choice of which path to take depends largely on

the objective weights and scalarization method used.

We then described an approach to pre-scalarize the feature values in a fuzzy

weighted graph, accounting for both summation and maximization aggregation methods

so that a solution path could be found using a standard implementation of Dijkstra's

algorithm. This approach can be used to quickly find a solution using a specific set of

objective weights. The solution can often be improved, however, by applying an

evolutionary search procedure using MOEA/D. This method returns an approximation of

the entire Pareto optimal set of solutions. Selecting a path from this set will often yield an

improvement in the scalarized cost and provides additional context, allowing for better

normalization to judge how well a solution compares with other possible options.

We concluded the chapter with several example problems to demonstrate how

different feature sets, scalarization functions, and region clustering approaches can impact

the solution quality. We considered several two objective scenarios with binary terrain and

elevation features, and then investigated problems with many objectives. A series of

286

experiments on several different problem types showed that the MOEA/D search often

produces a better result, particularly when the problem includes many nonlinearities. We

ended with a description of a greedy agent algorithm that can be used to solve any type of

resource collecting problem in the CMM framework, such as the shortest path problem,

traveling salesman problem, and traveling purchaser problem. An example demonstrated

how different configurations of the local region can affect the performance of the agent.

Some of the methods presented in this chapter can be extended to perform long-term

planning, which can improve the solution quality when visiting multiple locations in

sequence. Such extensions are beyond the scope of this current work and are discussed

briefly in the last chapter.

287

7 CONCLUSION

The CMM framework has great potential for use in many applications. This final

chapter summarizes the contributions of the CMM framework and presents several

possibilities for future work.

7.1 Summary of the CMM Framework

In this work, we introduced the CMM framework as a simulation environment for

studying multiobjective pathfinding problems with partial observability. These problems

allow decision-making agents to demonstrate purposeful behavior in pursuit of a goal. The

scenarios are interpretable and can be adapted for use in other problem domains of interest

where it is beneficial to have a highly customizable, controllable, and repeatable test

environment. Beyond developing sequential decision-making models, the CMM

framework can also be used to generate synthetic trajectories that can be used for behavior

modeling and anticipatory analysis.

The models in the CMM framework embrace uncertainty using the machinery and

logic of fuzzy sets. Procedurally generated grid world environments are represented using

fuzzy weighted graphs where vertices represent spatial regions and edges indicate the cost

of moving between adjacent regions. Movement costs are represented as fuzzy numbers to

capture the uncertainty of the minimum, maximum, and expected feature values of each

edge. We employ various graph search techniques and approximations to compute the edge

weights of the region graph. In fully observable environments with no region clustering,

the features are crisp values. However, edges that are only partially observable or represent

288

movement between large regions are weighted with fuzzy feature values. This allows the

agent to express some degree of optimism or pessimism when choosing an action.

Multiple objectives are managed by defining a relative weight for each objective

and a scalarization function to reduce the problem to a single objective. We consider the

weighted sum, Tchebycheff, and OWA methods for scalarization. The OWA approach can

be implemented as a hybrid operator that represents a form of bounded rationality in which

the agent can only consider a few objectives at once. Feature values along a path are

aggregated using either summation or maximization, and an approximate scalarized path

cost for mixed aggregation methods can be computed using exponential scaling. A

multiobjective evolutionary algorithm with decomposition (MOEA/D) is used to find a

Pareto optimal set of nondominated paths.

We showed several examples that demonstrate how the CMM framework can be

used to solve multiobjective fuzzy least-cost path problems (MO-FLCPPs) in grid world

environments. The choice of features, region clustering parameters, and scalarization

method can greatly impact the solutions that are found. An experiment with many

randomly generated test instances across several problem types found that in general, the

MOEA/D search method can improve the quality of the solutions found over a pre-

scalarized approach. The amount of improvement is most apparent for problems with many

nonlinearities coming from either the aggregation method or scalarization function. We

finished with a demonstration of a greedy algorithm that can be used to solve generic

resource collecting problems. It was shown that the path followed by the greedy agent is

very sensitive to the interpretation of the environment formed by different region clustering

methods.

289

7.2 Future Work

The full potential of the CMM framework extends far beyond the material

discussed in this work. Our initial goal was to create a simulation environment that could

be used to study models of sequential multiobjective decision-making behavior in partially

observable environments for anticipatory analysis. To achieve this, we required an

environment in which an agent could demonstrate purposeful behavior while solving some

problem that could be recognized by an analyst. In particular, the pathfinding problem was

of considerable interest due to the nature of representing spatial uncertainty. The traveling

salesman problem and its more generic variant, the traveling purchaser problem, provided

highly configurable scenarios for the agent to solve.

Although reasoning about ideal models of environment representation and agent

knowledge yielded many promising ideas, an important goal of this work was to produce

a working computational framework that could facilitate many diverse experiments. This

required some design compromises to build a functional model. The CMM framework is

implemented in the Matlab programming language, which was chosen for its prototyping

efficiency and ease of visualization. Several optimizations helped to improve the runtime

performance, but certain assumptions were made for the sake of simplifying the

architectural requirements. Perhaps chiefly among these was the restriction to grid world

domains. Many of the methods in the CMM framework—such as procedural environment

generation, feature computation, and region clustering—assume a discrete grid structure.

Although these ideas could be adapted for continuous domains, it would not be a

straightforward exercise. One issue that arises with continuous domains is the increased

size of the search space when planning actions. This could be mitigated to some degree by

290

sampling a traversal graph and using a continuous form of region clustering. The spatial

relationships between regions could be represented as fuzzy attributes, giving greater

flexibility in the representation of the environment and allowing for uncertainty in the

location of each graph vertex. Such an approach would likely require significant changes

to the framework, but could make it easier to apply the models to real-world data.

The greedy agent strategy presented in this work is a straightforward solution to a

complex problem. A greedy approach can often create an acceptable solution to a problem

such as the TSP, but rarely an optimal one. To create more intelligent agents, an algorithm

such as ant colony optimization (ACO) can be used to plan the optimal sequence in which

goal locations should be visited. A fully connected planning graph would be defined over

all resources and the agent location. Simulated “ants” would stochastically solve the

problem and deposit pheromones on promising edges of the planning graph, attracting

future ants and eventually the agent itself. This approach could be used in a multiobjective

framework by combining ACO with MOEA/D (Ke, Zhang, and Battiti 2013).

In partially observable environments, the planning graph would need to include

unobserved regions if there is a possibility that the region contains a needed resource.

Depending on the region clustering method used, this could result in a very large graph.

An alternate approach is to sample potential resource locations in the environment and

build a distribution of the best paths to each sampled location. These paths can be used to

construct a value map of how beneficial it would be for the agent to move toward a given

area. This is the approach used by the Myopic Monte Carlo (MMC) agent policy in (Buck

and Keller 2016). Figure 7.1 shows an example of a partially observable traveling salesman

291

problem (PO-TSP) solved by a greedy agent policy such as the one given in Algorithm 6.4.

The same problem is solved by an MMC agent policy in Figure 7.2.

 (a) (b) (c) (d)

Figure 7.1 Some selected moments from the greedy policy’s solution for the PO-TSP with symbols enlarged

for clarity. (a) The initial mental map shows only what is visible from the agent’s starting location (red circle),

which includes two waypoints (blue crosses). The closest of these is chosen as the target objective (green

square). Grey areas indicate unknown areas of the environment and dots signify the possibility of a waypoint.

(b) The first five waypoints are acquired greedily and the sixth target is chosen as a waypoint that was

discovered along the route, but requires the agent to backtrack. (c) Nine targets are acquired by always

moving toward the nearest unvisited waypoint if one is visible, or the nearest unexplored area otherwise. (d)

The final target is hidden behind a corner that was not fully explored on the first pass and is not discovered

until the entire environment has been explored.

292

Although the MMC policy is an improvement over the greedy approach, it still does

not develop a complete plan to collect all waypoints as with ACO in fully observable

environments. To adapt ACO for partially observable environments, we can treat each ant

as a solution to the problem in an environment sampled from the distribution of all possible

environments based on the current state of the mental map. This is effectively the

approached used by Monte Carlo Tree Search (MCTS) (Browne et al. 2012) adapted for

partially observable domains (Silver and Veness 2010). MCTS has been very effective at

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Figure 7.2 Some selected moments from the MMC policy’s solution to the same PO-TSP environment used

in Figure 7.1. The top row (a-d) shows the pheromone map, which aggregates the shortest paths from the

agent to sampled waypoints. The bottom row (e-h) shows the value map, which defines a gradient that the

agent follows. Symbols are enlarged for clarity. The initial observation (e) is identical to Figure 7.1a, but

instead of picking a target location, 1000 waypoint locations are sampled and the shortest paths back to the

agent are aggregated in a persistent pheromone map (a). Performing value iteration on the unobserved regions

of (a) gives the gradient map (e) that the agent follows. (b) and (f) show the maps after reaching four

waypoints as the MMC agent recognizes the possibility of a waypoint in the top-right and discovers the

waypoint that was missed by the greedy agent. (c) and (g) show the maps after visiting eight waypoints when

the agent could proceed to the high value area in the left, but instead follows the local gradient toward the

top and discovers the ninth waypoint. The final maps are shown in (d) and (h) where most of the pheromone

has evaporated except for a single trail and only a single peak is left in the gradient map.

293

learning agent policies for problems modeled as Markov decision processes (MDPs) and

partially observable MDPs (POMDPs). A multiobjective version of MCTS was used to

solve the multiobjective physical traveling salesman problem (Perez et al. 2015), which

was based on a competition to design a controller for an agent solving the single objective

physical traveling salesman problem (Perez, Rohlfshagen, and Lucas 2012). MCTS

methods could be very effective at solving problems in the CMM framework, which is

well-suited for evaluating different agent strategies in a competition setting.

Lastly, we mention that the CMM framework can be used to develop advanced

visualization techniques for many-objective problems with fuzzy parameters. Solutions to

pathfinding problems are easy to understand and interpret in isolation, but it can be difficult

to convey the tradeoffs between many different Pareto optimal solutions. The visualization

approach in (He and Yen 2016) can be used to show high-dimensional Pareto fronts, and

the fuzzy rose diagrams introduced in (Buck and Keller 2014) can show fuzzy weighted

graphs and the expected costs of multiple route options. These methods and others could

help analysts better understand the results of multiobjective pathfinding algorithms.

In closing, there are many potential avenues of research involving the CMM

framework that could be further explored. From designing long-term agent strategies using

MOEA/D-ACO and MCTS, to using the simulator to generate synthetic trajectories for use

in anticipatory analysis applications, there are many possible use cases. Ultimately, the

tools and methods presented in this work should prove to be valuable resources in the

understanding of sequential multicriteria decision-making problems with uncertainty.

294

REFERENCES

Achanta, Radhakrishna, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and

Sabine Süsstrunk. 2012. “SLIC Superpixels Compared to State-of-the-Art

Superpixel Methods.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 34 (11): 2274–82. doi:10.1109/TPAMI.2012.120.

Aggarwal, Charu C., Alexander Hinneburg, and Daniel A. Keim. 2001. “On the

Surprising Behavior of Distance Metrics in High Dimensional Space.” In Database

Theory – ICDT 2001, 420–34. doi:10.1007/3-540-44503-X_27.

Amanatides, John, and Andrew Woo. 1987. “A Fast Voxel Traversal Algorithm for Ray

Tracing.” Eurographics 87 (3): 3–10. doi:10.1.1.42.3443.

Applegate, David L., Robert E. Bixby, Vasek Chvátal, and William J. Cook. 2007. The

Traveling Salesman Problem: A Computational Study. Princeton University Press.

http://press.princeton.edu/titles/8451.html.

Ashlock, Daniel. 2015. “Evolvable Fashion-Based Cellular Automata for Generating

Cavern Systems.” In 2015 IEEE Conference on Computational Intelligence and

Games (CIG), 306–13. IEEE. doi:10.1109/CIG.2015.7317958.

Aspers, Patrik. 2001. “Crossing the Boundary of Economics and Sociology: The Case of

Vilfredo Pareto.” American Journal of Economics and Sociology 60 (2): 519–45.

doi:10.1111/1536-7150.00073.

Bader, Johannes, and Eckart Zitzler. 2011. “HypE: An Algorithm for Fast Hypervolume-

Based Many-Objective Optimization.” Evolutionary Computation 19 (1): 45–76.

doi:10.1162/EVCO_a_00009.

Bellman, Richard. 1958. “On a Routing Problem.” Quarterly of Applied Mathematics 16

(1): 87–90.

Berlekamp, Elwyn R., John H. Conway, and Richard K. Guy. 1982. Winning Ways for

Your Mathematical Plays. American Mathematical Monthly. Vol. 1–2. New York:

Academic Press. doi:10.2307/2323620.

Berman, Oded, and Gabriel Y. Handler. 1987. “Optimal Minimax Path of a Single

Service Unit on a Network to Nonservice Destinations.” Transportation Science 21

(2): 115–22. doi:10.1287/trsc.21.2.115.

Blisard, Samuel N., and Marjorie Skubic. 2005. “Modeling Spatial Referencing

Language for Human-Robot Interaction.” In ROMAN 2005. IEEE International

Workshop on Robot and Human Interactive Communication, 2005., 698–703. IEEE.

doi:10.1109/ROMAN.2005.1513861.

Boctor, Fayez F., Gilbert Laporte, and Jacques Renaud. 2003. “Heuristics for the

Traveling Purchaser Problem.” Computers & Operations Research 30 (4): 491–504.

doi:10.1016/S0305-0548(02)00020-5.

Bonabeau, Eric. 2002. “Agent-Based Modeling: Methods and Techniques for Simulating

Human Systems.” Proceedings of the National Academy of Sciences 99 (Supplement

3): 7280–87. doi:10.1073/pnas.082080899.

295

Bowman, V. Joseph. 1976. “On the Relationship of the Tchebycheff Norm and the

Efficient Frontier of Multiple-Criteria Objectives.” In Multiple Criteria Decision

Making: Proceedings of a Conference Jouy-En-Josas, France May 21--23, 1975,

edited by Hervé Thiriez and Stanley Zionts, 76–86. Berlin, Heidelberg: Springer

Berlin Heidelberg. doi:10.1007/978-3-642-87563-2_5.

Bresenham, J. E. 1965. “Algorithm for Computer Control of a Digital Plotter.” IBM

Systems Journal 4 (1): 25–30. doi:10.1147/sj.41.0025.

Briggs, Ronald. 1973. “Urban Cognitive Distance.” In Image and Environment, edited by

R. M. Downs and D. Stea, 361–88. Chicago: Aldine.

Browne, Cameron B., Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon

Samothrakis, and Simon Colton. 2012. “A Survey of Monte Carlo Tree Search

Methods.” IEEE Transactions on Computational Intelligence and AI in Games 4 (1):

1–43. doi:10.1109/TCIAIG.2012.2186810.

Buck, Andrew R., and James M. Keller. 2014. “Visualizing Uncertainty with Fuzzy Rose

Diagrams.” In 2014 IEEE Symposium on Computational Intelligence for

Engineering Solutions (CIES), 30–36. IEEE. doi:10.1109/CIES.2014.7011827.

———. 2016. “A Myopic Monte Carlo Strategy for the Partially Observable Travelling

Salesman Problem.” In 2016 IEEE Congress on Evolutionary Computation (CEC),

632–39. IEEE. doi:10.1109/CEC.2016.7743852.

Buck, Andrew R., James M. Keller, and Mihail Popescu. 2014. “An α-Level OWA

Implementation of Bounded Rationality for Fuzzy Route Selection.” In Studies in

Fuzziness and Soft Computing, 312:253–60. doi:10.1007/978-3-319-03674-8_24.

Busch, Mark A., Marjorie Skubic, James M. Keller, and Kevin E. Stone. 2007. “A Robot

in a Water Maze: Learning a Spatial Memory Task.” In Proceedings 2007 IEEE

International Conference on Robotics and Automation, 1727–32. Roma: IEEE.

doi:10.1109/ROBOT.2007.363572.

Cadwallader, M. T. 1976. “Cognitive Distance in Intra-Urban Space.” In Environmental

Knowing, edited by G. T. Moore and R. G. Golledge, 316–24. Stroudsberg, PA:

Dowden, Hutchinson, and Ross.

Chapman, Paul. 2002. “Life Universal Computer.” http://www.igblan.free-

online.co.uk/igblan/ca/.

Chown, Eric, Stephen Kaplan, and David Kortenkamp. 1995. “Prototypes, Location, and

Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping.”

Cognitive Science 19 (1): 1–51. doi:10.1207/s15516709cog1901_1.

Cornelis, Chris, Peter De Kesel, and Etienne E. Kerre. 2004. “Shortest Paths in Fuzzy

Weighted Graphs.” International Journal of Intelligent Systems 19 (11): 1051–68.

doi:10.1002/int.20036.

Coucleis, H., R. G. Golledge, N. Gale, and W. Tobler. 1987. “Exploring the Anchor-

Point Hypothesis of Spatial Cognition.” Journal of Environmental Psychology 7 (2):

99–122. doi:10.1016/S0272-4944(87)80020-8.

Deb, Kalyanmoy, Manikanth Mohan, and Shikhar Mishra. 2005. “Evaluating the

Epsilon-Domination Based Multi-Objective Evolutionary Algorithm for a Quick

Computation of Pareto-Optimal Solutions.” Evolutionary Computation 13 (4): 501–

25. doi:10.1162/106365605774666895.

296

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. “A Fast and

Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on

Evolutionary Computation 6 (2): 182–97. doi:10.1109/4235.996017.

Dijkstra, E. W. 1959. “A Note on Two Problems in Connexion with Graphs.”

Numerische Mathematik 1 (1): 269–71.

Dorigo, Marco, Vittorio Maniezzo, and Albert Colorni. 1996. “Ant System: Optimization

by a Colony of Cooperating Agents.” IEEE Transactions on Systems, Man and

Cybernetics, Part B (Cybernetics) 26 (1): 29–41. doi:10.1109/3477.484436.

Downs, Roger M., and David Stea. 1977. Maps in Minds: Reflections on Cognitive

Mapping. New York: Harper & Row.

Dubois, D., and H. Prade. 1980. Fuzzy Sets and Systems: Theory and Applications. New

York: Academic Press.

Durand, F. 2000. “A Multidisciplinary Survey of Visibility.” In ACM SIGGRAPH Course

Notes Visibility, Problems, Techniques, and Applications. doi:10.1.1.15.8992.

Eliashberg, Victor. 2002. “What Is Working Memory and Mental Imagery? A Robot That

Learns to Perform Mental Computations.” System. Palo Alto, CA.

http://arxiv.org/abs/cs/0309009.

Fishman, Jeremy, Herman Haverkort, and Laura Toma. 2009. “Improved Visibility

Computation on Massive Grid Terrains.” In Proceedings of the 17th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems - GIS ’09, 121. New York, New York, USA: ACM Press.

doi:10.1145/1653771.1653791.

Floriani, Leila De, and Paola Magillo. 1994. “Visibility Algorithms on Triangulated

Digital Terrain Models.” International Journal of Geographical Information

Systems 8 (1): 13–41. doi:10.1080/02693799408901985.

Floyd, Robert W. 1962. “Algorithm 97: Shortest Path.” Communications of the ACM 5

(6): 345. doi:10.1145/367766.368168.

Fonseca, Carlos M., and Peter J. Fleming. 1995. “An Overview of Evolutionary

Algorithms in Multiobjective Optimization.” Evolutionary Computation 3 (1): 1–16.

doi:10.1162/evco.1995.3.1.1.

Ford Jr., R. L. 1956. “Network Flow Theory.” Santa Monica, California.

Fournier, Alain, Don Fussell, and Loren Carpenter. 1982. “Computer Rendering of

Stochastic Models.” Communications of the ACM 25 (6): 371–84.

doi:10.1145/358523.358553.

Franklin, Randolph, and Clark K. Ray. 1994. “Higher Isn’t Necessarily Better: Visibility

Algorithms and Experiments.” In Advances in GIS Research: Sixth International

Symposium on Spatial Data Handling, 2:1–22. doi:10.1.1.17.5634.

Fredman, Michael L., and Robert Endre Tarjan. 1984. “Fibonacci Heaps and Their Uses

in Improved Network Optimization Algorithms.” In 25th Annual Symposium on

Foundations of Computer Science, 1984., 34:338–46. IEEE.

doi:10.1109/SFCS.1984.715934.

———. 1987. “Fibonacci Heaps and Their Uses in Improved Network Optimization

Algorithms.” Journal of the ACM 34 (3): 596–615. doi:10.1145/28869.28874.

297

Gardner, Martin. 1970. “Mathematical Games: The Fantastic Combinations of John

Conway’s New Solitaire Game ‘life.’” Scientific American 223 (October): 120–123.

doi:10.1038/scientificamerican0169-116.

Gärling, T., A. Book, and E. Lindberg. 1985. “Adults’ Memory Representations of the

Spatial Properties of Their Everyday Physical Environment.” In The Development of

Spatial Cognition, edited by R. Cohen, 141–84. Hillsdale, NJ: Erlbaum Lawrence.

Gass, Saul, and Thomas Saaty. 1955. “The Computational Algorithm for the Parametric

Objective Function.” Naval Research Logistics Quarterly 2 (1–2). Wiley

Subscription Services, Inc., A Wiley Company: 39–45.

doi:10.1002/nav.3800020106.

Gould, Peter, and Rodney White. 1992. Mental Maps. Second edi. London: Routledge.

Guerriero, F., and R. Musmanno. 2001. “Label Correcting Methods to Solve Multicriteria

Shortest Path Problems.” Journal of Optimization Theory and Applications 111 (3):

589–613. doi:10.1023/A:1012602011914.

Gutin, Gregory, and Abraham Punnen. 2007. The Traveling Salesman Problem and Its

Variations. Edited by Gregory Gutin and Abraham P. Punnen. Vol. 12.

Combinatorial Optimization. Boston, MA: Springer US. doi:10.1007/b101971.

Hart, Peter, Nils Nilsson, and Bertram Raphael. 1968. “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths.” IEEE Transactions on Systems Science and

Cybernetics 4 (2): 100–107. doi:10.1109/TSSC.1968.300136.

Haverkort, Herman, Laura Toma, and Yi Zhuang. 2009. “Computing Visibility on

Terrains in External Memory.” Journal of Experimental Algorithmics 13 (1): 1.5.1-

1.5.23. doi:10.1145/1412228.1412233.

He, Zhenan, and Gary G. Yen. 2016. “Visualization and Performance Metric in Many-

Objective Optimization.” IEEE Transactions on Evolutionary Computation 20 (3):

386–402. doi:10.1109/TEVC.2015.2472283.

Hernandes, Fábio, Maria Teresa Lamata, José Luis Verdegay, and Akebo Yamakami.

2007. “The Shortest Path Problem on Networks with Fuzzy Parameters.” Fuzzy Sets

and Systems 158 (14): 1561–70. doi:10.1016/j.fss.2007.02.022.

Holland, John H., and John H. Miller. 1991. “Artificial Adaptive Agents in Economic

Theory.” The American Economic Review.

http://www.jstor.org/stable/10.2307/2006886.

Hu, T. C. 1961. “The Maximum Capacity Route Problem.” Operations Research 9 (6):

898–900.

Ishibuchi, Hisao, Noritaka Tsukamoto, and Yusuke Nojima. 2008. “Evolutionary Many-

Objective Optimization: A Short Review.” In 2008 IEEE Congress on Evolutionary

Computation, CEC 2008, 2419–26. doi:10.1109/CEC.2008.4631121.

Jaillet, Patrick. 1985. “Probabilistic Traveling Salesman Problems.” MIT.

Jain, Himanshu, and Kalyanmoy Deb. 2014. “An Evolutionary Many-Objective

Optimization Algorithm Using Reference-Point Based Nondominated Sorting

Approach, Part II: Handling Constraints and Extending to an Adaptive Approach.”

IEEE Transactions on Evolutionary Computation 18 (4): 602–22.

doi:10.1109/TEVC.2013.2281534.

298

Johnson, Lawrence, Georgios N. Yannakakis, and Julian Togelius. 2010. “Cellular

Automata for Real-Time Generation of Infinite Cave Levels.” In Proceedings of the

2010 Workshop on Procedural Content Generation in Games - PCGames ’10, 1–4.

New York, New York, USA: ACM Press. doi:10.1145/1814256.1814266.

Ke, Liangjun, Qingfu Zhang, and Roberto Battiti. 2013. “MOEA/D-ACO: A

Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony.”

IEEE Transactions on Cybernetics 43 (6): 1845–59.

Keller, James M., Mihail Popescu, and Dustin Gibeson. 2012. “An Extension of a

Confined Space Evacuation Model to Human Geography.” In 2012 IEEE

International Geoscience and Remote Sensing Symposium, 531–34. IEEE.

doi:10.1109/IGARSS.2012.6350861.

Kennedy, James, and Russell Eberhart. 1995. “Particle Swarm Optimization.” In

Proceedings of ICNN’95 - International Conference on Neural Networks, 4:1942–

48. IEEE. doi:10.1109/ICNN.1995.488968.

Kitchin, Rob, and Mark Blades. 2002. The Cognition of Geographic Space. London:

I.B.Tauris.

Klein, Cerry M. 1991. “Fuzzy Shortest Paths.” Fuzzy Sets and Systems 39 (1): 27–41.

doi:10.1016/0165-0114(91)90063-V.

Kreveld, Marc Van. 1996. “Variations on Sweep Algorithms: Efficient Computation of

Extended Viewsheds and Class Intervals.” In In Proc. 7th Int. Symp. on Spatial Data

Handling, 1–14.

Lafferty, John, Andrew Mccallum, and Fernando C. N. Pereira. 2001. “Conditional

Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.”

In Proceedings of the 18th International Conference on Machine Learning 2001

(ICML 2001), 2001:282–89.

Lee, C. Y. 1961. “An Algorithm for Path Connections and Its Applications.” IEEE

Transactions on Electronic Computers EC-10 (3): 346–65.

doi:10.1109/TEC.1961.5219222.

Li, Bingdong, Jinlong Li, Ke Tang, and Xin Yao. 2015. “Many-Objective Evolutionary

Algorithms.” ACM Computing Surveys 48 (1): 1–35. doi:10.1145/2792984.

Loui, Ronald Prescott. 1983. “Optimal Paths in Graphs with Stochastic or

Multidimensional Weights.” Communications of the ACM 26 (9): 670–76.

doi:10.1145/358172.358406.

Luke, Robert H., James M. Keller, Marjorie Skubic, and Steven Senger. 2005.

“Acquiring and Maintaining Abstract Landmark Chunks for Cognitive Robot

Navigation.” In 2005 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2566–71. IEEE. doi:10.1109/IROS.2005.1545556.

Lynch, Kevin. 1960. The Image of the City. Cambridge, Mass.: M.I.T. Press.

Mandelbrot, Benoit B. 1983. The Fractal Geometry of Nature. American Journal of

Physics. Vol. 51. doi:10.1017/CBO9781107415324.004.

Mandelbrot, Benoit B., and John W. Van Ness. 1968. “Fractional Brownian Motions,

Fractional Noises and Applications.” SIAM Review 10 (4): 422–37.

doi:10.1137/1010093.

Martins, Eernesto Queiros Vieira. 1984. “On a Multicriteria Shortest Path Problem.”

European Journal of Operation Research 16 (2): 236–45.

299

Miettinen, Kaisa. 1999. Nonlinear Multiobjective Optimization. Boston: Kluwer

Academic Publishers.

Mitchell, Don P. 1991. “Spectrally Optimal Sampling for Distribution Ray Tracing.” In

Proceedings of the 18th Annual Conference on Computer Graphics and Interactive

Techniques - SIGGRAPH ’91, 25:157–64. New York, New York, USA: ACM Press.

doi:10.1145/122718.122736.

Moazeni, Somayeh. 2006. “Fuzzy Shortest Path Problem with Finite Fuzzy Quantities.”

Applied Mathematics and Computation 183 (1): 160–69.

doi:10.1016/j.amc.2006.05.067.

Moore, E. F. 1957. “The Shortest Path through a Maze.” In Proceedings of an

International Symposium on the Theory of Switching, 285–92. Cambridge,

Massachusetts: Harvard University Press.

Musgrave, F. Kenton, Craig E. Kolb, and Robert S. Mace. 1989. “The Synthesis and

Rendering of Eroded Fractal Terrains.” ACM SIGGRAPH Computer Graphics 23

(3): 41–50. doi:10.1145/74334.74337.

Niazi, Muaz, and Amir Hussain. 2011. “Agent-Based Computing from Multi-Agent

Systems to Agent-Based Models: A Visual Survey.” Scientometrics 89 (2): 479–99.

doi:10.1007/s11192-011-0468-9.

Okada, Shinkoh, and Timothy Soper. 2000. “A Shortest Path Problem on a Network with

Fuzzy Arc Lengths.” Fuzzy Sets and Systems 109 (1): 129–40. doi:10.1016/S0165-

0114(98)00054-2.

Packard, Norman H., and Stephen Wolfram. 1985. “Two-Dimensional Cellular

Automata.” Journal of Statistical Physics 38 (5–6): 901–46.

doi:10.1007/BF01010423.

Perez, Diego, Sanaz Mostaghim, Spyridon Samothrakis, and Simon M. Lucas. 2015.

“Multiobjective Monte Carlo Tree Search for Real-Time Games.” IEEE

Transactions on Computational Intelligence and AI in Games 7 (4): 347–60.

doi:10.1109/TCIAIG.2014.2345842.

Perez, Diego, Philipp Rohlfshagen, and Simon M. Lucas. 2012. “The Physical Travelling

Salesman Problem: WCCI 2012 Competition.” 2012 IEEE Congress on

Evolutionary Computation, CEC 2012, 10–15. doi:10.1109/CEC.2012.6256440.

Perlin, Ken. 1985. “An Image Synthesizer.” ACM SIGGRAPH Computer Graphics 19

(3): 287–96. doi:10.1145/325165.325247.

Phillips, Joshua L., and David C. Noelle. 2005. “A Biologically Inspired Working

Memory Framework for Robots.” In ROMAN 2005. IEEE International Workshop

on Robot and Human Interactive Communication, 2005., 599–604. IEEE.

doi:10.1109/ROMAN.2005.1513845.

Pollack, Maurice. 1960. “The Maximum Capacity Through a Network.” Operations

Research 8 (5): 733–36. doi:10.1287/opre.8.5.733.

Popescu, Mihail, and James M. Keller. 2012. “Implementing Bounded Rationality in

Disaster Agent Behavior Using OGA Operators.” In 2012 IEEE International

Geoscience and Remote Sensing Symposium, 5379–81. IEEE.

doi:10.1109/IGARSS.2012.6352391.

300

Qingfu Zhang, and Hui Li. 2007. “MOEA/D: A Multiobjective Evolutionary Algorithm

Based on Decomposition.” IEEE Transactions on Evolutionary Computation 11 (6):

712–31. doi:10.1109/TEVC.2007.892759.

Riera-Ledesma, Jorge, and Juan José Salazar-González. 2005. “A Heuristic Approach for

the Travelling Purchaser Problem.” European Journal of Operational Research 162

(1): 142–52. doi:10.1016/j.ejor.2003.10.032.

Russell, Stuart, and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach, 3rd

Edition. Prentice Hall.

Shaker, Noor, Julian Togelius, and Mark J. Nelson. 2016. Procedural Content

Generation in Games. Computational Synthesis and Creative Systems. Cham:

Springer International Publishing. doi:10.1007/978-3-319-42716-4.

Silver, David, and Joel Veness. 2010. “Monte-Carlo Planning in Large POMDPs.” In

Advances in Neural Information Processing Systems (2010), 2164–72.

http://discovery.ucl.ac.uk/1347369/.

Simon, Herbert A. 1955. “A Behavioral Model of Rational Choice.” The Quarterly

Journal of Economics 69 (1): 99–118.

Skubic, Marjorie, David Noelle, Mitch Wilkes, Kazuhiko Kawamura, and James M.

Keller. 2004. “A Biologically Inspired Adaptive Working Memory for Robots.” In

AAAI Fall Symp., Workshop on the Intersection of Cognitive Science and Robotics:

From Interfaces to Intelligence, 68–75.

http://www.aaai.org/Papers/Symposia/Fall/2004/FS-04-05/FS04-05-010.pdf.

Smith, Noah A., and Roy W. Tromble. 2004. “Sampling Uniformly from the Unit

Simplex.” Johns Hopkins University, Tech. Rep.

http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf.

Tarapata, Zbigniew. 2007. “Selected Multicriteria Shortest Path Problems: An Analysis

of Complexity, Models and Adaptation of Standard Algorithms.” International

Journal of Applied Mathematics and Computer Science 17 (2): 269–87.

doi:10.2478/v10006-007-0023-2.

Thrun, Sebastian. 2002. “Robotic Mapping: A Survey.” In Exploring Artificial

Intelligence in the New Millennium. Morgan Kaufmann.

http://robots.stanford.edu/papers/thrun.mapping-tr.pdf.

Togelius, Julian, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis. 2011.

“What Is Procedural Content Generation? Mario on the Borderline.” In Proceedings

of the 2nd International Workshop on Procedural Content Generation in Games -

PCGames ’11, 1–6. New York, New York, USA: ACM Press.

doi:10.1145/2000919.2000922.

Tolman, Edward C. 1948. “Cognitive Maps in Rats and Men.” Psychological Review 55

(4): 189–208.

Trivedi, Anupam, Dipti Srinivasan, Krishnendu Sanyal, and Abhiroop Ghosh. 2016. “A

Survey of Multiobjective Evolutionary Algorithms Based on Decomposition.” IEEE

Transactions on Evolutionary Computation 21 (3): 1–1.

doi:10.1109/TEVC.2016.2608507.

Wang, Xuzhu, and Etienne E. Kerre. 2001a. “Reasonable Properties for the Ordering of

Fuzzy Quantities (I).” Fuzzy Sets and Systems 118 (3): 375–85. doi:10.1016/S0165-

0114(99)00062-7.

301

———. 2001b. “Reasonable Properties for the Ordering of Fuzzy Quantities (II).” Fuzzy

Sets and Systems 118 (3): 387–405. doi:10.1016/S0165-0114(99)00063-9.

Warshall, Stephen. 1962. “A Theorem on Boolean Matrices.” Journal of the ACM 9 (1):

11–12. doi:10.1145/321105.321107.

Yager, Ronald R. 1988. “On Ordered Weighted Averaging Aggregation Operators in

Multicriteria Decisionmaking.” IEEE Transactions on Systems, Man, and

Cybernetics 18 (1): 183–90. doi:10.1109/21.87068.

Yang, Shengxiang, Miqing Li, Xiaohui Liu, and Jinhua Zheng. 2013. “A Grid-Based

Evolutionary Algorithm for Many-Objective Optimization.” IEEE Transactions on

Evolutionary Computation 17 (5): 721–36. doi:10.1109/TEVC.2012.2227145.

Zadeh, L. A. 1963. “Optimality and Non-Scalar-Valued Performance Criteria.” IEEE

Transactions on Automatic Control 8 (1): 59–60. doi:10.1109/TAC.1963.1105511.

———. 1965. “Fuzzy Sets.” Information and Control 8 (3): 338–53. doi:10.1016/S0019-

9958(65)90241-X.

———. 1975a. “The Concept of a Linguistic Variable and Its Application to

Approximate reasoning—I.” Information Sciences 8 (3): 199–249.

doi:10.1016/0020-0255(75)90036-5.

———. 1975b. “The Concept of a Linguistic Variable and Its Application to

Approximate Reasoning—II.” Information Sciences 8 (4): 301–57.

doi:10.1016/0020-0255(75)90046-8.

Zare, Alina, Zachary Fields, James M. Keller, and Joshua Horton. 2012. “Agent-Based

Rumor Spreading Models for Human Geography Applications.” In 2012 IEEE

International Geoscience and Remote Sensing Symposium, 5394–97. IEEE.

doi:10.1109/IGARSS.2012.6352387.

Zeleny, M. 1973. “Compromise Programming.” In Multiple Criteria Decision Making,

edited by J Cochrane and M Zeleny, 262–301. Columbia: University of South

Carolina Press.

Zhao, Yanli, Anand Padmanabhan, and Shaowen Wang. 2013. “A Parallel Computing

Approach to Viewshed Analysis of Large Terrain Data Using Graphics Processing

Units.” International Journal of Geographical Information Science 27 (2): 363–84.

doi:10.1080/13658816.2012.692372.

Zhou, Aimin, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam

Suganthan, and Qingfu Zhang. 2011. “Multiobjective Evolutionary Algorithms: A

Survey of the State of the Art.” Swarm and Evolutionary Computation 1 (1).

Elsevier B.V.: 32–49. doi:10.1016/j.swevo.2011.03.001.

Zitzler, Eckart, Marco Laumanns, and Stefan Bleuler. 2004. “A Tutorial on Evolutionary

Multiobjective Optimization.” In Metaheuristics for Multiobjective Optimisation, 3–

37. doi:10.1007/978-3-642-17144-4_1.

302

VITA

Andrew (Drew) Robert Buck grew up in Kansas City, MO and graduated as a

valedictorian of the Park Hill HS class of 2004. He attended the University of Missouri in

Columbia, MO and earned Bachelor of Science degrees in Computer Engineering and

Electrical Engineering in 2009. During his final undergraduate year, he began working with

Dr. James Keller on a research project titled “Text-to-Sketch,” which convinced him to

pursue a graduate education at the University of Missouri. In 2012, he earned a Master of

Science degree in Computer Engineering and continued to work toward a Ph.D. in

Electrical and Computer Engineering. Following the conclusion of the “Text-to-Sketch”

project, he joined the human geography research group and studied models of agent

decision-making behavior, which led to the present work. He currently holds a research

assistantship and performs target detection on side-looking 3D radar imagery.

Andrew has presented at multiple international conferences and earned numerous

awards, including the Donald K. Anderson Graduate Research Assistant Award,

Outstanding Ph.D. Student Award, and Outstanding Masters Student Award. He has

coauthored several published research papers, winning best paper and best student paper

awards at two IEEE symposiums. Throughout his undergraduate career, he played the

trombone in Marching Mizzou and other university ensembles, and continues to play with

the Columbia Community Band. His interests include computational intelligence, spatial

reasoning, visualization, robotics, games, and the outdoors.

