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ABSTRACT 

Multicriteria decision-making problems arise in all aspects of daily life and form 

the basis upon which high-level models of thought and behavior are built. These problems 

present various alternatives to a decision-maker, who must evaluate the trade-offs between 

each one and choose a course of action. In a sequential decision-making problem, each 

choice can influence which alternatives are available for subsequent actions, requiring the 

decision-maker to plan ahead in order to satisfy a set of objectives. These problems become 

more difficult, but more realistic, when information is restricted, either through partial 

observability or by approximate representations. 

Pathfinding in partially observable environments is one significant context in which 

a decision-making agent must develop a plan of action that satisfies multiple criteria. In 

general, the partially observable multiobjective pathfinding problem requires an agent to 

navigate to certain goal locations in an environment with various attributes that may be 

partially hidden, while minimizing a set of objective functions. To solve these types of 

problems, we create agent models based on the concept of a mental map that represents the 

agent's most recent spatial knowledge of the environment, using fuzzy numbers to 

represent uncertainty. We develop a simulation framework that facilitates the creation and 

deployment of a wide variety of environment types, problem definitions, and agent models. 

This computational mental map (CMM) framework is shown to be suitable for studying 

various types of sequential multicriteria decision-making problems, such as the shortest 

path problem, the traveling salesman problem, and the traveling purchaser problem in 

multiobjective and partially observable configurations.
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1 INTRODUCTION 

The partially observable multicriteria pathfinding problem is well-suited for 

studying models of agent behavior. In this introductory chapter, we present the motivation 

for investigating these types of problems and give an overview of the simulation framework 

developed for this work. We list some of the major contributions of this work and provide 

some potential applications. 

1.1 Problem Statement 

Imagine a scenario in which you are tasked with finding the best route through an 

environment to some goal location. Perhaps there are multiple paths to consider, each with 

different attributes that make them more or less desirable according to your particular 

preferences. Figure 1.1 shows an example scene with three different routes to choose from. 

The shortest route goes directly over a hill, but it is steep and unpaved. The next shortest 

route goes through a forest that provides shade and has only a mild elevation change, but 

the route is still unpaved and has a stream crossing with no bridge. The last route is the 

longest, but it is completely paved and has almost no elevation change. Depending on how 

you value factors such as the path length, steepness, and path quality, any one of these 

paths could be considered the best choice. Once you begin down one of the paths, you may 

discover some new information that causes you to reevaluate your situation and develop a 

new plan. For example, if you started down the forested path and found that the stream 

crossing was flooded, you might choose to turn around and go a different way. 
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Now consider an autonomous agent faced with a similar scenario. This could be a 

robot or drone that needs to navigate through an unknown environment to a goal location 

while minimizing some set of objective functions such as distance, travel time, and risk. 

The agent uses various sensors to observe the world around it and constructs an internal 

representation of the environment in the form of a map. It uses this map to plan a course of 

action that best satisfies the predetermined criteria and begins to execute the plan. After 

each movement action, the agent receives a new observation and updates its internal map. 

If the original plan becomes invalid or a better route is discovered, the agent develops a 

new plan and responds accordingly. 

 

Figure 1.1  Example environment with three different path options to reach a goal location. 
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Although the problem domain in this example is navigating through a physical 

environment, these types of partially observable sequential multicriteria decision-making 

problems occur in many additional real-world contexts. These include optimal packet 

routing through a computer network with uncertain loads, making long-term business 

decisions based on variable market factors, and designing optimal strategies for games with 

hidden information. These are all problems that are addressed by a decision-making agent 

(or agents) with a given set of goals and criteria. When the problem needs to be solved 

autonomously, such as with a self-guided robot or a recommendation system, the agent 

behavior should be defined in a structured and explainable way that responds appropriately 

for a wide variety of possible inputs. 

Designing the desired agent behaviors can be a challenging problem. Good training 

data may not be available and what is available may be limited or incomplete. For many 

applications, it is often preferable to simulate the problem domain to give the designer 

complete control over the model. These results can then be applied in real-world contexts 

for final evaluation. Using a simulated environment allows for the creation of a virtually 

unlimited number of problem scenarios, each fine-tuned to study only the relevant aspects 

of the problem. It also allows the agent to easily internalize a representation of the problem 

domain, which can then be used to plan future actions. 

The navigation problem is an ideal domain to study partially observable sequential 

multicriteria decision-making strategies. It is easy to visualize and understand the agent 

objectives and to develop interpretable problem scenarios. These can be thought of as 

proxy problems for other domains that may not be as straightforward to study. The agent’s 

internal model of the environment is represented intuitively as a mental map, providing a 
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sense of spatial awareness that can help with planning. Spatial problem solving has also 

been studied extensively within the fields of mobile robotics and environmental 

psychology. We can build upon these existing models of wayfinding behavior to create 

simulations of autonomous agents for the navigation problem domain. 

The primary focus of this work is the definition and development of the 

computational mental map (CMM) simulation framework. This framework allows for the 

creation of pathfinding scenarios that test different agent strategies in multiobjective and 

partially observable problems. We design these problems as a type of resource collecting 

game, where the agent moves within a grid world environment seeking out resources that 

may not be initially visible, all while working to minimize a set of objective functions. We 

show how the CMM framework can be used to study shortest path problems, the traveling 

salesman problem, and the traveling purchaser problem with various agent profiles. The 

result of each problem simulation is the path chosen by the agent for that scenario. Just as 

there may not be a “correct” answer for the three-route problem in Figure 1.1, solutions to 

problems in the CMM framework can only be evaluated using some established scoring 

metric. For some applications, the solution paths themselves are a useful dataset that can 

be used to anticipate how a given agent might act in a new situation. 

The rest of this chapter provides an overview of the CMM framework and details 

some of the major contributions and potential applications of this work. Chapter 2 provides 

a literature review of the background material that this work builds upon. Chapter 3 

describes the process for creating the grid world environments used to define the 

pathfinding problems. Chapter 4 introduces the concept of the mental map, used by the 

agent to represent the observed environment. Chapter 5 defines the region graph, which is 
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used to summarize the spatial properties of the mental map as a fuzzy weighted graph. 

Chapter 6 shows how this graph can be used to solve least-cost path problems in gridded 

domains and presents a greedy agent algorithm. Finally, Chapter 7 concludes this work by 

summarizing the capabilities of the CMM framework and proposing extensions of the 

greedy algorithm for improved agent strategies on more complex problems. 

1.2 The Computational Mental Map Framework 

The computational mental map (CMM) simulation architecture consists of two 

main components: an environment problem server and an agent program that interacts with 

the server to solve a specified problem. An overview of the server/client model is shown 

in Figure 1.2. The server component is responsible for defining the environment model ℰ 

and implementing the physics of the world by waiting for and implementing the client’s 

actions. The client acts as the decision-making agent 𝒜 and receives information about the 

environment in the form of observations 𝒪 from the server. The agent uses these 

observations to construct and update a mental map representation of the environment ℳ, 

which may be incomplete or contain other types of uncertainty or imprecision. The agent’s 

goal is to move through the environment and collect a certain number of predefined 

resources while minimizing a set of objective functions. Using the information in the 

mental map, the agent develops a plan that brings it closer to satisfying the goal conditions 

and sends the appropriate sequence of actions to the server. 
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The environments are procedurally generated grid worlds with various terrain types 

and elevation. In some environments, a maze-like cavern map is generated to create walls 

and passageways that reduce visibility. Some example environments are shown in Figure 

1.3. The CMM server maintains the location of the agent within the environment and 

defines the locations of the resources. In shortest path problems, there may only be a single 

resource (goal) location, whereas multiple resource locations are defined for the traveling 

salesman and traveling purchaser problems. In the traveling salesman problem, each 

resource is the same type, whereas in the traveling purchaser problem, there are different 

types of resources that the agent can choose from. Details regarding the creation of the grid 

world environments are given in Chapter 3. 

 

Figure 1.2  Block diagram of the server/client architecture used in the CMM framework. 
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The agent can move through the environment in discrete steps to adjacent grid cells. 

Each step has multiple costs associated with it, defined by the environment attributes: 

terrain type, elevation, and observability. The agent specifies to the server a direction to 

move in and the server responds with an observation of the visible part of the environment 

from the agent’s new location. The agent uses these observations to form a mental map 

image of the grid world, showing where resources and environmental features are located. 

Chapter 4 describes how observations are computed in the grid world domain and 

introduces the action graph, which is a fuzzy weighted graph that represents the movement 

actions available to the agent and their costs. Figure 1.4 (a) shows an example of a mental 

map and action graph where only part of the environment is observable. 

     
 

     

Figure 1.3  Examples of grid world environments from the CMM framework. 
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For some planning algorithms in large environments the action graph contains too 

much information to process quickly. To simplify the action graph and to provide a model 

that more closely resembles human models of spatial reasoning, we develop an approach 

to group adjacent grid cells into regions and define a region graph that can be used for high-

level planning. Figure 1.4 (b) shows an example of a region graph, where each node 

represents multiple adjacent grid cells. As the agent moves, new parts of the environment 

are observed and the region graph is recomputed. Chapter 5 discusses the process for 

initializing and updating the region graph in the CMM framework. 

We generalize the various pathfinding problem types as a resource collecting game. 

The agent is initialized with a list of demanded resources and the agent's goal is to plan a 

route through the environment that will collect enough of each resource type. When the 

   

 (a) (b) 

Figure 1.4  An agent’s mental map for an example scenario showing the action graph (a) and the region graph 

(b). The action graph shows where the agent can move and the region graph summarizes this information for 

high-level planning. 
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full environment is observable, the agent can develop a complete plan before actually 

moving. However, if there are parts of the environment that cannot be seen initially, then 

the agent may only be able to produce a partial plan that is updated as new information is 

discovered. Finding the least-cost path between two grid cells in an environment is the 

fundamental component of nearly all agent strategies. Chapter 6 describes how an agent 

can find a least-cost path in a fuzzy weighted graph with multiple objectives. We consider 

both gridded environments and general graphs and present a greedy agent strategy for 

solving generic resource collecting problems in the CMM framework. 

There are many variations that can be applied within the CMM framework to focus 

on different aspects of the overall planning and optimization process. In general, these can 

be divided into the parameters that control how the environment is created and those that 

govern the behavior of the agent. While this work focuses mainly on environment 

generation parameters and a generic greedy approach for solving least-cost path problems, 

there are many additional potential applications. Chapter 7 concludes with a summary of 

the capabilities of the CMM framework and discusses some possible directions for future 

work with more advanced agent behaviors. These include strategies based on ant colony 

optimization and Markov decision processes. 

1.3 Contributions and Potential Applications 

Two of the major themes of this work are multiobjective optimization and planning 

under uncertainty. Both areas have seen significant research interest for a variety of 

applications. Multiobjective optimization is used for designing products and systems, 

making strategic decisions in economic and business settings, and managing limited 
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resources and conflicting objectives. Likewise, planning in partially observable 

environments is a critical capability for mobile robots and decision-making agents. 

Multiple methods and techniques have been developed to assess multiobjective problems 

and to help a decision-maker choose an appropriate solution. The vast majority of 

multiobjective optimization methods are used to address problems with no uncertainty. 

Also, most planning techniques are designed with a single objective or reward in mind, 

reducing multiple costs to a single value before optimizing. A major goal of this work is to 

develop tools and methods that can be used to study multiobjective decision-making and 

planning under uncertainty. 

The CMM framework is designed to be a benchmark and simulation tool that can 

model the behavior of a decision-making agent in various configurable scenarios. The 

problem domain uses pathfinding in partially observable grid world environments to 

provide a goal for each agent to pursue. While this allows for an interpretable explanation 

of each example, these problems can also be used as generic templates for other 

applications. For instance, the environment creation process could be modified to produce 

a specific type of fuzzy weighted graph that matches a real-world problem requiring a least-

cost path solution. This could occur in the development of personalized navigation systems 

or robot navigation. Many of the methods presented in this work can likewise be extended 

to other problem domains. For example, the process of computing a region graph of a grid 

world environment could be used to develop image features for classification or analysis. 

One potential application of this work is to provide an unlimited number of training 

and testing examples of simulated agent behavior. This can be used to develop techniques 

for performing anticipatory analysis, which is a desirable capability in the intelligence 



11 

community. Human behavior is difficult to predict, but an approximate model of behavior 

can be learned by observing the responses of a decision-maker in many different situations. 

A richly attributed environment with many feature values can help to make sure that a 

given agent’s choices are unique and distinguishable from other agents. In the context of a 

game environment, player modeling allows an opponent to anticipate the player’s next 

actions and develop a more effective plan. 

The CMM framework presented in this work is a starting point for developing more 

complex models of agent behavior. We build upon existing models of cognitive mapping 

and wayfinding, and begin with a foundation in procedurally generated environments, 

fuzzy methods, and multiobjective optimization. These are introduced along with other 

background concepts in the next chapter. 
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2 BACKGROUND 

The CMM framework developed in this work draws upon many diverse 

backgrounds. We begin this chapter with a review of cognitive mapping and its origins for 

creating models of human wayfinding behavior. We next introduce fuzzy numbers and the 

fuzzy weighted graph representation. Then, we discuss methods of procedural content 

generation used to create the grid world environments. We continue with a comprehensive 

background on multiobjective optimization and end with a discussion on agent-based 

models. 

2.1 Wayfinding and Cognitive Mapping 

Wayfinding can be described as the process of spatial problem solving. In the 

wayfinding problem, a decision-making agent orients itself in an environment and 

navigates to some destination. It uses landmarks and cues to determine its position and to 

determine the best route to take. As the agent moves, it continues to update its plan using 

any new information that is acquired. Humans and animals routinely solve wayfinding 

problems in their everyday lives as they move about their environments, working to satisfy 

their goals and objectives. Autonomous agents are also being used increasingly to assist 

people in making navigation decisions and to carry out actions without human input. Self-

driving cars, unmanned aerial vehicles, and other mobile robots are just a few examples of 

machines that must think on their own about how to solve problems of spatial navigation. 

In general, wayfinding is a challenging computational problem that can be 

compounded by a lack of knowledge or perfect information. Furthermore, a decision-maker 
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may have multiple conflicting objectives that cannot all be optimized simultaneously. 

Within these partially observable multi-objective environments, an agent must decide how 

best to navigate using only the information that is available. For humans, this process is 

called cognitive mapping and it results in an information structure known as a mental map. 

Although humans may not be optimal problem solvers from a computational point of view, 

the concept of the mental map has proven to be a useful way to represent imprecise spatial 

knowledge and develop navigation plans. 

The CMM framework is inspired by the study of how a person might make 

navigation decisions in an unfamiliar environment. The notion of using a cognitive map to 

represent spatial information dates as far back as the seminal work of Tolman (Tolman 

1948), who established the now famous paradigm of studying decision-making behavior 

by observing how rats move through mazes. His work helped establish the fields of 

cognitive psychology and decision theory. Since these early studies, dozens of researchers 

have proposed behavioral models to explain the way humans make decisions in physical 

environments (Kitchin and Blades 2002). Error! Reference source not found. shows an 

example diagram of the general cognitive mapping process. An individual acting in an 

unknown environment maintains a set of beliefs about the world that influence the values 

or goals he or she wishes to achieve. These are combined with the most recent observation 

of the world to form a spatial image of the environment in working memory. This image is 

stored for later use and also updates the individual’s beliefs about the world. A set of 

physical constraints are evaluated with the image to form a decision of the next immediate 

action to take. When applied in the environment, this action produces a behavior that can 

be observed in the real world and results in some new information presented to the 
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individual. The cycle repeats indefinitely, with the individual’s desires and beliefs 

changing over time. Many variations of this general framework have been developed for 

use in various problem domains. 

 

A mental map is the manifestation of an individual’s spatial knowledge and beliefs 

into a geospatial context. Mental maps are often studied by asking a person to draw a map 

of their environment, or to relate spatial quantities such as the distance between two 

landmarks (Gould and White 1992). For instance, a mental map of an urban environment 

could be represented as a hierarchical structure consisting of paths, edges, districts, 

landmarks, and nodes (Lynch 1960). The cognitive distances within a mental map are 

unique to each individual and can be based on a variety of factors, including the amount of 

expected energy required to move along a route, patterns in the environment, and symbolic 

representations such as maps and road signs (Briggs 1973). These individual differences 

 

Figure 2.1  Generative model of cognitive mapping adapted from (Kitchin and Blades 2002). An individual 

observes the environment and constructs a mental image. This image is combined with other knowledge to 

produce a decision in the environment. 
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lead to distortions in the map that may not necessarily align with ground truth data 

(Coucleis et al. 1987). 

In general, mental maps may contain additional types of knowledge and reasoning 

processes besides just spatial information. Rules that govern an individual’s behavior 

dictate important spatial decisions, such as the decision to move or not move, where to go, 

which route to take, and the method of transportation (Cadwallader 1976; Gärling, Book, 

and Lindberg 1985). In order to use a mental map for navigation, a person must first orient 

and conflate his or her mental map with the real world, identify an objective, and choose a 

route to follow (Downs and Stea 1977). The PLAN model (Prototypes, Location, and 

Associative Networks) (Chown, Kaplan, and Kortenkamp 1995) is an example method that 

implements this wayfinding process. In this model, the visual recognition of “what” is in 

the scene is combined with the spatial knowledge of “where” the visual landmarks appear. 

The landmarks are related to each other with a spatial relational graph that describes their 

relative positions. This attributed graph can then be used to represent the individual’s 

mental map. 

2.2 Procedural Content Generation 

The study of wayfinding problems is often hampered by the difficulty of conducting 

controlled research experiments. Studies involving human subjects are limited by available 

time and resources, and usually consist of a relatively small number of data samples. 

Designing appropriate problems to solve can be a challenging and time-consuming task for 

a researcher, who may seek to use some automated methods for assistance. Using a game 
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engine as a synthetic problem domain to study wayfinding problems allows for the creation 

of a nearly infinite number of environments and scenarios. 

Procedural Content Generation (PCG) for games can be defined as “the algorithmic 

creation of game content with limited or indirect user input” (Togelius et al. 2011). PCG is 

often used to produce content for games such as levels, maps, items, game rules, etc. A 

“game” in this context may refer to videogames, board games, puzzles, or any sort of 

interactive experience that is in some way “playable.” The value of using PCG over manual 

content creation is that PCG allows a computer algorithm to perform a task that might take 

a long time for a human designer. Furthermore, PCG can be parameterized in such a way 

that the generated content exhibits a desired set of properties. A designer can use PCG to 

enhance their own creativity by creating novel and unexpected solutions to content 

generation problems (Shaker, Togelius, and Nelson 2016). 

There are many different approaches to PCG that can be used to create specific 

types of content. In this work, we use PCG to create environment maps that exhibit 

desirable characteristics for the problems we wish to study. We focus mainly on two 

common approaches: cellular automata and fractal terrain. For cellular automata, we 

consider both traditional and fashion-based update rules. These are described in the 

following sections. 

2.2.1 Cellular Automata 

A cellular automation is an iterative computational model that operates over a 

discrete domain. Perhaps the most famous example is Conway’s Game of Life (Gardner 

1970) that simulates a grid of cells that can evolve into complex patterns demonstrating 
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emergent behavior and self-organization. In the Game of Life, the domain is a flat grid of 

cells that each can be in one of two states: alive or dead. We define a neighborhood for 

each cell, consisting of the eight neighboring cells, including those diagonally adjacent. 

This is called the Moore neighborhood and is just one of many possible neighborhood 

definitions. (Another possibility is the von Neumann neighborhood, which consists of only 

the four orthogonally adjacent cells.) 

A simulation of a cellular automation iterates through a sequence of states 𝑠𝑡, where 

𝑡 ≥ 0 indicates the time step. The initial state 𝑠0 defines the starting state of each grid cell 

as either alive or dead. For each subsequent time step, the new state of a cell 𝑥(𝑖,𝑗) is defined 

by the current states of the cells in its neighborhood. A transition rule can be defined as a 

lookup table over all possible neighborhood configurations, or more commonly as a 

function of the proportion of neighboring cells that are in each state. Each rule gives rise 

to a unique behavior that can be classified based on whether it converges to a stable or 

periodic state, or if it exhibits chaotic non-repeating behavior (Packard and Wolfram 1985). 

In the Game of Life, the transition rule is specified using the following conditions: 

1. A living cell that has two or three living neighbors survives to the next generation. 

2. A living cell with more than three living neighbors dies from overpopulation. 

3. A living cell that has fewer than two living neighbors dies from isolation. 

4. A dead cell that has exactly three living neighbors becomes alive as through 

reproduction. 

5. A dead cell with any number other than three living neighbors remains dead. 
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These rules are applied to each cell simultaneously to produce the next generation. The 

initial configuration of the cell states defines how the simulation will evolve. Various 

patterns have been discovered that result in fascinatingly complex configurations, such as 

blinkers, gliders, spaceships, and pulsars (Berlekamp, Conway, and Guy 1982). The Game 

of Life can even be configured as a universal Turing machine that (given enough time and 

space) is theoretically as powerful as any computer (Chapman 2002)! 

Various types of cellular automata have been shown to be useful for procedural 

content generation. One example by Johnson et al. uses a cellular automation to generate 

two-dimensional cave-like mazes in real-time for an infinite game map (Johnson, 

Yannakakis, and Togelius 2010). In this approach, the two cell states represent floor and 

rock. The grid is initialized to some random state where each cell has an equal likelihood 

of being either floor or rock. The eight cells in the Moore neighborhood are evaluated for 

each cell and if there are five or more neighbor cells that are rock, the cell is set to rock. 

Otherwise the cell is set to floor. This single rule is applied simultaneously 𝑛 times to 

generate the cave map. For aesthetic reasons, rock cells that border a floor cell are labeled 

as walls and contiguous rock regions are assigned unique labels. By varying the size of the 

Moore neighborhood, the rock threshold value, and the number of iterations, various types 

of maps can be generated. 

2.2.2 Fashion-based Cellular Automata 

A cellular automation can be defined with more than just two states for each cell. 

One way of modeling this is with the use of fashion-based cellular automata (Ashlock 

2015). In this approach, we use the von Neumann neighborhood containing the four 
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orthogonally adjacent cells and a 𝑘 × 𝑘 real valued rule matrix 𝑅, where 𝑘 is the number 

of states. The entry 𝑅𝑖,𝑗 in the rule matrix specifies the score that a cell of type 𝑖 receives if 

it has a neighbor in state 𝑗. Each generation the cells are all updated simultaneously and the 

total score of each cell is evaluated using the rule matrix. If the score of a cell is at least as 

high as its neighbors, it remains in the same state, otherwise it adopts the state of the 

neighboring cell with the highest score. This causes cells to “follow the fashion” of the 

neighborhood and results in large homogeneous regions that are well-suited for 

representing environment maps. 

2.2.3 Fractal Terrain 

While cellular automata are well suited for generating discrete environments 

consisting of a finite number of states, we often require the terrain to consist of real values 

to represent features such as elevation. A real-valued grid used to represent elevation is 

called a heightmap and is commonly used as a basis for artificial terrain. Random 

heightmaps can be generated via several different methods including value- or gradient-

based interpolation such as Perlin noise (Perlin 1985), or using ideas from fractal 

mathematics to mimic the multiple scales of repeating patterns found in nature (Mandelbrot 

1983). Fractional Brownian noise (Mandelbrot and Van Ness 1968) provides the basis for 

a random function that is useful for modeling naturally occurring time series and surfaces. 

The diamond-square algorithm (Fournier, Fussell, and Carpenter 1982) is a 

computationally efficient method for approximating fractional Brownian motion to 

produce a two-dimensional heightmap. The resulting fractal terrain exhibits random 
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variations at multiple scales with large hills and valleys as well as small undulations on the 

surface. 

 

Figure 2.2 shows an overview of the diamond-square algorithm on a 55 grid. The 

algorithm begins by sampling random values for the four corner cells (a). The diamond 

step then sets the center point of these cells to the average of the four corners plus an 

additional random value (b). The magnitude of the random value is called the roughness 

and determines the texture of the terrain. Next, the square step interpolates the midpoints 

of the cells from the previous two steps and adds a random value proportional to the 

roughness (c). The original four cells defining a square have now been subdivided into four 

smaller squares. The diamond (d) and square steps (e) are then applied to each of the newly 

formed squares recursively using a smaller roughness value (typically half of the previous 

amount). These two steps repeat until the entire grid has been set. Note that the original 

grid should be square with 2𝑛 + 1 pixels on each side. Figure 2.3 shows an example of the 

diamond-square algorithm progression on a 257257 grid. Note that basic terrain features 

are defined in the first few steps of the algorithm, with later steps serving to refine the 

terrain and add details. 

 (a) (b) (c) (d) (e) 

Figure 2.2  Visualization of the diamond-square algorithm on a 55 grid. 
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As an alternative to midpoint displacement algorithms such as the diamond-square 

algorithm, successive random additions can also be used to generate fractal terrain with 

similar characteristics (Musgrave, Kolb, and Mace 1989). In this approach, several noise 

functions are generated at multiple levels of detail. These are then summed together using 

a weight that is inversely proportional to the level of detail. Figure 2.4 shows an example 

using multiple octaves of white noise, scaled to match the output size of the terrain. Each 

octave 𝑛 is generated by creating an image with 2𝑛+1 pixels in each dimension containing 

random values. These images are scaled to the size of the final output using bilinear 

interpolation and summed together using a weight of 
1

2𝑛−1
 for each octave to produce the 

combined noise function. The resulting image can represent a heightmap that is 

qualitatively similar to the terrain generated using the diamond-square algorithm. The 

method of successive random additions is simple to implement and allows for additional 

control over the characteristics of the noise function at each scale. 

     

     

Figure 2.3  A progression of the diamond-square algorithm generating a fractal terrain. 
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2.3 Viewshed Analysis 

Problems of visibility arise in many application domains, including computer 

graphics, robotics, and computational geometry (Durand 2000). In geographic information 

systems (GIS), the visibility problem is expressed as determining the viewshed of a region 

from a given location. For an elevation model represented as a regular square grid, 

viewshed analysis is used to find the grid cells that have a direct line of sight (LOS) from 

a specified observation point. These cells comprise the viewshed region and can be used 

for many applications including planning the placement of communication towers or 

watchtowers, path planning, and strategic defense (Franklin and Ray 1994; Floriani and 

Magillo 1994). 

 

Figure 2.4  An example of the successive random additions method for generating fractal terrain. 
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The viewshed region for a given point p in a raster grid elevation model E consists 

of all points v where a straight line can be drawn from p to v that is entirely above the 

terrain in E. Many algorithms have been proposed to compute the viewshed region, most 

based on sweeping rays (Kreveld 1996; Fishman, Haverkort, and Toma 2009; Haverkort, 

Toma, and Zhuang 2009) or parallel processing approaches (Zhao, Padmanabhan, and 

Wang 2013). Algorithm 2.1 gives an overview of an unoptimized approach for computing 

the viewshed called R3 that evaluates all grid cells independently. If r is the radius of the 

viewshed, then this method takes O(r3) time to evaluate each grid cell sequentially, but it 

can be implemented in parallel to reduce the computation time. Our own algorithm is 

detailed in Section 4.1 and builds upon the method presented here. 

 

 

Algorithm 2.1 Viewshed Analysis 

 

GET_VIEWSHED_R3(E, x1, y1, h) 

 

/* Precompute the elevation angle to each grid cell */ 

1: (n, m) ← size of E 

2: A ← n  m grid initalized to 0 

3: for each (x2, y2) {(x2, y2) | 1 ≤ y2 ≤ n  1 ≤ x2 ≤ m  (x1, y1) ≠ (x2, y2)} 

4: A[y2, x2] ← tan−1 (
𝐸[𝑦2,𝑥2]−𝐸[𝑦1,𝑥1]−ℎ

√(𝑥2−𝑥1)2+(𝑦2−𝑦1)2
) 

 

/* Evaluate the visibility of each grid cell */ 

5: V ← n  m grid initalized to 0 

6: for each (x2, y2) {(x2, y2) | 1 ≤ y2 ≤ n  1 ≤ x2 ≤ m} 

7: v ← CHECK_VISIBILITY(A, x1, y1, x2, y2) // Algorithm 2.2 

8: V[y2, x2] ← [v > 0] 

 

9: return V 
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The algorithm begins by precomputing the elevation angle from the observation 

point to each grid cell in the terrain (lines 1-4). We assume that the elevation of a grid cell 

is represented by its center point and that the observer is standing at height h above the 

observation point p = (x1, y1). The horizontal distance to a grid cell v = (x2, y2) is computed 

as 

 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2, (2.1) 

and the vertical elevation difference is 

 𝑒 = 𝐸[𝑦2, 𝑥2] − 𝐸[𝑦1, 𝑥1] − ℎ. (2.2) 

From this we compute the elevation angle as 

 𝑎 = tan−1
𝑒

𝑑
. (2.3) 

For a grid cell v to be visible from the observation point p, the elevation angle from p to v 

must be greater than the elevation angle from p to any grid cell on a line from p to v (see 

Figure 2.5). Most viewshed algorithms that operate on discrete grid elevation models, 

including R3, are approximate in the sense that there is no notion of partial visibility for a 

grid cell. (A cell is either entirely visible or entirely hidden.) We use a raytracing algorithm 

to identify the grid cells that intersect the line from p to v and consider only the elevation 

angles to these cells when determining visibility. The commonly used Bresenham line 

drawing algorithm (Bresenham 1965) is unacceptable here because it does not return all 

cells that intersect the line. Instead, we use the Amanatides and Woo algorithm 

(Amanatides and Woo 1987), which is given in Algorithm 2.2. The CHECK_VISIBILITY 

function that implements this algorithm is applied to all grid cells in the environment and 
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used to construct the final viewshed (lines 5-8 in Algorithm 2.1). All points with a visibility 

greater than 0 are marked as visible in the viewshed. 

 

Given the vectors p and v from the origin to the points p = (x1, y1) and v = (x2, y2), 

the vector representation of the line going from p to v is defined as p + tu, where u = v – p. 

The Amanatides and Woo algorithm works by increasing t from 0 to 1 and identifying all 

the grid cell boundary crossings of this vector. These occur at the regular intervals tDeltaX 

and tDeltaY. tDeltaX represents the amount that t increases between vertical cell boundary 

crossings and is computed as 

 𝑡𝐷𝑒𝑙𝑡𝑎𝑋 = √(
𝑑𝑦

𝑑𝑥
)

2

+ 1, (2.4) 

 
 (a) (b) 

Figure 2.5  Viewshed analysis of the grid cell v = (x2, y2) from the observation point p = (x1, y1). (a) shows a 

line drawn from p to v and all grid cells that the line intersects (shaded). These cells are evaluated to see if 

any obstruct the line of sight (LOS). The variables tX, tY, tDeltaX and tDeltaY are used by the Amanatides 

and Woo line traversal algorithm in Algorithm 2.2. (b) shows the elevation profile of the shaded grid cells in 

(a). For a grid cell v to be visible from p, it must have a clear LOS from the observation point, set at a height 

h above the elevation of p. If the elevation angle of any grid cell between p and v is greater than the elevation 

angle from p to v, then the LOS is obstructed and the cell is not visible. The striped cells are not visible in 

this example. 
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where 𝑑𝑥 = 𝑥2 − 𝑥1 and 𝑑𝑦 = 𝑦2 − 𝑦1. Likewise, tDeltaY represents the amount that t 

increases between horizontal cell boundary crossings and is computed as 

 𝑡𝐷𝑒𝑙𝑡𝑎𝑌 = √(
𝑑𝑥
𝑑𝑦
)

2

+ 1. (2.5) 

These values are computed in lines 1-4 of Algorithm 2.2. Line 5 computes the value of t at 

the first vertical crossing as 

 𝑡𝑋 = √(
𝑑𝑦

2𝑑𝑥
)

2

+ (
1

2
)
2

. (2.6) 

This variable will be updated to always store the value of t at the next vertical crossing. 

Line 6 computes the value of t at the first horizontal crossing as 

 𝑡𝑌 = √(
𝑑𝑥
2𝑑𝑦

)

2

+ (
1

2
)
2

. (2.7) 

This variable will also be updated to store the value of t at the next horizontal crossing. 

Lines 7-8 determine the signs of dx and dy (+1, –1) and save these as stepX and stepY 

respectively. These values will be used to increment the current cell location, saved as X 

and Y, and initialized to x1 and y1 on lines 9-10. The main loop (lines 11-19) of the algorithm 

repeats until (X, Y) is equal to (x2, y2). Each iteration, the variables tX and tY are compared 

to see if the next boundary crossing is horizontal or vertical. If tX is less than tY, then the 

next crossing is a vertical boundary so tX is incremented by tDeltaX and X is incremented 

by stepX (lines 13-14). Otherwise, the next crossing is a horizontal boundary, so tY is 

incremented by tDeltaY and Y is incremented by stepY (lines 16-17). If at any time the 

current grid cell (X, Y) has an elevation angle from the observation point (x1, y1) that is 
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greater than the elevation angle of the target point (x2, y2), then the target point does not 

have a clear line of sight from the observation point and the algorithm returns 0 (lines 20-

21). Lines 18-19 handle an edge case where there is an infinite wall obstructing the line of 

sight. If such a wall is detected, the algorithm returns –1, which is handled as a special case 

in our own algorithm in Section 4.1. If the target point is reached, then that indicates that 

there were no grid cells along the path that obstruct the view from the observation point, 

so the algorithm returns 1 (line 22). 
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2.4 Least-Cost Paths in Fuzzy Weighted Graphs 

The shortest path problem is one of the fundamental problems in graph theory that 

finds use in countless applications. These include finding the optimal path between two 

 

Algorithm 2.2 Amanatides and Woo Line Traversal for Visibility 

 

CHECK_VISIBILITY(A, x1, y1, x2, y2) 

1: dx ← x2 − x1 

2: dy ← y2 − y1 

3: tDeltaX ← √(
𝑑𝑦

𝑑𝑥
)
2

+ 1 

4: tDeltaY ← √(
𝑑𝑥

𝑑𝑦
)
2

+ 1 

5: tX ← √(
𝑑𝑦

2𝑑𝑥
)
2

+ (
1

2
)
2

 

6: tY ← √(
𝑑𝑥

2𝑑𝑦
)
2

+ (
1

2
)
2

 

7: stepX ← sign(dx) 

8: stepY ← sign(dy) 

9: X ← x1 

10: Y ← y1 

11: while (X, Y) ≠ (x2, y2) 

12: if tX < tY 

13: tX ← tX + tDeltaX 

14: X ← X + stepX 

15: else 

16: tY ← tY + tDeltaY 

17: Y ← Y + stepY 

18: if A[Y, X] = NIL 

19: return −1 

20: if A[Y, X] > A[y2, x2] 

21: return 0 

22: return 1 
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points on a map, routing information through a computer network, and determining a series 

of actions that can solve a sequential decision problem. In general, solutions to these 

problems minimize some notion of the cost that is associated with each possible option. In 

many cases, the true cost of each solution component is unknown, or is dependent on 

multiple factors. For instance, when choosing a route between two locations in an 

environment, a decision-maker may have various objectives to satisfy such as minimizing 

the total distance and the maximum slope. The lengths and inclinations of each path 

segment may only be partially known due to limited visibility, leading to some uncertainty 

as to which path to choose. In these situations, it can be useful to model the problem using 

fuzzy cost values and a multiobjective framework (Buck, Keller, and Popescu 2014). 

To represent an agent's mental map, we use a graph structure that models the spatial 

and semantic attributes of the environment. We define the structural component as a graph 

𝐺 with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). Each vertex 𝑣 ∈ 𝑉(𝐺) represents a location or 

state, and edges represent possible actions or movements between locations. In a directed 

graph, the edge set 𝐸(𝐺) ⊆ 𝑉(𝐺) × 𝑉(𝐺) consists of all ordered pairs of vertices (𝑣𝑠, 𝑣𝑡) 

that are connected by an edge. An edge 𝑒 ∈ 𝐸(𝐺) has both a starting vertex 𝑣𝑠 = START(𝑒) 

and an ending vertex 𝑣𝑡 = END(𝑒). A path 𝑝 through the graph is represented as an 𝑛-tuple 

(𝑒1, … , 𝑒𝑛) ∈ (𝐸(𝐺))
𝑛

 where END(𝑒𝑖) = START(𝑒𝑖+1) for 𝑖 = 1,… , 𝑛 − 1. The starting and 

ending vertices of the path are denoted as 𝑠 = START(𝑒1) and 𝑡 = END(𝑒𝑛) respectively. 

The set 𝑃(𝑠, 𝑡) is defined as the set of all paths between vertices 𝑠 and 𝑡. Each edge is 

assigned a feature vector that represents the attributes of the environment. A multiobjective 

problem can have many feature dimensions, whereas a single-objective problem will only 
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have one dimensional features. The feature values are crisp numbers when the environment 

is fully observable, but fuzzy numbers are used in partially observable environments to 

represent uncertainty. 

2.4.1 Least-Cost Path Problems 

A standard weighted graph assigns a real-valued weight 𝑤𝑖 to each edge 𝑒𝑖 ∈ 𝐸(𝐺). 

The meaning of the weight value is arbitrary, although it typically represents some measure 

of the edge length or cost associated with including the edge in a path. The shortest path 

problem is defined as finding the path (𝑒1, … , 𝑒𝑛) ∈ 𝑃(𝑠, 𝑡) between two vertices 𝑠 and 𝑡 

in a graph 𝐺 such that the sum ∑ 𝑤𝑖
𝑛
𝑖=1  is minimized. There are several algorithms that are 

commonly used to solve shortest path problems. 

Dijkstra's algorithm (Dijkstra 1959) can be used in graphs with non-negative 

weights to find a single-pair shortest path, or a tree of shortest paths to all vertices from a 

single source, known as the single-source shortest path problem. The algorithm works by 

expanding a search tree from the source vertex, always adding the edge with the minimum 

weight. A naïve implementation operates in 𝑂(|𝑉|2) (where |𝑉| is the number of nodes), 

but this can be improved to 𝑂(|𝐸| + |𝑉| log|𝑉|) (where |𝐸| is the number of edges) by 

using a min-priority queue such as a Fibonacci heap (Fredman and Tarjan 1984; Fredman 

and Tarjan 1987). If an admissible heuristic is available (Russell and Norvig 2009), the 

algorithm can be improved to select edges that minimize the sum of the edge weight and 

the estimated remaining distance to the goal. This algorithm is called A* (Hart, Nilsson, 

and Raphael 1968) and is commonly used to solve pathfinding problems where the path 

weight corresponds to total distance. 



31 

 If the graph contains negative edge weights, the Bellman-Ford algorithm (also 

sometimes called the Bellman-Ford-Moore algorithm) (Ford Jr. 1956; Bellman 1958; 

Moore 1957) can be used to construct the shortest path tree from a single source and can 

detect negative cycles (path loops that have negative total weight thereby removing a lower 

bound on the minimum cost of a path). The Bellman-Ford algorithm operates by iteratively 

relaxing an upper bound on the cost to reach each vertex from the source. In the worst case, 

it operates in 𝑂(|𝑉||𝐸|), but it can terminate early if no changes are detected. 

For some applications, we may need to find the shortest paths between all pairs of 

vertices. This is called the all-pairs shortest path problem and it can be solved by finding a 

shortest path tree from each vertex using one of the above algorithms. Alternatively, the 

Floyd-Warshall algorithm (Floyd 1962; Warshall 1962) is specifically designed to solve 

this problem and does so by iteratively relaxing a |𝑉| × |𝑉| matrix containing the shortest 

path distances between each pair of vertices (and optionally a second matrix containing the 

predecessor of each vertex). The Floyd-Warshall algorithm runs in 𝑂(|𝑉|3) and recursively 

computes for each triplet (𝑖, 𝑗, 𝑘) ∈ |𝑉|3 the shortest path between 𝑖 and 𝑗 using only 

vertices 1,… , 𝑘. 

The optimal path in some contexts is not always the shortest path. For instance, to 

optimize traffic flow in transportation and computer networks, it can be useful to identify 

the maximum capacity route (Hu 1961; Pollack 1960) (sometimes called the bottleneck 

shortest path) that maximizes the minimum-weight edge in the path. A related problem that 

we consider is finding the minimax path (Berman and Handler 1987), which minimizes the 

maximum-weight edge in the path. This can be used to find paths that avoid certain high-
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cost areas. In general, a least-cost path is a path that minimizes some measure of the path 

cost and may refer to either a shortest path or a minimax path. 

2.4.2 Fuzzy Numbers 

Partially observable environments introduce uncertainty into the wayfinding 

problem. Fuzzy sets (Zadeh 1965) are a way to model certain types of uncertainty that arise 

in the representation of partially observable environment features. A fuzzy number 𝐴 ⊆ ℝ 

is a normalized convex fuzzy set with a membership function 𝜇𝐴: 𝐴 → [0, 1] that specifies 

the degree to which a real number 𝑥 ∈ ℝ is included in the set 𝐴. Fuzzy numbers provide 

a way to represent uncertainty in the true value of a number and to express linguistic 

approximations such as “about 3” or “nearly 10.” Some common representations for fuzzy 

numbers include triangular and trapezoidal membership functions, which are defined by 3 

or 4 parameters respectively. We use triangular fuzzy numbers throughout this work to 

demonstrate our approach, but other representations (such as trapezoidal membership 

functions or a list of alpha-cut endpoints) could be used when deemed appropriate by the 

problem domain. A triangular fuzzy number 𝐴 is defined by a 3-tuple Tri(𝑎, 𝑏, 𝑐), where 

the interval [𝑎, 𝑐] is the support for which 𝜇𝐴(𝑥) > 0 and 𝑏 is the single point where 

𝜇𝐴(𝑥) = 1. Its membership function is defined as 

 𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 < 𝑏

1, 𝑥 = 𝑏
𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 < 𝑐

0, 𝑥 ≥ 𝑐 .

 (2.8) 
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The arithmetic operators (+, –, , ), as well as other functions such as 

minimization and maximization, can be defined for fuzzy numbers using Zadeh’s extension 

principle (Zadeh 1975a; Zadeh 1975b). The result of a function 𝑓(𝐴, 𝐵) operating on two 

fuzzy numbers 𝐴 and 𝐵 is given as 

 𝜇𝑓(𝐴,𝐵)(𝑧) = sup
𝑧=𝑓(𝑥,𝑦)

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)). (2.9) 

In this work, we focus mainly on the summation and maximization operators for triangular 

fuzzy numbers. The summation of two triangular fuzzy numbers is derived from Equation 

2.9 as  

 Tri(𝑎1, 𝑏1, 𝑐1) + Tri(𝑎2, 𝑏2, 𝑐2) = Tri(𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2). (2.10) 

The summation of two triangular fuzzy numbers will always result in a new triangular 

fuzzy number. However, because maximization is a nonlinear operator, the maximum of 

two triangular fuzzy numbers may not be triangular (see Figure 2.6). To keep the practical 

requirements of the CMM framework simple, we seek to maintain a consistent 

representation for all fuzzy numbers. Therefore, we define an approximate maximization 

operator that gives a triangular fuzzy number, 

 

max′(Tri(𝑎1, 𝑏1, 𝑐1), Tri(𝑎2, 𝑏2, 𝑐2))

=  Tri(max(𝑎1, 𝑎2) ,max(𝑏1, 𝑏2) ,max(𝑐1, 𝑐2)). 

(2.11) 

This approach maintains the true definition at the endpoints and peak of the fuzzy number, 

but may produce different values at the intermediate points. 
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In a least-cost path problem, the goal is to find a solution that minimizes some set 

of objectives. By representing the value of a solution as a fuzzy number, we can capture 

some of the uncertainty in a solution’s true value. However, this uncertainty makes it 

difficult to assess whether one solution is better than another. While there is no universal 

definition for the ordering of fuzzy numbers that proves satisfactory for all cases (see for 

instance (Wang and Kerre 2001a; Wang and Kerre 2001b)), we adopt the following 

intuitive definitions. 

 

Definition 2.1. Let 𝐴1 = Tri(𝑎1, 𝑏1, 𝑐1) and 𝐴2 = Tri(𝑎2, 𝑏2, 𝑐2) be two triangular 

fuzzy numbers. We say that 𝐴1 is less than or equal to 𝐴2 (𝐴1 ≤ 𝐴2) if and only if 

(𝑎1 ≤ 𝑎2 and 𝑏1 ≤ 𝑏2 and 𝑐1 ≤ 𝑐2).  

 

Definition 2.2. Let 𝐴1 = Tri(𝑎1, 𝑏1, 𝑐1) and 𝐴2 = Tri(𝑎2, 𝑏2, 𝑐2) be two triangular 

fuzzy numbers. We say that 𝐴1 is strictly less than 𝐴2 (𝐴1 < 𝐴2) if and only if 𝐴1 ≤

𝐴2 and (𝑎1 < 𝑎2 or 𝑏1 < 𝑏2 or 𝑐1 < 𝑐2).  

 

 

Figure 2.6  The summation of two triangular fuzzy numbers 𝐴 = Tri(1, 2, 3) and 𝐵 = Tri(0, 4, 5) is shown 

as Tri(1, 6, 8). The true maximum of 𝐴 and 𝐵 is not a triangular fuzzy number, but can be approximated as 

Tri(1, 4, 5). 
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There may be many solutions for a given problem with no single solution that is 

less than all others. If 𝐴1 ≮ 𝐴2 and 𝐴2 ≮ 𝐴1, then it is not clear which of the two fuzzy 

numbers should be preferred (assuming 𝐴1 ≠ 𝐴2). When a decision-maker is required to 

choose one of these, we can employ a weighted centroid defuzzification scheme to produce 

a crisp value for each solution that can be ranked directly. The centroid of a fuzzy number 

𝐴 is defined as 

 𝑥̅ =
∫ 𝑥𝜇𝐴(𝑥) 𝑑𝑥

∫ 𝜇𝐴(𝑥) 𝑑𝑥
. (2.12) 

For a triangular fuzzy number Tri(𝑎, 𝑏, 𝑐), this evaluates to 

 𝑥̅ =
1

3
(𝑎 + 𝑏 + 𝑐). (2.13) 

The weighted centroid is defined by a control parameter 𝜉 ∈ [0, 1] that specifies the 

optimism/pessimism of the decision-maker. A value of 𝜉 = 0 indicates extreme optimism, 

in which the fuzzy number is defuzzified to the smallest possible value, 𝑎. A value of 𝜉 = 1 

indicates extreme pessimism, where defuzzification results in the largest possible value, 𝑐. 

A value of 𝜉 = 0.5 gives a balanced approach using the centroid, 𝑥̅. The crisp weighted 

centroid value is linearly interpolated between these points as 

 𝐶(𝐴|𝜉) = {
𝑎 + 2𝜉(𝑥̅ − 𝑎), 𝜉 ≤ 0.5

𝑥̅ + 2(𝜉 − 0.5)(𝑐 − 𝑥̅), 𝜉 > 0.5 .
 (2.14) 

Using a constant value for 𝜉, a decision-maker can defuzzify multiple fuzzy numbers using 

the weighted centroid approach and compare the resulting crisp values. If two fuzzy 

numbers result in the same crisp value when defuzzified, they are considered equivalent. 
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2.4.3 The Multiobjective Fuzzy Least-Cost Path Problem 

The fuzzy shortest path problem (FSPP) was first analyzed by Dubois and Prade 

(Dubois and Prade 1980), who extended the classic Floyd-Warshall and Bellman-Ford 

algorithms for graphs with a single fuzzy weight assigned to each edge. A drawback of this 

early approach, however, was that a fuzzy cost could be obtained without an associated 

path to go with it. Many papers have since been written on the topic with improved 

algorithms for specific variations of the FSPP (e.g. (Klein 1991; Okada and Soper 2000; 

Cornelis, De Kesel, and Kerre 2004; Moazeni 2006; Hernandes et al. 2007)) with improved 

algorithms for specific variations of the FSPP. Typically, the problem is treated as a single 

objective optimization, although due to its fuzzy nature, there may be multiple non-

dominated solutions. A defuzzification method is usually required to provide some 

recommendation to a decision-maker. 

The multiobjective shortest path problem (MO-SPP) likewise has received 

considerable attention in the optimization literature (e.g. (Martins 1984; Loui 1983; 

Guerriero and Musmanno 2001; Tarapata 2007)). One of the common applications of the 

MO-SPP is in designing and using transportation networks, where travel time, distance, 

and other criteria may dictate which routes are considered optimal. These objectives are 

typically in conflict such that there is no single solution that outperforms all others. In this 

case, multiobjective decision-making techniques should be used to help the decision-maker 

choose a solution. 

We define a general fuzzy weighted graph as a graph 𝐺 that has a weight vector of 

fuzzy numbers assigned to each edge. For each edge 𝑒 ∈ 𝐸(𝐺), we define a feature vector 
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𝑭(𝑒) = (𝐹1(𝑒),… , 𝐹𝑚(𝑒)), where each 𝐹𝑖(𝑒) is a fuzzy number that represents a feature 

attribute of that edge and 𝑚 is the total number of features. Features are defined as 

components of a multiobjective cost function that are intended to be minimized. For 

instance, a vector might have one feature that represents distance and another that 

represents slope or travel time. In the CMM framework, each feature is assumed to be non-

negative with zero being the minimum possible value. By using a vector of fuzzy numbers 

to represent edge weights, a fuzzy weighted graph can model different degrees of 

uncertainty for each component of the multiobjective cost function. When there is no 

uncertainty, the fuzzy numbers are reduced to crisp values. 

A path 𝑝 = (𝑒1, … , 𝑒𝑛) in a fuzzy weighted graph is a sequence of 𝑛 edges, each 

with an associated weight vector given as 𝑭(𝑒𝑖). We compute an aggregated cost vector 

𝑨(𝑝) = (𝐴1(𝑝),… , 𝐴𝑚(𝑝)) for the path by either summing or taking the maximum value 

of the feature components of each edge. Let 𝜸 = (𝛾1, … , 𝛾𝑚) be an indicator vector where 

𝛾𝑖 = 0 if feature 𝑖 should be aggregated by summation and 𝛾𝑖 = 1 if feature 𝑖 should be 

aggregated using maximization. For features where the decision-maker considers the total 

feature value (𝛾𝑖 = 0), the aggregated value of feature 𝑖 is 

 𝐴𝑖(𝑝) =∑ 𝐹𝑖(𝑒𝑗)
𝑛

𝑗=1
. (2.15) 

For features where the decision-maker considers the maximum feature value (𝛾𝑖 = 1), the 

aggregated value of feature 𝑖 is 

 𝐴𝑖(𝑝) = max′
𝑗=1,…,𝑛

𝐹𝑖(𝑒𝑗). (2.16) 
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Note that the aggregation method may be different for each feature. For instance, a feature 

measuring the total distance traveled would be aggregated using summation, whereas a 

feature measuring the steepest slope segment along a path would be aggregated using 

maximization. 

Given a fuzzy weighted graph 𝐺 with a starting vertex 𝑠 ∈ 𝑉(𝐺) and an ending 

vertex 𝑡 ∈ 𝑉(𝐺) where 𝑠 ≠ 𝑡, the multiobjective fuzzy least-cost path problem (MO-

FLCPP) is defined as finding a path 𝑝 ∈ 𝑃(𝑠, 𝑡) that minimizes the aggregated cost vector 

𝑨(𝑝). When the summation operator is used for aggregation, this is called the shortest path 

problem. When the max operator is used, it may be called the minimax path problem. We 

use the term least-cost path to refer to the general case that may have mixed aggregation 

methods. The MO-FLCPP may not have a single solution that minimizes each cost 

component 𝐴𝑖(𝑝) simultaneously for 𝑖 = 1,… ,𝑚. Multiobjective optimization techniques 

should therefore be used to help the decision-maker choose a solution. 

2.5 Multiobjective Optimization 

Many real-world problems involve several criteria that influence the decision-

making process. In these problems, a decision-maker must optimize multiple objectives 

simultaneously. Typically, the objectives conflict in some nontrivial way, forcing the 

decision-maker to make some tradeoff between various possible solutions. Multiobjective 

optimization is the study of decision problems with more than one objective. This section 

presents an overview of the multiobjective problem setting and defines several methods 

that allow a decision-maker to select an optimal solution. 
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2.5.1 Multiobjective Optimization Problem Definition 

Formally, a multiobjective optimization problem (MOP) is defined as  

 
minimize 𝐟(𝐱) = (𝑓1(𝐱),… , 𝑓𝑘(𝐱))

subject to 𝐱 ∈ Ω,
 (2.17) 

where we have 𝑘 (≥ 2) real-valued objective functions 𝑓𝑖: ℝ
𝑛 → ℝ that are to be 

minimized (Miettinen 1999). A decision vector 𝐱 = (𝑥1, … , 𝑥𝑛 ) represents a potential 

solution to the MOP and Ω ⊆ ℝ𝑛 is the feasible region defined by the problem constraints. 

We sometimes use the terms decision vector and solution interchangeably. A decision 

variable 𝑥𝑖 may represent some characteristic attribute of the solution, or some component 

of a complete solution. For example, a complete solution to the multiobjective path-

planning problem is some path through an environment space and the decision variables 

represent the various path components1. 

We assume that no single solution 𝐱 minimizes all objective functions 

simultaneously, otherwise there would be no conflict between the objectives and the 

problem could be solved using traditional single-objective methods. In the usual case with 

multiple conflicting objectives, we cannot determine a single optimal solution and are 

required to examine the tradeoffs between solutions in the objective space, ℝ𝑘. The subset 

of the objective space that forms the image of the feasible region Ω is called the feasible 

objective region and is denoted as Λ = 𝐟(Ω). Elements of Λ are called objective vectors 

and are denoted by 𝐟(𝐱) or 𝐳 = (𝑧1, … , 𝑧𝑘), where 𝑧𝑖 = 𝑓𝑖(𝐱) for all 𝑖 = 1, … , 𝑘. Each 

objective value 𝑧𝑖 represents some quantifiable feature of the decision vector that is to be 

 
1 The details of the decision vector representation for paths will be discussed further in Chapter 6. 
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minimized. Note that a feature that is to be maximized can be represented in this framework 

by defining 𝑓𝑖
min(𝐱) = −𝑓𝑖

max(𝐱). Figure 2.7 shows a graphical representation of the 

mapping of a solution from decision space to objective space in a MOP. 

 

2.5.2 Pareto Optimality 

Consider two solutions, 𝐱1, 𝐱2 ∈ Ω and their corresponding objective vectors, 

𝐳1 = 𝐟(𝐱1) and 𝐳2 = 𝐟(𝐱2). If 𝑧𝑖
1 < 𝑧𝑖

2 for some objective 𝑖, then 𝐳1 is the preferred 

objective vector (and 𝐱1 is the preferred solution) based solely on objective 𝑖. If 𝑧𝑖
1 ≤ 𝑧𝑖

2 

for all 𝑖 = 1,… , 𝑘 and 𝑧𝑗
1 < 𝑧𝑗

2 for at least one index 𝑗, then 𝐳1 is said to dominate 𝐳2 

because it is at least as good as 𝐳2 in all objectives and it is better than 𝐳2 in at least one 

objective. Similarly, we say that 𝐱1 dominates 𝐱2 if 𝐳1 dominates 𝐳2. A solution that is not 

dominated by any other solution in the feasible region is called Pareto optimal, named after 

the French-Italian economist and sociologist Vilfredo Pareto, who pioneered the notion of 

preference ordering in terms of ordinal utility rather than cardinal utility (Aspers 2001). 

 

 

Figure 2.7  Mapping from decision space to objective space in a multiobjective optimization problem. 
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Definition 2.3. An objective vector 𝐳∗ ∈ Λ is Pareto optimal if there does not exist 

another objective vector 𝐳 ∈ Λ such that 𝑧𝑖 ≤ 𝑧𝑖
∗ for all 𝑖 = 1,… , 𝑘 and 𝑧𝑗 < 𝑧𝑗

∗ for 

at least one index 𝑗. 

 

Definition 2.4. A decision vector 𝐱∗ ∈ Ω is Pareto optimal if there does not exist 

another decision vector 𝐱 ∈ Ω such that 𝑓𝑖(𝐱) ≤ 𝑓𝑖(𝐱
∗) for all 𝑖 = 1,… , 𝑘 and 

𝑓𝑗(𝐱) < 𝑓𝑗(𝐱
∗) for at least one index 𝑗. 

 

The set of all Pareto optimal decision vectors forms the Pareto optimal set 𝑃𝑆, and the set 

of all Pareto optimal objective vectors forms the Pareto front 𝑃𝐹. An illustration of the 

Pareto optimal set and corresponding Pareto front for a two-objective problem is shown in 

Figure 2.8. 

 

 

Figure 2.8  The mapping of solution vectors from decision space to objective space shows which solutions 

belong to the Pareto optimal set in decision space and the Pareto front in objective space. 
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2.5.3 Scalarization 

We are not usually satisfied by simply determining the Pareto optimal set of 

solutions (or an approximation thereof); most problems require the decision-maker to 

actually decide upon a single solution. In general, multiobjective optimization problems 

are solved using the method of scalarization, in which a scalarizing function 𝑔: Λ → ℝ≥0 is 

defined over the multidimensional objective space that maps any given objective vector 

into a single non-negative real value. The decision-maker then chooses the solution from 

the feasible region that minimizes the scalarized objective value. We define the resulting 

single-objective optimization problem as 

 
minimize 𝑔(𝐟(𝐱))

subject to 𝐱 ∈ Ω.
 (2.18) 

Once the problem has been scalarized into a single objective, we can use traditional 

optimization techniques to find a solution. 

Before scalarizing the objective space, it is usually advisable to normalize the 

output range of each objective function into a common range. This helps to ensure that 

each objective is treated equally and that the natural scale of the objective values does not 

bias the decision toward certain objectives. One common strategy is to normalize the range 

of the Pareto front into the unit hypercube. This can be accomplished by defining the ideal 

and nadir objective vectors for a given multiobjective problem. The ideal objective vector 

is defined as  𝐳⋆ = (𝑧1
⋆, … , 𝑧𝑘

⋆), where 𝑧𝑖
⋆ = min

𝐱∈Ω
𝑓𝑖(𝐱) for  𝑖 = 1,… , 𝑘. This point 

represents the best possible objective value in each dimension, although it is almost 

certainly outside of the feasible objective region. In contrast to the ideal objective vector, 

the nadir objective vector 𝐳nad represents the upper boundary of the Pareto front and may 
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or may not lie within the feasible objective region. While the ideal objective vector is 

straightforward to define, the nadir objective vector is often unknown until the problem has 

been solved. For a given approximation of the Pareto optimal set 𝑃𝑆′, we define the nadir 

objective vector as 𝐳nad = (𝑧1
nad, … , 𝑧𝑘

nad), where 𝑧𝑖
nad = max

𝐱∈𝑃𝑆′
𝑓𝑖(𝐱) for 𝑖 = 1, … , 𝑘. Figure 

2.9 shows two examples of the Pareto front and the associated ideal and nadir objective 

vectors. Note that the ideal and nadir objective vectors form a bounding box around the 

complete Pareto front, which may be disjoint. 

 

Given the range of the Pareto front defined by 𝐳⋆ and 𝐳nad, we normalize the objective 

function values into a common range [0, 1] by defining 

 𝑧𝑖
′ = 𝑓𝑖

′(𝐱) =
𝑓𝑖(𝐱) − 𝑧𝑖

⋆

𝑧𝑖
nad − 𝑧𝑖

⋆ 
for 𝑖 = 1,… , 𝑘. (2.19) 

The normalized objective vectors are then defined as 𝐳′ = 𝐟′(𝐱) = (𝑧1
′ , … , 𝑧𝑘

′ ). These 

vectors are used in place of the original objective vectors for the scalarization computation, 

although the decision-maker may still prefer to be presented with the original units when 

comparing alternatives. 

 

Figure 2.9  Examples of the range of the Pareto front. The ideal objective vector represents the minimum 

attainable value of each of objective and the nadir objective vector represents the upper boundary of the 

Pareto front. 
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2.5.4 Method of the Global Criterion 

If the decision-maker considers all criteria to be equally important, we can use the 

method of the global criterion, sometimes also called compromise programming (Zeleny 

1973). In this method, the decision-maker picks the solution from the Pareto optimal set 

that minimizes the distance to some ideal reference point. We use the 𝐿𝑝-metric to measure 

the distance from the ideal objective vector and define the scalarization function as 

 𝑔𝑝
gc(𝐳′) = (∑(𝑧𝑖

′)𝑝
𝑘

𝑖=1

)

1
𝑝

, (2.20) 

where each  𝑧𝑖
′ represents a normalized objective value from Equation 2.19 and 𝑝 > 0. 

Because we only need to find the solution that minimizes the scalarized value, the exponent 

1

𝑝
 can be dropped without affecting the outcome. Common values of 𝑝 are 1, 2, and ∞. The 

𝐿∞-metric is also called the Tchebycheff1 metric, and the equivalent scalarization function 

can be expressed as 

 𝑔∞
gc(𝐳′) = max

𝑖=1,…,𝑘
𝑧𝑖
′. (2.21) 

Figure 2.10 shows the difference between the 𝐿1-, 𝐿2-, and 𝐿∞-metrics. Each metric results 

in a different interpretation of the objective space and correspondingly selects a different 

solution from the Pareto front. 

 
1 An alternate spelling is the Chebychev metric. 
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2.5.5 Method of Weighted Metrics 

A decision-maker will usually wish to express some preference for certain 

objectives over others. The method of the global criterion can be extended to include a 

weight term for each objective indicating its relative importance. Doing so effectively 

scales the objective space so that different points on the Pareto front are measured to be 

closer to the ideal objective vector. Assume that the decision-maker has defined a weight 

vector 𝛌 = (𝜆1, … , 𝜆𝑘) such that 𝜆𝑖 ≥ 0 for all 𝑖 = 1,… , 𝑘 and ∑ 𝜆𝑖
𝑘
𝑖=1 = 1. We define the 

weighted 𝐿𝑝 scalarization function as 

 𝑔𝑝
wm(𝐳′|𝛌) = (∑𝜆𝑖(𝑧𝑖

′)𝑝
𝑘

𝑖=1

)

1
𝑝

, (2.22) 

 

Figure 2.10  Different metrics applied in the global criterion method. The decision-maker chooses the 

solution on the Pareto front that minimizes the distance to the ideal objective vector 𝐳⋆. The contours of each 

𝐿𝑝-metric are shown at the minimum value that intersects the Pareto front. 
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for 𝑝 > 0. If 𝑝 = 1, the scalarization function is equivalent to a weighted sum of the 

objective values, 

 𝑔ws(𝐳′|𝛌) =∑𝜆𝑖𝑧𝑖
′

𝑘

𝑖=1

. (2.23) 

The weighted sum is one of the earliest and most commonly used scalarization methods  

for multiobjective problems as it maintains the linearity of the problem if the objective 

functions are linear (Gass and Saaty 1955; Zadeh 1963). If 𝑝 = 2, the scalarization function 

uses Euclidean distance and becomes the method of least squares, 

 𝑔𝑙𝑠(𝐳′|𝛌) = √∑𝜆𝑖(𝑧𝑖
′)2

𝑘

𝑖=1

. (2.24) 

When 𝑝 = ∞, the scalarization function is equivalent to the Tchebycheff method, 

 𝑔te(𝐳′|𝛌) = max
𝑖=1,…,𝑘

𝜆𝑖𝑧𝑖
′. (2.25) 

The Tchebycheff scalarization function favors solutions toward the middle of the 

Pareto front, whereas the weighted sum approach tends to result in solutions near the edges. 

In fact, if the shape of the Pareto front is concave, the weighted sum approach can only 

return solutions at the extrema points of the Pareto front, whereas the Tchebycheff method 

can find any Pareto optimal solution with some setting of the weight vector (Bowman 

1976). To illustrate this, consider the examples in Figure 2.11. The top row shows a convex 

Pareto front that has been scaled with three different weight vectors. The solutions closest 

to the origin are indicated for both the weighted sum and Tchebycheff approaches. Note 

that the Tchebycheff solution is closer to the midpoint of the Pareto front than the weighted 

sum solution, which moves closer to the endpoint with the larger weight value. The bottom 
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row shows another example with a concave Pareto front. In this case, the weighted sum 

approach cannot select a solution within the concave region because the endpoints are 

always closer to the origin regardless of the scaling applied by the weight vector. In 

contrast, the Tchebycheff approach can return solutions within the concave region because 

of the way the distance measurement is computed. 

 

2.5.6 Ordered Weighted Average Approach 

The final method we consider for scalarizing an objective vector is the ordered 

weighted average (OWA) operator (Yager 1988). The OWA operator is a flexible 

aggregation function that lies somewhere between the min and max operators. It allows for 

 

Figure 2.11  Comparison of the weighted sum and Tchebycheff scalarization approaches. The weighted sum 

can only return extrema points when the Pareto front is concave, whereas the Tchebycheff approach can find 

any Pareto optimal solution. 

 



48 

a more natural interpretation of the scalarization function by defining the degree to which 

each of the criteria need to be satisfied. At one extreme, the max operator acts as the logical 

“and,” requiring all criteria to meet some minimum degree of satisfaction. At the other 

extreme, the min operator acts as the logical “or,” requiring only one criteria to be satisfied. 

The mean operator lies in between these two extremes and optimizes the average 

satisfaction of all criteria. 

To apply the OWA operator to a normalized objective vector 𝐳′ = (𝑧1
′ , … , 𝑧𝑘

′ ), we 

first apply the criteria preference weights 𝛌 = (𝜆1, … , 𝜆𝑘) and define a scaled objective 

vector 𝐚 = (𝑎1, … , 𝑎𝑘) where 𝑎𝑖 = 𝜆𝑖𝑧𝑖
′ for all 𝑖 = 1,… , 𝑘. The elements of 𝐚 are then 

sorted in descending order (𝑎(1), … , 𝑎(𝑘)) where 𝑎(𝑖) is the 𝑖th largest of the 𝑎𝑖 values. The 

OWA operator is parameterized by an additional weight vector 𝐰 = (𝑤1, … , 𝑤𝑘) where 

𝑤𝑖 ≥ 0 for all 𝑖 = 1,… , 𝑘 and ∑ 𝑤𝑖
𝑘
𝑖=1 = 1. The OWA scalarization function is defined as 

 𝑔OWA(𝐚|𝐰) =∑𝑤𝑖𝑎(𝑖)

𝑘

𝑖=1

. (2.26) 

By changing the OWA weight vector, the OWA operator can be made to represent different 

aggregation functions. The following are some notable operators. 

• Average: 𝑤𝑖 =
1

𝑘
 for all 𝑖 = 1,… , 𝑘. This method is equivalent to the weighted sum 

scalarization approach. All criteria are weighted equally (after scaling). 

• Max: 𝑤1 = 1 and 𝑤𝑖 = 0 for all 𝑖 ≠ 1. This method is equivalent to the 

Tchebycheff scalarization approach and acts as the logical “and” operator. All 

criteria must be satisfied when using this method since the scalarized value is 
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equivalent to the objective value of the least satisfied criteria (the largest of the 𝑎𝑖 

values). 

• Min: 𝑤𝑘 = 1 and 𝑤𝑖 = 0 for all 𝑖 ≠ 𝑘. This method acts as the logical “or” operator 

and requires only a single criterion to be satisfied. The scalarized value is equal to 

the most satisfied criteria (the smallest of the 𝑎𝑖 values). In practice, this method is 

rarely used for multiobjective optimization because it does not consider the 

satisfaction of any other criteria other than the most satisfied criteria. 

2.6 Multiobjective Evolutionary Algorithms 

Evolutionary algorithms are well suited to solve multiobjective optimization 

problems. These algorithms create a population of potential solutions and use genetic 

operators such as selection, crossover, and mutation to iteratively improve the best 

individuals until a suitable solution is found. In a multiobjective problem, there may not be 

a single optimal solution, but rather a set of Pareto optimal solutions. The goal of a 

multiobjective evolutionary algorithm (MOEA) is to return a set of solutions that closely 

approximates the true Pareto optimal set (Fonseca and Fleming 1995; Zitzler, Laumanns, 

and Bleuler 2004; Zhou et al. 2011). There are several strategies that can be employed to 

modify an EA for a multiobjective problem. Typically, the algorithm needs to define the 

fitness of an individual solution and specify how the selection, crossover, and mutation 

operators should work. Whereas a single objective EA returns only a single solution, an 

MOEA needs to maintain population diversity so that the solutions are well distributed 

over the entire Pareto front. Additionally, there should be enough solutions to provide 

adequate coverage of the entire Pareto front. This can become a challenging issue when 
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there are many objectives. Two of the most influential MOEAs are the nondominated 

sorting genetic algorithm (NSGA-II) (Deb et al. 2002) and the multiobjective evolutionary 

algorithm based on decomposition (MOEA/D) (Qingfu Zhang and Hui Li 2007). 

NSGA-II uses a fast non-dominated sorting approach to partition the population of 

𝑁 solutions into multiple nondominated fronts such that no solution dominates another 

solution in the same front, and each solution in front 𝐹𝑖 is dominated by at least one solution 

in front 𝐹𝑖−1 for 𝑖 > 1. The solutions within each front are then sorted based on crowding 

distance, so that solutions that are more separated receive a lower (better) rank. Each 

generation, a new population is generated using binary tournament selection, and the 

combined parents and offspring are sorted using the nondominated sorting approach. The 

top 𝑁 individuals survive to the next generation. 

The NSGA-II algorithm achieves very good performance on problems with a small 

number of objectives, but suffers from the curse of dimensionality in high-dimensional 

spaces. Most solutions are nondominated in many-objective optimization problems, which 

weakens the selective pressure of the nondominated sorting approach. Furthermore, an 

exponentially greater number of solutions are required to model a high-dimensional Pareto 

front. These issues have given rise to a class of many-objective evolutionary algorithms 

(MaOEAs)  (Ishibuchi, Tsukamoto, and Nojima 2008; Li et al. 2015). One of the key 

difficulties of MaOEAs is the visualization of the population, which can be used to evaluate 

methods and to observe the evolutionary process (He and Yen 2016). Several MaOEA 

algorithms have been proposed, including NSGA-III (Jain and Deb 2014), 𝜖-MOEA (Deb, 

Mohan, and Mishra 2005), GrEA (Yang et al. 2013), HypE (Bader and Zitzler 2011), and 
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MOEA/D (Qingfu Zhang and Hui Li 2007). Of these, the decomposition strategy of 

MOEA/D has proven to be particularly adaptable to many problem domains and 

algorithmic variants (Trivedi et al. 2016). 

The general MOEA/D approach is outlined in Algorithm 2.3. The method requires 

the definition of 𝑁 evenly spread 𝑚-dimensional weight vectors 𝝀1, … , 𝝀𝑁, representing 𝑁 

scalarized single-objective problems. The method maintains a population of 𝑁 solutions 

𝑥1, … , 𝑥𝑁, where 𝑥𝑖 is the current solution to subproblem 𝑖. A solution 𝑥𝑖 is evaluated as 

𝐹(𝑥𝑖) = (𝑓1(𝑥
𝑖), … , 𝑓𝑚(𝑥

𝑖)), where 𝑓𝑗(𝑥
𝑖) represents the value of 𝑥𝑖 against objective 𝑗. 

A reference point 𝒛 = (𝑧1, … , 𝑧𝑘) maintains the ideal objective vector discovered so far 

and a scalarization function 𝑔(𝑥|𝝀𝑖 , 𝒛) provides a measure of how well solution 𝑥 solves 

subproblem 𝑖. The algorithm maintains an external population 𝐸𝑃 that contains the 

nondominated solutions found during the search. 

The first step of the algorithm creates initial solutions to each of the subproblems 

and computes the neighborhood of each weight vector. In the second step, each weight 

vector is evaluated and a new solution is created using crossover and mutation operators 

on the solutions in the neighborhood. If necessary, a problem-specific repair or heuristic 

can be applied to improve the solution. The new solution is then compared with the current 

solutions of the neighboring subproblems and it replaces the old solution if the new one is 

better. The objective values of the solutions are compared and used to update the external 

population of nondominated solutions, which is returned at the end of the search. 

The decomposition approach allows MOEA/D to be applied to problems where a 

single-objective optimization strategy is readily available. For instance, the multiobjective 
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shortest path problem (MO-SPP) can define several weight vectors to scalarize the problem 

as a set of single-objective subproblems, and then use a shortest path algorithm such as 

Dijkstra's algorithm to find solutions to these subproblems. The MOEA/D algorithm can 

be used to find the Pareto optimal set of solutions to the MO-SPP before requiring a 

decision-maker to give any specific preferences. 
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Algorithm 2.3 MOEA/D 

 

Input: 

• MOP 

• a stopping criterion 

• 𝑁: the number of subproblems considered 

• 𝝀1, … , 𝝀𝑁: 𝑚-dimensional objective weight vectors 

• 𝑇: the size of each weight vector neighborhood 

• 𝑔: a scalarization function 

Output: 𝐸𝑃 

Step 1) Initialization: 

Step 1.1) Set 𝐸𝑃 = ∅ 

Step 1.2) Compute 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇} as the 𝑇 closest weight vectors to each weight 

vector 𝝀𝑖 for 𝑖 = 1,… ,𝑁 

Step 1.3) Generate an initial population 𝑥1, … , 𝑥𝑁 and set 𝐹𝑉𝑖 = 𝐹(𝑥𝑖) 

Step 1.4) Initialize the reference point 𝒛 = (𝑧1, … , 𝑧𝑘)  

Step 2) Update: 

For 𝑖 = 1, … , 𝑁, do 

Step 2.1) Reproduction: Randomly select two indices 𝑘 and 𝑙 from 𝐵(𝑖) and generate a 

new solution 𝑦 from 𝑥𝑘 and 𝑥𝑙 

Step 2.2) Improvement: Use a problem-specific heuristic on 𝑦 to produce 𝑦′ 

Step 2.3) Update 𝒛: Set 𝑧𝑗 = min{𝑧𝑗 , 𝑓𝑗(𝑦
′)} for 𝑗 = 1,… ,𝑚 

Step 2.4) Update neighbors: For each index 𝑗 ∈ 𝐵(𝑖), if 𝑔(𝑦′|𝝀𝑗 , 𝒛) ≤ 𝑔(𝑥𝑗|𝝀𝑗 , 𝒛), 

then set 𝑥𝑗 = 𝑦′ and 𝐹𝑉𝑗 = 𝐹(𝑦′) 

Step 2.5) Update 𝑬𝑷:  

Step 2.5.1) Remove all vectors from 𝐸𝑃 that are dominated by 𝐹(𝑦′) 

Step 2.5.2) Add 𝐹(𝑦′) to 𝐸𝑃 if no vectors in 𝐸𝑃 dominate 𝐹(𝑦′). 

Step 3) Stopping criteria: If the stopping criteria has been satisfied, then stop and output 

𝐸𝑃. Otherwise repeat Step 2. 

 



54 

2.7 Intelligent Agents 

A software agent that acts with purposeful behavior in a problem domain may be 

described as intelligent to some degree. As environmental psychologists developed models 

that could be used to explain human and animal behavior in real world environments, 

computer scientists worked to implement analogous models that could be used in simulated 

environments. The field of artificial intelligence grew around the concept of developing 

intelligent agents that behave autonomously to maximize some notion of success (Russell 

and Norvig 2009). There are several classes of intelligent agents, ranging from the simple 

reflex agents used in multi-agent models, to learning agents that can operate in unknown 

environments. The general agent model is very similar to the cognitive model used in 

Figure 2.1Error! Reference source not found.. Agents have a set of actuators that define 

the actions they can perform and a set of sensors that receive percepts from the 

environment. The agent’s actions are defined by the agent function, which maps percepts 

into actions and can be realized in various ways. For example, the agent function might use 

a lookup table or fuzzy rule base to decide which action to take. More complex agents can 

maintain some notion of the current state, and may be implemented as a finite state 

machine. The most advanced agents can adapt to unforeseen events and can learn the 

utilities of their actions. 

In the physical world, intelligent agents have been designed to control mobile 

robots using a variety of cognitive models (Luke et al. 2005; Eliashberg 2002; Busch et al. 

2007; Blisard and Skubic 2005; Phillips and Noelle 2005; Skubic et al. 2004). In some 

instances, the environment is not known completely and the robot must construct a map of 

its surroundings as it explores (Thrun 2002). The simultaneous localization and mapping 
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(SLAM) problem can be defined as determining the robot’s location 𝑥𝑡 and the 

environment map 𝑚𝑡 from a sequence of observations 𝑜1:𝑡. SLAM has been typically 

treated as a probabilistic problem that uses Bayes rule to maximize the posterior 

distribution 𝑃(𝑚𝑡, 𝑥𝑡|𝑜1:𝑡) given sequentially defined updates for the location 

𝑃(𝑥𝑡|𝑜1:𝑡, 𝑚𝑡) and the map 𝑃(𝑚𝑡|𝑥𝑡 , 𝑜1:𝑡). 

2.8 The Traveling Salesman Problem 

The traveling salesman problem (TSP) is a combinatorial optimization problem that 

has received wide attention in the fields of operations research and theoretical computer 

science as a benchmark for exploring issues of computational complexity (Applegate et al. 

2007). In its canonical form, the problem is to find the order in which an agent should visit 

a set of cities separated by known distances so as to minimize the total distance traveled. 

Several variations of the TSP have been proposed (Gutin and Punnen 2007) including the 

probabilistic TSP (Jaillet 1985), physical TSP (Perez, Rohlfshagen, and Lucas 2012), 

partially observable TSP (Buck and Keller 2016), and the traveling purchaser problem 

(TPP) (Boctor, Laporte, and Renaud 2003; Riera-Ledesma and Salazar-González 2005). 

The TPP can be considered a generalization of the TSP, where an agent must visit a set of 

known market locations with various prices for goods in an order that allows it to purchase 

a given list of items at the lowest price while also accounting for the cost of travel. This 

form of the problem can be parameterized in many ways to create simpler problem types 

such as the resource collecting TPP. In this variation, each market offers a single type of 

resource and the agent needs to collect a set number of each resource type by visiting the 

appropriate markets in the shortest distance possible. An even simpler variation that can be 
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expressed in this form is the k-TSP in which the agent only needs to visit k of the market 

locations. 

One application of the TSP and the TPP is to create problems that can be solved by 

agent-based systems. Computer simulations have been used in many domains to study the 

complex problems that often arise as the result of physical processes or agent interaction. 

The latter case is the subject of study in agent-based modeling, which seeks to explain the 

collective behavior of a population of autonomous agents that model natural systems by 

obeying simple rules (Bonabeau 2002). By using agents to represent individual decision-

makers, complex systems can be created that show emergent behavior  (Holland and Miller 

1991). In the context of human geography, agent-based models have been used to study 

evacuation scenarios in disaster situations (Keller, Popescu, and Gibeson 2012), and 

utilized concepts such as bounded rationality to guide agent behavior (Popescu and Keller 

2012) and rumor spreading models based on social networks (Zare et al. 2012). A related 

field is that of multi-agent systems, which focuses on using an interacting group of 

intelligent agents to model problems that are too complex for an individual agent (Niazi 

and Hussain 2011). In the area of computational intelligence, agent-based models have 

been used to solve optimization problems using techniques such as ant colony optimization 

(Dorigo, Maniezzo, and Colorni 1996) and particle swarms (Kennedy and Eberhart 1995). 
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3 CREATING GRID WORLD ENVIRONMENTS 

In this chapter, we introduce the grid world environments used in the CMM 

framework. The environments contain various attributes and are constructed using several 

different methods. These environments provide the problem structure for studying various 

aspects of multicriteria and partially observable decision-making in later chapters. 

3.1 Grid Worlds 

The CMM framework presented in this work uses grid worlds exclusively as the 

problem domain. A gridded environment provides structure and regularity that simplifies 

many of the practical issues of representing a physical environment. In a grid world 

problem, the environment space ℰ is discretized into a regular grid of cells so that cell 

𝑐(𝑖,𝑗) ∈ ℰ is the cell in row 𝑖 and column 𝑗. The world contains a single decision-making 

agent located in cell 𝑐(𝑎𝑖,𝑎𝑗). The agent can move to adjacent cells 𝑐(𝑎𝑖−1,𝑎𝑗), 𝑐(𝑎𝑖+1,𝑎𝑗), 

𝑐(𝑎𝑖,𝑎𝑗−1), or 𝑐(𝑎𝑖,𝑎𝑗+1) by travelling up, down, left, or right respectively, so long as the 

adjacent cell is traversable. We restrict the agent’s movement to these four directions to 

ensure that each step is of equal length, which simplifies the resulting analysis. Each cell 

has a set of attributes that describe the local state of the environment. In the CMM 

framework, we define the following attributes for each grid cell 𝑐 ∈ ℰ: 

• OPEN(𝑐) ∈ {0, 1} indicates if the cell is traversable. A value of 0 indicates that the 

cell contains a wall, whereas 1 indicates that the cell is open and the agent can move 

into it. 
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• TERRAIN(𝑐) ∈ 𝒯 indicates the type of terrain in the cell, where 𝒯 is the set of all 

terrain types1. In simple environments, there may only be a single terrain type (e.g. 

𝒯 = {open_space}). However, we can model more complex environments by 

including additional types of terrain such as snow, rock, meadow, forest, water, 

etc. 

• ELEVATION(𝑐) ∈ [0,1] is a continuous-valued attribute that indicates the height of 

the grid cell. In our work, the domain is restricted to the unit interval. 

• RESOURCES(𝑐) ∈ ℛ ∪ ∅ indicates which resource type, if any, is present in the cell, 

where ℛ is the set of all resource types. It may be preferable to associate a single 

resource type with each type of terrain, although this is not a strict requirement. 

Note that in our work we assume that each grid cell can have a maximum of one 

resource type. 

In the following sections, these attributes are generated independently as a set of n  m 

matrices, where each grid cell 𝑐(𝑖,𝑗) references the corresponding matrix index [𝑖, 𝑗] and 

1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. In practice, these matrices are used to look up the attribute 

values of any grid cell in the environment. 

 
1 We could implicitly include cells that contain walls as an additional type of terrain, however we separate 

them in our notation to better indicate where the agent can travel and to aid in the computation of visibility. 
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The grid world environment model is a flexible problem domain that can be adapted 

to create many interesting scenarios. Some examples of grid world problems generated in 

the CMM framework are shown in Figure 3.1. Simple occupancy grid environments can 

   
(a) (b) 

    
(b) (d) 

Figure 3.1  Examples of grid world problem domains generated in the CMM framework. (a) A cave-like 

occupancy grid environment with a single resource. (b) An environment with three different terrain types 

and multiple resources of the same type. (c) An environment with a real-valued elevation heightmap and 

multiple resources of the same type. (d) A synthetic world environment combining multiple terrain types 

with elevation and containing several different resource types. 
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be created by defining a single region type with constant elevation. Multiobjective 

problems can be created by defining multiple region types and/or an elevation heightmap. 

The different resource types provide goals for the agent to pursue while moving through 

the environment. While these environments can be defined manually, either as hand-crafted 

models or based on real-world data, our focus in this work is on the generation and study 

of purely synthetic environments using procedural methods. The various approaches used 

by the CMM framework to generate environments are described over the next several 

sections. 

Grid worlds are discrete domains that can simplify the representation of 

environment attributes, but they can also add significant overhead to the memory 

requirement and computational burden in large problems. We address this issue in two 

ways. First, we limit the size of the grid world environments to relatively small dimensions 

(typically between 3030 and 100100) to prevent an exponential growth in the number 

of grid cells. Second, we propose an approximate representation of the complete 

environment by clustering similar regions together using superpixels and working within 

this reduced domain. This latter approach forms the basis for the region graph 

representation of the mental map and will be discussed in more detail in Chapter 5. The 

remainder of this chapter is dedicated to explaining how a complete discrete grid-based 

environment model is generated from an initial random seed. 

3.2 Generating Caverns 

The first (and sometimes only) attribute layer we define is the occupancy grid that 

specifies which cells are traversable by the agent. Simple problem spaces can be defined 
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with few or no obstacles, but the problems become more interesting as the environments 

are filled with walls and passageways that limit the agent’s navigation options. In the 

extreme case, the environment could be a complex maze that is challenging even for a 

human to solve. State-of-the-art path planning algorithms make solving mazes and other 

fully observable occupancy grid environments somewhat trivial, but when the environment 

is not completely visible, these obstacles serve to limit how much the agent can see. We 

model the occupancy grid layer as a 2D cavern map, generated using a cellular automation. 

These maps have an organic quality with both winding passageways and large open regions 

containing non-uniform random structure that leads to interesting shortest path problems 

and visibility constraints. 

The general outline of our method for creating the occupancy grid is given in 

Algorithm 3.1. The process begins by initializing an n  m grid with random values, where 

each grid cell is assigned a value of 1 with probability p0 and a value of 0 with probability 

1 – p0 (lines 1-4). The algorithm then iterates through k steps of cellular automation rules, 

represented by the CELLULAR_AUTOMATA function in Algorithm 3.2. The rules are applied 

simultaneously to all grid cells and are defined by two parameters, rb and rd, where rb ≥ rd. 

For each grid cell, we check to see how many of the eight cells in the 33 Moore 

neighborhood around each cell are set to 1. If this number is greater than the birth rate (rb), 

the cell is set to 1. Otherwise, if it is less than the death rate (rd), the cell is set to 0. Between 

each generation, we apply an optional mask to constrain the cellular growth to a specified 

region (line 7). This is used when creating certain types of terrain in environments that 
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already have an occupancy grid layer defined. The border cells are always set to 0 between 

generations to ensure that the world is fully enclosed (line 8). 

 

 

Algorithm 3.1 Cave Environment Generation 

 

GENERATE_CAVE_ENVIRONMENT(n, m, p0, rb, rd, k, mask, opt ) 

1: W ← n  m grid initalized to 0 

2: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m } 

3: if r ~ U(0, 1) ≤ p0 // With probability p0 

4: W [i, j] ← 1 

5: for k iterations 

6: W ← CELLULAR_AUTOMATA(W, rb, rd ) // Algorithm 3.2 

7: W [i, j] ← 0 for all cells where mask[i, j] = 1 

8: W [i, j] ← 0 for all cells where (i, j) is a border cell 

9: if opt.makeConnected 

10: while (# of connected components in W )  1 

11: Z ← the smallest connected component in W 

12: Z' ← Z  [0 1 0; 1 1 1; 0 1 0] // Image dilation 

13: if opt.method = “dilate” 

14: W ← max(W, Z' ) 

15: elseif opt.method = “random” 

16: Y ← Z'  Z 

17: (i, j) ← random grid cell where Y [i, j] = 1 

18: W [i, j] ← 1 

19: W [i, j] ← 0 for all cells where mask[i, j] = 1 

20: W [i, j] ← 0 for all cells where (i, j) is a border cell 

21: W ← REMOVE_DIAGONAL_PASSAGES(W ) // Algorithm 3.3 

22: return W 
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In most cases, we want every open location in the environment to be reachable so 

that the agent can acquire all the resources. This is controlled by an options parameter that 

specifies if the environment is to be connected and which method should be used to make 

it connected. The two methods are referred to as dilate and random. In both approaches, 

the environment map is refined iteratively until there is only a single connected component. 

On each iteration, we identify the smallest connected component consisting of a contiguous 

set of 4-connected open cells (with a value of 1) and call this image Z, where Z [i, j] = 1 if 

cell (i, j) is part of the smallest connected component and Z [i, j] = 0 otherwise (line 11). 

We then compute Z' by dilating Z with a 4-connected mask that sets any cell in Z' to 1 if 

one of its 4-connected neighbors in Z is 1 (line 12). If the method is set to dilate, then the 

entirety of the newly dilated region is set to 1 (line 14). For the random method, only one 

of the newly opened grid cells is set to 1, chosen randomly (lines 16-18). The dilate method 

operates faster than the random method, but can produce irregular open regions if the 

smallest connected component is large. In contrast, the random method produces a more 

 

Algorithm 3.2 Cellular Automata 

 

CELLULAR_AUTOMATA(W, rb, rd ) 

1: (n, m) ← size of W 

2: W' ← W 

3: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m } 

4: N ← {(u, v) | i−1 ≤ u ≤ i+1   j−1 ≤ v ≤ j+1  (u, v) ≠ (i, j)  W [u, v] = 1} 

5: if | N | > rb 

6: W' [i, j] ← 1 

7: elseif | N | < rd 

8: W' [i, j] ← 0 

9: return W' 
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uniform appearance, but operates more slowly. Between each iteration, we perform a clean-

up step by setting all cells in the mask and on the border to zero (lines 19-20).  

We also remove any passageways that are only connected diagonally using the 

REMOVE_DIAGONAL_PASSAGES function presented in Algorithm 3.3. This procedure 

checks each grid cell to see if it is part of a diagonally connected passage and if it is found 

to be so, the cell is filled in and set to 0. This improves the visual appearance of the 

environment and helps the visibility computation, which is discussed further in Section 

4.1.2. Several examples of cave environments are shown in Figure 3.2. 

 

 

Algorithm 3.3 Remove Diagonal Passages 

 

REMOVE_DIAGONAL_PASSAGES(W) 

1: (n, m) ← size of W 

2: changed ← True 

3: while changed 

4: changed ← False 

5: for each (i, j) {(i, j) | 2 ≤ i ≤ n −1  2 ≤ j ≤ m −1} 

6: if W [i, j] = 1   

((W [i−1, j−1] = 1  W [i−1, j] = 0  W [i, j−1] = 0)  

(W [i+1, j−1] = 1  W [i+1, j] = 0  W [i, j−1] = 0)  

(W [i−1, j+1] = 1  W [i−1, j] = 0  W [i, j+1] = 0)  

(W [i+1, j+1] = 1  W [i+1, j] = 0  W [i, j+1] = 0)) 

7: W [i, j] ← 0 

8: changed ← True 

9: return W 
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3.3 Region Partitioning 

The grid world environments can be partitioned into discrete regions to aid in the 

generation of additional features and to simplify the mental map representation. Our 

method for partitioning the environment is based on the SLIC superpixel clustering 

algorithm (Achanta et al. 2012). SLIC stands for simple linear iterative clustering and is 

an adaptation of the k-means algorithm for producing superpixels in color imagery. The 

version of SLIC used in this work is modified slightly from the original method used on 

color imagery and is designed for use in grid world environments. Instead of three color 

channels, we use an elevation map to group similar grid cells. Distances are also computed 

     
 p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 6, rd = 4, p0 = 0.5, rb = 6, rd = 4, 

 k = 1, dilate k = 10, dilate k = 1, dilate k = 1, random 

 

     
 p0 = 0.2, rb = 4, rd = 2, p0 = 0.2, rb = 4, rd = 2, p0 = 0.8, rb = 6, rd = 4, p0 = 0.8, rb = 5, rd = 3, 

 k = 10, dilate k = 10, random k = 30, dilate k = 30, dilate 

Figure 3.2  Examples of cavern maps generated using Algorithm 3.1. A wide range of map types can be 

created by varying the input parameters. These examples are 5050 grids with all locations set to be 

reachable. 
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with respect to the cave wall boundaries. If no elevation map is provided, only spatial 

distance is used in determining region boundaries. We include the reference to an optional 

elevation map here since this procedure is used in the definition of region boundaries for 

the mental map representation in Chapter 5. However, since a region map may be needed 

to create an elevation map in Section 3.4, the elevation map is not required to define the 

region partitions. An overview of the region partitioning method is shown in Algorithm 

3.4. 

 

The algorithm takes a cave wall map W and an optional elevation map E as inputs, 

along with a cluster separation radius r, an elevation weighting parameter we, and an 

improvement tolerance threshold 𝜖. We start by sampling evenly spaced cluster centers. In 

 

Algorithm 3.4 Region Partitioning 

 

PARTITION_REGIONS(W, E, r, we, 𝜖) 

1: C ← TABU_SAMPLING(W, r) // Algorithm 3.5 

2: C ← ADJUST_CLUSTER_CENTERS(E, C) // Algorithm 3.7 

3: (n, m) ← size of W 

4: R ← n  m  | C | matrix initalized to ∞ 

5: e ← ∞ 

6: for ⌈√𝑟 ⌉ iterations 

7: for k in 1 to | C | 

8: (u, v) ← C[k]  

9: R[…, …, k] ← GRID_DISTANCE(W, u, v, 2r) // Algorithm 3.6 

10: L, e' ← ASSIGN_CELLS_TO_CLUSTERS(E, C, R, r, we) // Algorithm 3.8 

11: if (e − e' ) / e < 𝜖 

12: break 

13: e ← e' 

14: C ← GET_REGION_CENTERS(L) // Algorithm 3.9 

15: L ← FIX_ORPHANS(C, L, R) // Algorithm 3.10 

16: return L 
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standard SLIC, this is accomplished by sampling on a grid at regular intervals. Because of 

the irregular nature of the cavern environments, this could lead to some narrow 

passageways being missed and having no local cluster center. Instead, we use tabu 

sampling to generate the cluster centers. Algorithm 3.5 shows the procedure for tabu 

sampling in a cavern map. The algorithm takes a cavern map W and a separation radius r 

as input. To begin, all open grid cells are added to a set of valid sample indices (line 3). 

While there are still grid cells in this set, a random location is sampled and added to the list 

of cluster centers (lines 5-7). After sampling a new cluster center, we compute the grid 

distance from that location and remove any cells within a specified radius r from the set of 

valid indices (lines 8-10). This ensures that no two samples are too close to one another. 

By continuing until there are no more valid locations, we obtain a set of samples that span 

the entire grid. Figure 3.3 shows several examples of tabu sampling using this approach 

with different values for the separation radius. 

 

 

Algorithm 3.5 Tabu Sampling 

 

TABU_SAMPLING(W, r) 

1: k ← 0 

2: C ← empty list 

3: I ← {(i, j) | W [i, j] = 1}    // Get the set of valid indices 

4: while | I | > 0 

5: k ← k + 1 

6: (i, j) ~ I     // Sample a random grid cell in I 

7: C[k] ← (i, j) 

8: D ← GRID_DISTANCE(W, i, j, r)  // Algorithm 3.6 

9: for each (u, v)  {(u, v) | D [u, v] ≤ r } 

10: I ← I ∖ {(u, v)}    // Remove from I 

11: return C 
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The computation of grid distance on line 8 of the TABU_SAMPLING function is 

detailed in Algorithm 3.6. This function serves many roles throughout this work and will 

be revisited in Chapter 5 for computing edge attributes for the mental map representation 

of the environment. The input arguments are a cavern map W and a reference location (i, j), 

along with a maximum distance parameter dmax. The algorithm is based on the approach 

presented by (Lee 1961) and operates as a flood-fill, breadth-first search that radiates 

outward from the starting location. To summarize the procedure, we begin by initializing 

a matrix D to infinity (lines 1-2) that will store the shortest path grid distance from (i, j) 

that obeys the wall boundaries. A distance counter d is set to 0 and we initialize the open 

and closed sets, adding the starting location to the open set (lines 3-5). While the open set 

is not empty and the distance counter is less than the maximum value, we set the distance 

of each grid cell in the open set to the current distance counter value (line 9) and move the 

cell to the closed set (line 10). We then identify the neighbors of this cell that are not walls 

and have not yet been added to the closed set (lines 11-12). These locations are collected 

in the frontier set, which replaces the open set after all the previous cells in the open set 

have been evaluated (line 13) and the distance counter is incremented by one (line 14). 

This algorithm works as a flood fill method using breadth-first search to label each location 

     

 r = 32 r = 16 r = 8 r = 4 r = 2 

Figure 3.3  Tabu sampling on a 5050 grid with different values for the separation radius. 
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in the environment. The maximum distance parameter allows the search to terminate early, 

which can greatly reduce computation time when only close distances are needed. Once all 

cells have been evaluated and the open set is empty, the algorithm returns the distance 

matrix D. 

 

After the initial cluster centers have been defined, they can be moved into a local 

minimum of the elevation gradient if an elevation map is provided. If no elevation is 

provided, the initial cluster centers are used without adjustment. Algorithm 3.7 shows the 

procedure for updating the set of cluster centers C using an elevation map E. The first step 

of this algorithm (line 1) is to compute the gradient of E which we denote as the matrix F. 

 

Algorithm 3.6 Grid Distance 

 

GRID_DISTANCE(W, i, j, dmax) 

1: (n, m) ← size of W 

2: D ← n  m matrix initalized to ∞ 

3: d ← 0 

4: open ← {(i, j)} 

5: closed ← ∅ 

6: while | open| > 0  d ≤ dmax 

7: frontier ← ∅ 

8: for each (u, v)  open 

9: D [u, v] ← d 

10: closed ← closed ∪ (u, v)  

11: N ← {(u−1, v), (u+1, v), (u, v−1), (u, v+1)} 

12: frontier ← frontier ∪ {(u', v') | (u', v')  N  (u', v')  closed  W [u', v'] = 1} 

13: open ← frontier 

14: d ← d + 1 

15: return D 
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Element F [i, j] is defined as the magnitude of the central difference for interior points such 

that 

 𝐹[𝑖, 𝑗] = √(𝐹𝑥[𝑖, 𝑗])
2
+ (𝐹𝑦[𝑖, 𝑗])

2
, where (3.1) 

 𝐹𝑥[𝑖, 𝑗] = 0.5 ∗ (𝐸[𝑖, 𝑗 + 1] − 𝐸[𝑖, 𝑗 − 1]), (3.2) 

 𝐹𝑦[𝑖, 𝑗] = 0.5 ∗ (𝐸[𝑖 + 1, 𝑗] − 𝐸[𝑖 − 1, 𝑗]). (3.3) 

For exterior points and points where one of the neighbors of 𝐸[𝑖, 𝑗] is undefined, the 

gradient is computed as the single-sided difference using only the defined values. For 

instance, if 𝐸[𝑖 − 1, 𝑗] is undefined, but 𝐸[𝑖 + 1, 𝑗], 𝐸[𝑖, 𝑗 − 1], and 𝐸[𝑖, 𝑗 + 1] are defined, 

then 𝐹𝑥[𝑖, 𝑗] keeps the same definition as Equation 3.2, but 𝐹𝑦[𝑖, 𝑗] is defined as 

 𝐹𝑦[𝑖, 𝑗] = (𝐸[𝑖 + 1, 𝑗] − 𝐸[𝑖, 𝑗]). (3.4) 

Once the gradient matrix has been computed, the algorithm cycles through each cluster 

center and moves it to the location of the minimum gradient value within a 33 

neighborhood. This helps prevent clusters from being located on natural region boundaries 

and generally improves the stability of the algorithm. 

 

 

Algorithm 3.7 Adjust Cluster Centers 

 

ADJUST_CLUSTER_CENTERS(E, C) 

1: F ← E 

2: for k in 1 to | C | 

3: (i, j) ← C[k] 

4: G ← {(u, v) | i−1 ≤ u ≤ i+1   j−1 ≤ v ≤ j+1} 

5: (u, v) ← (u, v)  G s.t. F [u, v] ≤ F [u', v' ]  (u', v' )  G 

6: C[k] ← (u, v) 

7: return C 
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At this point, we begin the main loop of Algorithm 3.4 and iteratively assign all 

grid cells to the nearest cluster center and then update the cluster center locations. This 

outer loop can be repeated until the cluster assignments do not change, or until some 

improvement threshold is reached. In practice, we have found it useful to scale the 

maximum number of iterations to be proportional to the effective cluster size, which is 

determined by the separation radius r. In our experiments, we use ⌈√𝑟 ⌉ as the maximum 

number of iterations and 0.01 as the improvement tolerance threshold 𝜖. The first step 

during each iteration is to precompute the grid distance values for each cluster. These are 

stored in the n  m  | C | matrix R, where n and m are the dimensions of the environment 

and | C | is the number of clusters. This reference distance matrix is updated each iteration 

with new cluster center locations and allows for quick distance lookups for each grid cell. 

Note that the call to the GRID_DISTANCE function on line 9 of Algorithm 3.4 uses 2r as the 

maximum distance parameter to reduce computation time, which assumes that cells will 

not be assigned to clusters greater than 2r steps away. 

The next step of the main loop is the assignment of each grid cell to the nearest 

cluster center. This is accomplished by the ASSIGN_CELLS_TO_CLUSTERS function in 

Algorithm 3.8. This function starts by initializing a distance matrix D and a label matrix L 

(lines 1-3). The distance matrix will store the distance from each grid cell to the nearest 

cluster center and the label matrix will store the index of the nearest cluster center. For 

each grid cell (i, j) and each cluster center (u, v), we compute both a spatial and an elevation 

distance. The spatial distance 𝑑𝑠 is computed from the grid distance reference matrix R and 

normalized by the cluster separation radius r (line 7). The elevation distance is computed 
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as the absolute difference between the elevation of the two grid cells and is multiplied by 

a weighting parameter we (line 8). Note that since the elevation values come from the range 

[0, 1] the unweighted elevation distance is also restricted to the unit interval. If no elevation 

map is used, we can be set to zero. The two distance measures are combined using the 

ℓ2-norm to give the overall cluster distance d (line 9). The index of the cluster center with 

the smallest distance to a given grid cell is stored in the label matrix L and the distance to 

this cluster center is saved in the distance matrix D (lines 11-12). After all clusters and grid 

cells have been evaluated, the error is computed as the sum of all non-infinite distances 

between grid cells and their assigned cluster centers. This error value and the label matrix 

are then returned to the main algorithm. 

 

 

Algorithm 3.8 Assign Cells to Clusters 

 

ASSIGN_CELLS_TO_CLUSTERS(E, C, R, r, we) 

1: (n, m) ← size of E 

2: L ← n  m matrix initalized to 0 

3: D ← n  m matrix initalized to ∞ 

4: for k in 1 to | C | 

5: (u, v) ← C[k] 

6: for each (i, j)  {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m } 

7: ds ← R[i, j, k] / r 

8: de ← we ×| E[i, j] − E[u, v] | 

9: d ← √𝑑𝑠2 + 𝑑𝑒2 

10: if d < D[i, j] 
11: D[i, j] ← d 
12: L[i, j] ← k 
13: e ← ∑𝐷[𝑖, 𝑗] for all (i, j) such that 𝐷[𝑖, 𝑗] ≠ ∞ 
14: return L, e 

 



73 

Once all the grid cells have been assigned a cluster label, we can check if the error 

term has improved significantly from the previous iteration. Lines 11-13 of Algorithm 3.4 

check to see if the improvement is less than the error tolerance threshold and break out of 

the main loop if it is small enough. If not, then the main loop continues and we use the 

GET_REGION_CENTERS function to get new cluster centers at the centroids of each region. 

Algorithm 3.9 gives the pseudocode for this procedure. We begin by initializing a new 

empty cluster list C (line 1). We then loop over each region label index and identify the 

grid cells that belong to each region (line 4). It should be noted that this algorithm assumes 

that there is at least one cell in the label map L for each index k in 1, ..., max(L). Next, we 

compute the centroid of the region, rounding to the nearest cell (lines 5-10). If this cell is 

not already part of the region, we move the region center to the cell closest to the centroid 

that is already labeled as part of the region (lines 11-12). The list of region centers is then 

returned to the main algorithm to be used as the new cluster centers. 
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The main loop in Algorithm 3.4 continues until the maximum number of iterations 

has been reached or the improvement threshold has been met. A final post-processing step 

is performed to remove orphaned grid cells that are not connected to a cluster center. This 

is done by the FIX_ORPHANS function in Algorithm 3.10. The function takes the current 

cluster centers C, the label matrix L, and the reference distance matrix R as input. The 

 

Algorithm 3.9 Get Region Centers 

 

GET_REGION_CENTERS(L) 

1: C ← empty list 

2: t ← 0 

3: for k in 1 to max(L) 

 

/* Get the grid cells that belong to this region */ 

4: S ← {(i, j) | L[i, j] = k} 

 

/* Compute the centroid of the region */ 

5: (ci, cj) ← (0, 0) 

6: for each (i, j)  S 

7: ci ← ci + i / | S | 

8: cj ← cj + j / | S | 

9: ci ← ⌊𝑐𝑖 + 0.5⌋ 

10: cj ← ⌊𝑐𝑗 + 0.5⌋ 

 

/* Move the centroid to the closest cell in the region if not already in the region */ 

11: if L[ci, cj] ≠ k 

12: (ci, cj) ← (i, j)  S s.t. √(𝑖 − 𝑐𝑖)
2
+ (𝑗 − 𝑐𝑗)

2
≤ √(𝑖′ − 𝑐𝑖)

2
+ (𝑗′ − 𝑐𝑗)

2
 

∀ (𝑖′, 𝑗′) ∈ 𝑆 

 

/* Save the region center */ 

13: t ← t + 1 

14: C [t] ← (ci, cj) 

 

15: return C 
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algorithm loops repeatedly until it can be verified that there are no remaining orphans. For 

each cluster, we identify the main connected component by using the GRID_DISTANCE 

function seeded at the cluster center with the non-cluster cells acting as walls (lines 7-11). 

Any grid cells that were labeled as part of the cluster, but that were unreachable by the 

GRID_DISTANCE function are marked as orphan cells (line 12). For each orphan cell, we 

get the 4-connected neighbors (line 15) and check to see which of these have different 

labels from the label of the orphan cell (line 16). If none of the neighbor cells have different 

labels, then the algorithm moves on to the next orphan cell and will eventually return to 

this cell after the other orphans have been processed (lines 17-18). The label of the orphan 

cell is then set to the label of the neighboring cell with the smallest distance to the original 

cluster center (lines 19-20). After the outer loop of the FIX_ORPHANS function can verify 

that none of the clusters contain any orphans, the updated label matrix is returned to the 

main algorithm. Note that we do not explicitly check for race conditions that could lead to 

an infinite loop. In practice this is very rare and is best resolved by restarting with a 

different random seed or separation radius. Some examples of the final cluster labeling 

using different values of separation radius are shown in Figure 3.4. 

 

     

 r = 32 r = 16 r = 8 r = 4 r = 2 

Figure 3.4  Results of the region partitioning algorithm on a 5050 grid with different values for the 

separation radius. 
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3.4 Creating a Heightmap 

A heightmap provides a real-valued elevation attribute for every grid cell. This can 

add a sense of realism to the problem domain and give a new set of features that influence 

how the agent makes decisions. The heightmaps for the grid world environments are 

 

Algorithm 3.10 Fix Orphans 

 

FIX_ORPHANS(C, L, R) 

1: (n, m) ← size of L 

2: hasOrphans ← true 

3: while hasOrphans 

4: hasOrphans ← false 

5: for k in 1 to | C | 

6: (u, v) ← C[k] 

 

/* Get the orphans for this cluster */ 

7: S ← {(i, j) | L[i, j] = k} 

8: B ← n  m matrix initalized to 0 

9: for each (i, j)  S 

10: B[i, j] ← 1 

11: D ← GRID_DISTANCE(B, u, v, ∞) // Algorithm 3.6 

12: O ← {(i, j) | (i, j)  S  D[i, j] = ∞} 

 

/* Assign each orphan a neighboring label */ 

13: for each (i, j)  O 

14: hasOrphans ← true 

15: N ← {(i−1, j), (i+1, j), (i, j−1), (i, j+1)} 

16: G ← {(u, v) | (u, v)  N  L[u, v] ≠ 0  L[u, v] ≠ k} 

17: if | G | = 0 

18: continue 

19: (u, v) ← (u, v)  G s.t. R[u, v, k] ≤ R[u', v', k]  (u', v' )  G 

20: L[i, j] ← L[u, v] 

 

21: return L 
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generated using the method of successive random additions. This approach is based on the 

fractal terrain methods presented in Section 2.2.3. Several random noise layers are created 

using the PARTITION_REGIONS function at multiple scales. These are combined to give the 

overall heightmap. 

Algorithm 3.11 gives an overview of the GENERATE_HEIGHTMAP procedure. The 

algorithm takes as input a cave wall map W and two control parameters, p and q, which 

influence the overall shape and texture of the heightmap. The algorithm starts by 

initializing the elevation map E to zero and the scale factor to one (lines 1-3). The main 

loop of the algorithm repeats while the scale factor is less than the largest dimension of the 

grid world. At the end of each iteration, the scale factor is doubled (line 17). At the start of 

each iteration, the environment is partitioned into regions proportional to the current scale 

factor (line 5). Each labeled region is then assigned a random value from the uniform 

distribution U(0, 1) (lines 6-10). This effectively creates a random noise image R at the 

current scale. Figure 3.5 and Figure 3.6 show several examples of random noise images 

generated at different scales with and without a cave wall map. Note that because we use 

the PARTITION_REGIONS function to define the region boundaries, the individual regions at 

larger scales will not cross the cells marked as walls. This allows high and low regions to 

be separated by only a thin wall, which is a difficult effect to achieve with other image 

scaling methods. Each noise image R is smoothed using a mean filter in a 33 window 

(lines 11-14). This is repeated q times, with larger values of q producing smoother terrain. 

The image R is then multiplied by a scale factor 𝑠
1
𝑝⁄  and added to the current elevation 

map E (lines 15-16). Larger values of p produce more homogeneous noise, as all scales 
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begin to be weighted equally. Smaller values of p give sharply distinct regions, as the larger 

image scales dominate the overall elevation map. After all iterations have completed, the 

elevation map is normalized to the range [0, 1] and retuned. Figure 3.7 shows the effect of 

p and q on the generated heightmap. 

 

 

      

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32 

Figure 3.5  Random noise images at different scales on a 5050 grid with no cave walls. (q = 3) 

      

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32 

Figure 3.6  Random noise images at different scales on a 5050 grid with a provided cave wall map. (q = 3) 
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Algorithm 3.11 Heightmap Generation 

 

GENERATE_HEIGHTMAP(W, p, q) 

1: (n, m) ← size of W 

2: E ← n  m matrix initalized to 0 

3: s ← 1 

4: while s < n  s < m 

 

/* Create a random elevation map at the current scale */ 

5: L ← PARTITION_REGIONS(W, E, s, 0, 0.01) // Algorithm 3.4 

6: R ← n  m matrix initalized to 0 

7: for k in 1 to max(L) 

8: r ~ U(0, 1) 

9: for each (i, j)  {(i, j) | L[i, j] = k} 

10: R[i, j] ← r 
 

/* Smoothing */ 
11: for q iterations 

12: for each (i, j)  {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1} 

13: G ← {(u, v) | i−1 ≤ u ≤ i+1   j−1 ≤ v ≤ j+1} 

14: R[i, j] ← mean(R[u, v]) for all (u, v)  G 

 

/* Add to existing heightmap */ 

15: for each (i, j)  {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1} 

16: 𝐸[𝑖, 𝑗] ← 𝐸[𝑖, 𝑗] + 𝑅[𝑖, 𝑗] ⋅ 𝑠
1
𝑝⁄  

 

17: s ← 2s   // Increase scale 

 

18: 𝐸 ← 
𝐸−min(𝐸)

max(𝐸)−min(𝐸)
 // Normalize 

 

19: return E 

 



80 

 

     
 p = 0.1, q = 0 p = 0.1, q = 1 p = 0.1, q = 3 p = 0.1, q = 10 p = 0.1, q = 50 

     
 p = 0.5, q = 0 p = 0.5, q = 1 p = 0.5, q = 3 p = 0.5, q = 10 p = 0.5, q = 50 

     
 p = 1, q = 0 p = 1, q = 1 p = 1, q = 3 p = 1, q = 10 p = 1, q = 50 

     
 p = 2, q = 0 p = 2, q = 1 p = 2, q = 3 p = 2, q = 10 p = 2, q = 50 

     
 p = 5, q = 0 p = 5, q = 1 p = 5, q = 3 p = 5, q = 10 p = 5, q = 50 

Figure 3.7  Heightmaps generated on a 5050 grid with different values of p and q using the same random 

seed. Small values of p give more uniform regions, whereas larger values produce more noise. As q increases, 

the heightmap becomes smoother and sharp boundaries are eliminated. 
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3.5 Defining Terrain Types 

The terrain feature of the grid world environments provides a discrete attribute that 

agents can use in the decision-making process. There are several ways that the terrain 

feature can be generated depending on the desired characteristics of the problem 

environment. We consider four different problem types in this work. The first uses only a 

single terrain type, open_space, and is used when studying single-objective problems in 

cavern maps or when elevation is the only relevant environment feature. In this case, there 

is no need to define additional terrain types. The second problem type uses two terrain 

types, meadow and forest, and is used mainly to study bi-objective problems where one 

type of terrain is preferred over the other and in some multi-objective problems. The third 

problem type adds water to the meadow and forest terrain types and is used to demonstrate 

problems that have directional terrain transition preferences, where the agent prefers to 

move from one type of terrain into another. The last problem type utilizes all the procedural 

content generation methods discussed and simulates a real-world environment with five 

terrain types: meadow, forest, water, rock, and snow. 

3.5.1 Binary Terrain Environments 

In the binary terrain environment problem type, we define two types of terrain: 

meadow and forest. The meadow represents open space where the agent can move freely 

and the forest offers concealment that may be desirable to some agents. We begin by 

constructing a cave wall map using the cellular automata method of Section 3.2. The cave 

walls provide the mask for generating the forested region, which is also created using the 

GENERATE_CAVE_ENVIRONMENT function. If the initial probability p0 used to generate the 
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cave wall map is set to 1, then the wall map mask is set entirely to open space except for 

the border cells. In this case, the problem is focused entirely on the terrain and the 

heightmap if provided. 

Algorithm 3.12 gives the procedure for generating the binary terrain map. The call 

to the GENERATE_CAVE_ENVIRONMENT function on line 1 returns a binary map where the 

“walls” represent the forest terrain type and the open space represents meadow. Because 

the output of this function is binary and we wish to indicate three types of grid cells (wall, 

meadow, and forest), we remap the indices by subtracting the terrain index from 2 if the 

grid cell was open space in the original cave wall map (lines 2-3). The resulting matrix T 

maps 0 to walls, 1 to meadow, and 2 to forest and can be added as an attribute layer in the 

grid world environment. Several examples of binary environments are shown in Figure 3.8. 

One interesting parameter is the opt.makeConnected setting. If set to true, the meadow 

terrain will be completely connected, such that an agent could get from any meadow grid 

cell to any other meadow grid cell without ever going into the forest. If makeConnected is 

set to false, the agent may be forced to go through at least some forest terrain. 

 

 

Algorithm 3.12 Generate Binary Terrain 

 

GENERATE_BINARY_TERRAIN(W, p0, rb, rd, k, opt) 

1: T ← GENERATE_CAVE_ENVIRONMENT(n, m, p0, rb, rd, k, W, opt ) // Algorithm 3.1 

2: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1} 

3: T [i, j] ← 2 − T[i, j] 

4: return T 
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3.5.2 Trinary Terrain Environments 

For the trinary environment problem type, we add water to the forest and meadow 

terrain types. We use fashion-based cellular automata such as the one presented in Section 

2.2.2 to generate the three terrain types. The outline of our approach is given in Algorithm 

3.13. We start by sampling an initial terrain type from a prior distribution P0 for every grid 

cell that is open in the cave wall map W (lines 1-4). For trinary terrain environments, P0 is 

a multinomial distribution over the domain {1, 2, 3}, indicating the probability of a grid 

cell starting as meadow, forest, or water respectively. We then apply the fashion-based 

cellular automation rules for k iterations (line 5-6). Algorithm 3.14 gives the pseudocode 

     
 p0 = 0.5, p0 = 0.5, p0 = 0.4, p0 = 0.5, p0 = 0.6, 

 rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, 

 connected, dilate connected, random not connected not connected not connected 

     
 p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.6, 

 rb = 4, rd = 3, rb = 4, rd = 3, rb = 4, rd = 3, rb = 5, rd = 3, rb = 5, rd = 4, 

 connected, dilate connected, random not connected not connected not connected 

Figure 3.8  Examples of binary environments containing forest and meadow terrain types. The top row shows 

the binary environments in grid worlds with a cave wall map generated using parameters p0=0.5, rb=4, rd=3, 

k=10, and the dilate connection method. The bottom row shows binary environments created without a cave 

wall map. 
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for the FASHION_BASED_CELLULAR_AUTOMATA function. The first part of this function 

computes the score of each cell that has been assigned a terrain type using a supplied rule 

matrix R. For each cell, we examine its 4 adjacent neighbors and lookup the score value 

R[i, j] that corresponds to a cell with terrain type i having a neighbor of terrain type j. The 

sum of these scores for each neighbor gives the overall score for the cell. Once all the 

scores have been computed, we set the terrain type of each open grid cell to that of its 

highest scoring neighbor. If a cell has a higher score than any of its neighbors, it keeps its 

current label. In this way, the cells “follow the fashion” of the neighborhood. 

Figure 3.9 shows several examples of the fashion-based cellular automata for 

creating trinary terrain environments. The resulting patterns are highly dependent on the 

rule matrix and the initial distribution of terrain types. It can be difficult to anticipate the 

type of pattern that any given rule will produce, and it may take several tries to generate a 

valid environment containing at least some cells of every terrain type. 

 

 

Algorithm 3.13 Generate Trinary Terrain 

 

GENERATE_TRINARY_TERRAIN (W, P0, R, k) 

 

/* Sample the initial terrain type for each cell */ 

1: (n, m) ← size of W 

2: T ← n  m grid initalized to 0 

3: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1} 

4: T[i, j] ~ P0  // Sample a terrain type from the initial distribution 

 

5: for k iterations 

6: T ← FASHION_BASED_CELLULAR_AUTOMATA(T, R) // Algorithm 3.14 

 

7: return T 
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Algorithm 3.14 Fashion-Based Cellular Automata 

 

FASHION_BASED_CELLULAR_AUTOMATA(T, R) 

 

/* Compute the score for each cell */ 

1: (n, m) ← size of T 

2: S ← n  m grid initalized to 0 

3: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  T[i, j] ≠ 0} 

4: N ← {(i−1, j), (i+1, j), (i, j−1), (i, j+1)} 

5: for each (u, v)  N s.t. T[u, v] ≠ 0 

6: S[i, j] ← S[i, j] + 𝑅[𝑇[𝑖, 𝑗], 𝑇[𝑢, 𝑣]] 

 

/* Assign the terrain type of the highest-scoring neighbor to each cell */ 

7: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  T[i, j] ≠ 0} 

8: N ← {(i, j), (i−1, j), (i+1, j), (i, j−1), (i, j+1)} 

9: (u, v) ← (u, v)  N s.t. S [u, v]  S [u', v' ]  (u', v' )  N 

10: T[i, j] ← T[u, v] 

 

11: return T 
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3.5.3 Full World Environments 

The last environment type we present simulates a real-world environment with 

optional cave walls, elevation, and five terrain types: meadow, forest, water, rock, and 

snow. For this type of environment, we have hand-chosen some of the parameters after 

careful experimentation to ensure consistency. The pseudocode of our approach is given in 

Algorithm 3.15. We begin by creating a cave wall map W using the supplied parameters 

for the GENERATE_CAVE_ENVIRONMENT function (lines 1-2). Next, we create a heightmap 

E using the GENERATE_HEIGHTMAP function (line 3). The lowest elevations should be 

filled with water, but we would like for the above water elevations to remain scaled in the 

     

     
 𝑃0 = [0.5, 0.3, 0.2] 𝑃0 = [0.3, 0.4, 0.3] 𝑃0 = [0.1, 0.8, 0.1] 𝑃0 = [0.5, 0.3, 0.2] 

 𝑅 = [
0.5 0.6 0.4
0.9 0.4 0
0 0.9 0.5

] 𝑅 = [
0.6 0.3 0.2
0.7 0.1 0.9
0.8 0.1 0.8

] 𝑅 = [
0.9 0.2 0.1
0.5 0.2 0.8
0.7 0.2 0.8

] 𝑅 = [
1 0.2 0.8
0.4 1 0.8
0.9 0.4 1

] 

Figure 3.9  Examples of the fashion-based cellular automata algorithm for creating trinary terrain 

environments. The top row shows the results of Algorithm 3.14 using a cave wall map generated using 

parameters p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The bottom row shows trinary 

environments created without a cave wall map. The initial distribution P0 and the rule matrix R are the same 

for each column. 
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range [0, 1]. Lines 4-5 achieve this effect by scaling the elevation map by a factor of 1.2 

and then subtracting 0.2. Any grid cells that result in an elevation below zero are marked 

as water cells and the elevation is set back to zero to indicate sea-level. The gradient of the 

heightmap is computed on line 6, which is used in the next step to initialize the terrain map. 

Lines 7-15 describe how the terrain map is initialized. We construct the prior 

distribution P0 independently for each grid cell (i, j) from a set of unnormalized values. A 

constant value of 0.8 is assigned to P0[1] representing meadow. P0[2] represents forest and 

is given a value of 1 − 𝐸[𝑖, 𝑗] to give greater weight to lower elevations. Terrain type 3 is 

used to represent water, which is handled separetely, so P0[3] is set to 0. P0[4] represents 

rock and is given a value proportional to the square root of the heightmap gradient so that 

steep slopes have a higher chance of being initialized with rock. P0[5] represents snow and 

is given a value of (𝐸[𝑖, 𝑗])5 to strongly favor high elevations. These values are normalized 

and used to construct a multinomial distribution from which the initial terrain type is 

sampled. 

The terrain is updated using the FASHION_BASED_CELLULAR_AUTOMATA function 

for 10 iterations using the rule specified on line 16. This simple rule indicates that meadow 

and forest terrain types prefer their own types and each gives half weight to the other. The 

rock and snow terrain types give full weight to themselves and each other. The third row 

and column is set to zero to ignore the water terrain type since it has already been defined 

with the heightmap. After each iteration, the terrain type for each grid cell where the 

elevation is zero is set to water. After the terrain has been defined, the cave wall map, 

heightmap, and terrain map are returned to be used as attribute layers in the grid world 

environment. Several full world environment examples are shown in Figure 3.10. 
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Algorithm 3.15 Generate Full World Environment 

 

GENERATE_FULL_WORLD_ENVIRONMENT(n, m, p0, rb, rd, k, opt, p, q) 

 

/* Create the cave wall map */ 

1: mask ← n  m grid initalized to 0 

2: W ← GENERATE_CAVE_ENVIRONMENT(n, m, p0, rb, rd, k, mask, opt ) // Algorithm 3.1 

 

/* Create the heightmap */ 

3: E ← GENERATE_HEIGHTMAP(W, p, q) // Algorithm 3.11 

4: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m} 

5: E[i, j] ← max(0, 𝐸[𝑖, 𝑗] ∗ 1.2 − 0.2) 

6: F ← E  // Compute the slope of each grid cell 

 

/* Initialize the terrain map */ 

7: T ← n  m grid initalized to 0 

8: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  W[i, j] = 1} 

9: P0[1] ← 0.8   // Meadow 

10: P0[2] ← 1 − 𝐸[𝑖, 𝑗]  // Forest 

11: P0[3] ← 0   // Water (handled separately)  

12: P0[4] ← √
𝐹[𝑖,𝑗]−min(𝐹)

max(𝐹)−min(𝐹)
 // Rock 

13: P0[5] ← (𝐸[𝑖, 𝑗])5  // Snow 

14: P0 ← P0 / sum(P0)  // Normalize 

15: T[i, j] ~ P0   // Sample a terrain type 

 

/* Create the terrain map */ 

16: R ← 

[
 
 
 
 
 1 0.5 0 0 0
0.5 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1]

 
 
 
 
 

 

17: for 10 iterations 

18: T ← FASHION_BASED_CELLULAR_AUTOMATA(T, R) // Algorithm 3.14 

19: for each (i, j) {(i, j) | 1 ≤ i ≤ n  1 ≤ j ≤ m  E[i, j] = 0} 

20: T[i, j] ← 3  // Set water terrain type 

 

21: return W, E, T 
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3.6 Resource Placement 

The last attribute layer specifies the resources that are present in the environment. 

The resources represent goal locations that the agent needs to visit to satisfy the problem 

requirements. There are many ways that the resources can be placed in the environment 

and some problems may require a different approach from the methods presented here. We 

consider three general classes of problems: Shortest path problems (SPP), traveling 

salesman problems (TSP), and traveling purchaser problems (TPP). 

   

   

Figure 3.10  Examples of full world environments generated using Algorithm 3.15. The top row uses a cave 

wall map generated using parameters p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The 

heightmap generation parameters are p=2 and q=3. The bottom row shows examples without any cave wall 

map. 
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In shortest path problems, the agent must navigate through the environment to a 

single resource location, choosing a route that minimizes its objectives. To initialize the 

problem, we only need to place the agent and a single resource. One straightforward way 

to accomplish this is to use tabu sampling with Algorithm 3.5 to sample many possible 

locations with some minimum separation, and then select two locations that are reasonably 

far apart. For instance, a SPP can be initialized by using tabu sampling to sample locations 

with a 5-cell separation radius and then placing the agent at the sampled location closest to 

the origin and the goal at the location farthest from the origin. This approach is simple to 

implement, but may not utilize the entire environment space. An alternative is to compute 

the all-pairs shortest path distances between every open grid cell and place the agent and 

the goal at the two locations that have the maximum distance between them. This requires 

a graph representation of the environment, which will be discussed further in Chapter 4. 

Figure 3.11 shows an example cavern environment with the SPP initialized using these two 

approaches. 
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In the traveling salesman problem, the agent must plan a minimum-cost route that 

visits a set of known waypoints. In some variants, the agent only needs to visit a certain 

number of waypoints. For this type of problem, we can again use tabu sampling to sample 

the desired number of waypoints and one additional point to use as the agent starting 

location. This ensures that the agent and all the waypoints meet some minimum separation 

distance. Depending on the specifics of the problem, we can choose to restrict the valid 

sampling area to one type of terrain, such as meadow. When using elevation as a feature, 

some interesting problems can be created by placing waypoints at extrema locations in the 

environment. Placing the agent in a relatively flat location at a middle elevation helps 

maximize the difference between the agent’s possible choices, particularly if only some of 

the waypoints need to be visited. Figure 3.12 shows two environments with the TSP 

demonstrating these approaches. 

   
 (a) (b) 

Figure 3.11  Examples of shortest path problems in a cavern environment using the tabu sampling approach 

(a) and the longest path approach (b). The agent is shown as a red circle and the goal is a blue cross. 
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The last problem type we consider is the traveling purchaser problem. In the CMM 

framework, the TPP is presented as a resource collecting problem. Various resource types 

are distributed throughout the environment and the agent is required to collect a specified 

number of each type. We use five resource types; one for each type of terrain in the full 

world environment. Just as with the TSP, tabu sampling is used to sample the resource 

locations, with each terrain type handled independently. For each type of terrain, we create 

a mask that leaves only grid cells of that terrain type and sample the resources using a 

separation distance of 10 for meadow, 4 for forest, 8 for water, 2 for rock, and 3 for snow. 

For meadow and forest, we sample resource locations until 100% of the feasible area has 

selected. For water, rock, and snow, we sample 50%, 5% and 20% respectively. Other 

values can be used, but these were found to create suitable problems for this work. The 

   
 (a) (b) 

Figure 3.12  Examples of traveling salesman problems initialized using the tabu sampling method in meadow 

terrain only (a) and using extrema locations in the elevation (b). The agent is a red circle and the waypoints 

are blue crosses. 
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agent location is sampled from an open location in the meadow terrain type. Figure 3.13 

shows two examples of full world environments with the TPP. 

 

3.7 Summary 

This chapter described how the grid world problem environments are procedurally 

generated in the CMM framework. The environments are represented as multiple matrices 

representing the attributes of each grid cell, including the presence or absence of a wall, 

the type of terrain, the elevation, and the locations of any resources. Not all properties need 

to be defined, depending on the problem being studied. Maze-like environments can be 

created by only using the cave wall layer and discrete problems can be created by using 

only the terrain layer. Adding an elevation layer introduces a continuous feature that can 

lead to interesting agent strategies. Finally, the full world environment uses all of these 

   

Figure 3.13  Examples of traveling purchaser problems in full world environments. The agent is a red circle 

and the other symbols represent different resource types. Each type of resource is restricted to a specific type 

of terrain. 
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layers to simulate a synthetic real-world environment, although an agent need not consider 

all of the environment attributes when deciding where to go. 

Each environment presents a problem for an agent to solve, designed as a resource 

gathering game. In the simplest problem type, there is a single resource (goal) placed 

somewhere in the environment for the agent to collect. The traveling salesman problem 

can be simulated by placing several resources of the same type throughout the environment. 

It may be worthwhile to consider a problem in which the agent only needs to collect one 

or a few resources, to observe how different destinations are compared. Finally, if the 

resource types are different, the problem is modeled as the traveling purchaser problem, in 

which the agent needs to collect a certain number of each resource. To decide which 

resources to pursue and the routes to take, the agent needs to develop a working model of 

the environment and understand the cost of each movement action. The next chapter 

introduces the mental map grid and defines the fundamental features that the agent can use 

to evaluate problems in the CMM framework. 
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4 THE MENTAL MAP GRID 

The grid world environments defined in the previous chapter provide rich problem 

domains for studying agent movement and planning. The agent’s actions are influenced by 

how the agent sees and interprets the environment. This chapter introduces the mental map 

that formalizes how the agent observes the environment and assigns costs to each 

movement action. These costs are represented as features in an action graph, which defines 

all possible actions that the agent can take. Later chapters summarize this information and 

use it to develop plans that guide the agent’s movements. 

4.1 The Mental Map 

The CMM framework consists of two basic components: the simulation server and 

the agent. The server is responsible for defining the grid world environment using the 

procedural content generation methods presented in Chapter 3. The server also provides 

information about the environment to the agent in the form of observations. The knowledge 

that the agent accumulates through these observations is stored in a mental map 

representation of the environment. This mental map contains the only information that the 

agent can use to develop a plan that will solve the specified problem. Initially, the mental 

map is empty and represents complete uncertainty about the environment. As the agent 

moves, it discovers new regions and adds these to the mental map. 
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Formally, the server provides a grid world environment ℰ consisting of several 

attribute layers as defined in Chapter 3. For each cell 𝑐 ∈ ℰ, the following attributes are 

defined:  

• OPEN(𝑐) ∈ {0, 1}, 

• TERRAIN(𝑐) ∈ 𝒯, 

• ELEVATION(𝑐) ∈ [0,1], and 

• RESOURCES(𝑐) ∈ ℛ ∪ ∅. 

𝒯 is the set of all terrain types and ℛ is the set of all resource types. In our examples, 

𝒯 = {0, 1, 2, 3, 4, 5} representing the terrain types wall, meadow, forest, water, rock, and 

snow. Likewise, ℛ = {0, 1, 2, 3, 4, 5}, where 0 indicates no resource and 1-5 indicate the 

resource that appears in the respective terrain type. In practice, these attribute layers are 

stored as n  m matrices ℰ.𝑊, ℰ. 𝑇, ℰ. 𝐸, and ℰ. 𝑅 for the open, terrain, elevation, and 

resource attributes respectively. 

The agent maintains an internal representation of the environment as a mental map 

ℳ. Each grid cell 𝑐 ∈ ℳ has the same attribute properties as ℰ and one additional attribute, 

OBSERVED(𝑐) ∈ {0,1} (represented as the matrix V) indicating if the grid cell has been 

observed by the agent (1) or not (0). Initially, OBSERVED(𝑐) = 0 for all 𝑐 ∈ ℳ and the other 

attributes are undefined. As the environment is revealed to the agent, OBSERVED(𝑐) is set to 

1 for the grid cells that have been observed, and the other attributes are defined as equal to 

the corresponding values in ℰ. We assume that a grid cell is either fully observed, in which 

case all other attributes are defined, or completely unobserved, in which case the other 

attributes are undefined. 
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Algorithm 4.1 shows the INITIALIZE_MENTAL_MAP function used at the beginning 

of the simulation to initialize ℳ with a specified size of n  m, and with terrain types 𝒯 

and resource types ℛ. The size of the map is saved in ℳ.size (line 2), the terrain and 

resource types are saved for later use (lines 3 and 4), and the other attributes are initialized 

to default values. The position of the agent ℳ.pos is set to NIL (line 5) and a map of all 

visited grid cells is initialized to zero (line 6). The visibility matrix ℳ.𝑉 is initialized to 

zero (line 7) and the other attribute layers ℳ.𝑊, ℳ.𝐸, ℳ.𝑇, and ℳ.𝑅 are initialized to 

NIL (lines 8-11). Lines 12 and 13 initialize the region labels ℳ.𝐿 and the local region 

ℳ.localRegion. These are used to construct the region graph and will be discussed further 

in Chapter 5. 

 

 

Algorithm 4.1 Initialize the Mental Map 

 

INITIALIZE_MENTAL_MAP(n, m, 𝒯, ℛ) 

1: ℳ ← empty structure 

2: ℳ.size ← (n, m) 

3: ℳ.𝒯 ← 𝒯 

4: ℳ.ℛ ← ℛ 

5: ℳ.pos ← NIL 

6: ℳ.visited ← n  m grid initalized to 0 

7: ℳ.𝑉 ← n  m grid initalized to 0 

8: ℳ.𝑊 ← n  m grid initalized to NIL 

9: ℳ.𝐸 ← n  m grid initalized to NIL 

10: ℳ.𝑇 ← n  m grid initalized to NIL 

11: ℳ.𝑅 ← n  m grid initalized to NIL 

12: ℳ.𝐿 ← n  m grid initalized to 1 

13: ℳ.localRegion ← n  m grid initalized to 0 

14: return ℳ 
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4.1.1 Creating Observations 

At the start of the simulation and after each movement action by the agent, the 

server provides an observation of the environment to the agent. An observation 𝒪 has the 

same form as the mental map ℳ, but contains only the immediately visible image of the 

environment. In contrast, ℳ maintains a record of everything that has been seen since the 

start of the simulation and remembers what the environment looks like in places that are 

no longer visible. Since we assume that the environment does not change during the course 

of the simulation, portions of the mental map that have been observed but are no longer 

visible are considered to be accurate. 

The observation data structure is assembled using Algorithm 4.2. The first step in 

this algorithm is to determine the visible region. There are two ways to do this that are 

controlled by the opt.obsMode parameter: using the line of sight viewshed method or 

declaring the entire environment to be visible. If we use the second method, then we can 

bypass the visibility computation altogether and declare all cells to be in the visible region, 

V (line 10). This is useful for studying problems without any uncertainty arising from 

visibility. Using the first method, the visible region is computed from the viewshed (lines 

3-8), which will be discussed next. We return to the definition of the overall observation 

structure in Section 4.1.3. Figure 4.1 shows several examples of the observations computed 

at the current agent location in different environments. 
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Algorithm 4.2 Get Observation 

 

GET_OBSERVATION(ℰ, ai, aj, opt) 

1: (n, m) ← size of ℰ 

 

/* Get the visible region */ 

2: if opt.obsMode = “viewshed” 

3: E ← ℰ. 𝐸 

4: E[ℰ.𝑊 = 0  ℰ. 𝑇 = 2] ← NIL 

5: E[ai, aj] ← ℰ. 𝐸[ai, aj] 

6: for opt.k iterations 

7: E ← E  G     // Apply a 33 Gaussian blur 

8: V ← GET_VIEWSHED(E, aj, ai, opt.h)  // Algorithm 4.3 

9: else 

10: V ← n  m grid initalized to 1 

 

11: V' ← V  [0 1 0; 1 1 1; 0 1 0]   // 4-connected viewshed neighbors 

12: V'' ← V  [1 1 1; 1 1 1; 1 1 1]   // 8-connected viewshed neighbors 

 

13: V [V'  = 1  ℰ. 𝑇 = 2] ← 1  // Mark adjacent forest cells as visible 

 

/* Get wall observation */ 

14: W ← n  m grid initalized to NIL 

15: W [V = 1] ← 1 

16: W [V''  = 1  ℰ.𝑊 = 0] ← 0 

17: W [y, x] ← 0 for all cells where c(y, x) is a border cell 

 

/* Create the observation structure */ 

18: 𝒪 ← empty structure 

19: 𝒪.pos ← (ai, aj) 

20: 𝒪. 𝑉 ← [W = 0  W = 1] 

21: 𝒪.𝑊 ← W 

22: 𝒪. 𝐸 ← ℰ. 𝐸 

23: 𝒪. 𝐸 [𝒪. 𝑉 = 0] ← NIL 

24: 𝒪. 𝑇 ← ℰ. 𝑇 

25: 𝒪. 𝑇 [𝒪. 𝑉 = 0] ← NIL 

26: 𝒪. 𝑅 ← ℰ. 𝑅 

27: 𝒪. 𝑅 [𝒪. 𝑉 = 0] ← NIL 

28: return 𝒪 
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4.1.2 Viewshed Computation 

If the server is configured to use the partially observable viewshed method, then 

the visible region V is computed using the GET_VIEWSHED function in Algorithm 4.3. The 

elevation map E that is sent to this function has cells that completely obstruct the line of 

sight, such as walls and forest terrain marked as NIL (lines 3-4 of Algorithm 4.2). The 

forest terrain in our model is designed to be traversable by the agent, but with restricted 

visibility, so these cells are marked as NIL in E. For the GET_VIEWSHED function to work 

properly, the current agent location should not be marked as NIL, so line 5 of Algorithm 

4.2 copies the true elevation value at the agent location into E. The qualitative appearance 

of the viewshed region computed by GET_VIEWSHED can be improved by first applying 

      

     

 (a) (b) (c) (d) 

Figure 4.1  Examples of observations in various environments computed using Algorithm 4.2 and Algorithm 

4.3. The top row shows the full environment ℰ and the bottom row shows the observation 𝒪 at the current 

agent location (shown as a red dot). The environment values are observed within the visible region and hidden 

everywhere else. 

 



101 

Gaussian smoothing to E. This removes elevation noise and results in a more continuous 

viewshed region that is less sensitive to the discretized heightmap. Our implementation 

convolves a 33 Gaussian filter G with the heightmap ℰ. 𝐸 for opt.k iterations, while 

maintaining the NIL values (lines 6-7). We found that repeated applications of small filter 

sizes produced more pleasing results than large filters when accounting for the NIL values. 

At this point, the smoothed elevaiton map E is passed to the GET_VIEWSHED function with 

the agent location (ai, aj) and the height parameter opt.h (line 8). 

The GET_VIEWSHED function is given in Algorithm 4.3. It follows the basic premise 

of the R3 viewshed algorithm given in Algorithm 2.1, but is optimized to avoid computing 

the line of sight to every grid cell. The function starts by computing the elevation angle A 

from the current agent location to every grid cell, and copying the NIL flag for cells that 

are marked NIL in the elevation map (lines 1-7). Rather than evaluating the visibility of all 

grid cells at once, the function starts at the agent location and works outward. We initialize 

the visibility map V and a processed map P to all zeros (lines 8-9). The visibility map is 

then set to 1 at the current agent location and this cell is added to the current working set, 

C (lines 10-11). The algorithm then cycles through the main loop (lines 12-22) while the 

current working set is not empty. Lines 13-16 get the next set of cells to process, N, which 

are determined as the neighbors of C. Each cell in C is also marked with a 1 in the processed 

map, P. Lines 17-22 check the visibility of each cell in N that has not already been 

processed. The variable v in line 19 is computed using Algorithm 2.2 and is either 1 if the 

grid cell is visible from the agent location, 0 if it is not visible, or −1 if the line of sight 

encountered an obstruction marked as NIL. If v = 1, it is updated in the visibility map. If 
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v ≠ −1, then the cell is added to C and its neighbors will be evaluated on the next iteration. 

If v = −1, then this cell will not be evaluated further. This allows the algorithm to stop 

looking in a direction that has a wall or forest cell that obstructs the line of sight regardless 

of the elevation.1 The algorithm can only stop looking in a direction once it encounters 

such a cell, because there is always the possibility that a distant mountain ridge is visible 

beyond a hidden valley. Figure 4.1 shows several examples of the viewshed region 

computed in different environments. 

 
1 A more accurate visibility model might account for tree height in a forested region and allow the agent to 

look over a forest cell if the elevation permits. This would allow the agent to observe an entire forest region 

on a distant mountainside, for instance. 
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Algorithm 4.3 Get Viewshed 

 

GET_VIEWSHED(E, x1, y1, h) 

 

/* Precompute the elevation angle to each grid cell */ 

1: (n, m) ← size of E 

2: A ← n  m grid initalized to 0 

3: for each (x2, y2) {(x2, y2) | 1 ≤ y2 ≤ n  1 ≤ x2 ≤ m  (x1, y1) ≠ (x2, y2)} 

4: if E[y2, x2] = NIL 

5: A[y2, x2] ← NIL 

6: else 

7: A[y2, x2] ← tan−1 (
𝐸[𝑦2,𝑥2]−𝐸[𝑦1,𝑥1]−ℎ

√(𝑥2−𝑥1)2+(𝑦2−𝑦1)2
) 

 

8: V ← n  m grid initalized to 0 

9: P ← n  m grid initalized to 0 

10: V[y1, x1] ← 1 

11: C ← {(x1, y1)} 

12: while |C| > 0 

 

/* Determine the next set of cells to process */ 

13: N ← ∅ 

14: for each (x, y)  C 

15: P[y, x] ← 1 

16: N ← N  ∪ {(x−1, y), (x+1, y), (x, y−1), (x, y+1)} 

 

/* Check the visibility */ 

17: C ← ∅ 

18: for each (x, y)  N s.t. P[y, x] = 0 

19: v ← CHECK_VISIBILITY(A, x1, y1, x, y) // Algorithm 2.2 

20: V[y, x] ← [v > 0] 

21: if v  0 

22: C ← C ∪ {(x, y)} 

 

23: return V 
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4.1.3 Finalizing the Observation 

Returning to the GET_OBSERVATION function in Algorithm 4.2, we have now 

defined the visible region, V. We use this as a mask to define which cells have known 

attributes in the observation structure 𝒪 and which cells are unobserved and marked as 

NIL. Some heuristics are used to update the knowledge in the observation for cells adjacent 

to the visible region. First, we define two dilations of V using both 4- and 8-connected 

neighbors (lines 11-12 of Algorithm 4.2). We want to make sure that the cells adjacent to 

the agent location are always visible, even in forest terrain, so line 13 marks these cells as 

visible in V. Next, we create the observation wall map W from the environment wall map 

ℰ.𝑊 and the visible region. Line 14 initializes W as a grid with all cells marked as NIL to 

indicate complete uncertainty. Line 15 marks any cells in the visible region as being 

traversable open space in W. Because the edges of the visible region include cells that are 

adjacent to walls but not the walls themselves, we use the 8-connected neighbors of the 

visible region to identify which wall cells to include in the observation. Any cells in this 

expanded visible region that are marked as walls in the environment wall map are marked 

as walls in W (line 16). We also mark the border cells of the environment as walls to prevent 

the agent from moving off the edge of the map (line 17). 

Lines 18-27 of Algorithm 4.2 create the actual observation structure 𝒪. The 

observation consists of several information layers and the current agent position, which is 

stored as 𝒪.pos (line 19). The visible region of the observation 𝒪. 𝑉 is defined as any cell 

that has been identified as either open space or a wall. Note that this may be somewhat 

different from the visible region computed using the GET_VIEWSHED function since we use 

additional heuristics to determine where the walls are. The observation wall map is saved 
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as 𝒪.𝑊 and the remaining attribute layers are saved using the values from the environment. 

Any cells that are not marked as visible in the observation visible region 𝒪. 𝑉 are set to 

NIL in the elevation 𝒪. 𝐸, terrain 𝒪. 𝑇, and resource 𝒪. 𝑅 attribute layers. The complete 

observation data structure 𝒪 is returned on line 28. 

4.1.4 Updating the Mental Map 

After receiving an observation from the server, the agent identifies any new 

information and updates its mental map. An example is shown in Figure 4.2. Algorithm 

4.4 gives the UPDATE_MENTAL_MAP procedure that takes an existing mental map structure 

ℳ and an observation 𝒪 and integrates the new information from 𝒪 into ℳ. Lines 1-2 

update the agent position and the map of visited locations. Line 3 identifies the grid cells 

that have new information, defined as cells that are visible in the observation but have not 

yet been observed in the mental map. These cells are saved as ℳ.new and are used to 

avoid recomputing regions and features that have not changed since the last observation. 

The new cells are marked as observed in ℳ.𝑉 (line 5) and the corresponding attribute 

values are copied from the observation to the mental map (lines 6-9). Line 10 applies some 

heuristics to the cave wall attribute layer to mark additional cells as walls based on 

inference rules. These are given in the CAVE_WALL_HEURISTICS function in Algorithm 

4.5. After updating the known wall locations, line 11 updates the region labels to remove 

the label from any cell that is known to be a wall. The UPDATE_MENTAL_MAP procedure 

ends by returning the updated mental map structure on line 12. 
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 (a) (b) (c) 

Figure 4.2  Updating the mental map from an observation. (a) The agent’s mental map before receiving the 

observation. The agent’s path is shown in red, and the agent has just moved north into a cell that opens to the 

west. The previous observation is highlighted and previously observed cells are darkened. (b) The 

observation returned by the server at the agent’s new position. (c) The agent’s updated mental map after 

integrating the new information from the observation. The new observation is highlighted and previously 

observed cells are darkened. 

 

Algorithm 4.4 Update Mental Map 

 

UPDATE_MENTAL_MAP(ℳ, 𝒪) 

 

1: ℳ.pos ← 𝒪. 𝑝𝑜𝑠 
2: ℳ.visited [ℳ.pos ] ← 1 

 

3: new ← {(i, j) | 𝒪. 𝑉 [i, j] = 1  ℳ.𝑉 [i, j] = 0} 

4: ℳ.new ← new 

5: ℳ.𝑉 [new] ← 1 

6: ℳ.𝑊  [new] ← 𝒪.𝑊 [new] 

7: ℳ.𝐸  [new] ← 𝒪. 𝐸 [new] 

8: ℳ.𝑇 [new] ← 𝒪. 𝑇 [new] 

9: ℳ.𝑅 [new] ← 𝒪. 𝑅 [new] 

 

10: ℳ.𝑊 ← CAVE_WALL_HEURISTICS(ℳ.𝑊) // Algorithm 4.5 

 

11: ℳ.𝐿[ℳ.𝑊 = 0] ← 0 

 

12: return ℳ 
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There are two main heuristics applied by the CAVE_WALL_HEURISTICS function in 

Algorithm 4.5. The first seeks to fill in unreachable areas that have been surrounded 

completely by walls such as the example in Figure 4.3. These cells are inaccessible to the 

agent, and are therefore assumed to be wall cells. Line 1 of the function identifies all 

unobserved wall cells that are currently labeled as NIL. The 4-connected components are 

 

Algorithm 4.5 Cave Wall Heuristics 

 

CAVE_WALL_HEURISTICS(W) 

 

/* Fill in unreachable areas */ 

1: U ← {(i, j) | W [i, j] = NIL}   // Get all unobserved cells 

2: L ← 4-connected component labeling of U 

3: for k in 1 to max(L) 

4: Z ← {(i, j) | L[i, j] = k} 

5: D ← Z  [0 1 0; 1 1 1; 0 1 0]   // Image dilation 

6: B ← {(i, j) | Z [i, j] = 0  D[i, j] = 1}  // Get the boundary cells 

7: if W [i, j] = 0 for all (i, j)  B 

8: W [Z] ← 0 

 

/* Fix diagonals */ 

9: (n, m) ← size of W 

10: for each (i, j) {(i, j) | 1 ≤ i ≤ n−1  1 ≤ j ≤ m−1} 

11: if W [i, j] = 0  W [i+1, j+1] = 0 

12: if W [i+1, j] = 1 

13: W [i, j+1] ← 0 

14: if W [i, j+1] = 1 

15: W [i+1, j] ← 0 

16: if W [i, j+1] = 0  W [i+1, j] = 0 

17: if W [i, j] = 1 

18: W [i+1, j+1] ← 0 

19: if W [i+1, j+1] = 1 

20: W [i, j] ← 0 

 

21: return W 
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identified on line 2, and for each one we apply an image dilation to identify the boundary 

cells of this unobserved region (lines 4-6). If all the boundary cells are marked as walls, 

then there is no way for an agent to access the cells in the unobserved region, so they are 

marked as walls (lines 7-8). 

 

The second heuristic is used to improve the wall boundary on diagonal edges. 

Because Algorithm 3.3 removed any diagonal passages during the generation of the cave 

wall map, the agent can assume that there will be no diagonal passages in the environment. 

This means that if two diagonally adjacent grid cells are both observed to be wall cells and 

one of the two cells between them is observed to be open, then the other cell must be a wall 

to prevent the creation of a diagonal passage. Lines 9-20 apply this rule to the entire map 

and mark cells that meet these criteria as walls. An example is shown in Figure 4.4. 

 

 (a) (b) (c) 

Figure 4.3  Filling in unreachable areas with walls. (a) An unobserved region (gray) is surrounded by wall 

cells (black) and is inaccessible to the agent. (b) The boundary cells (marked with red dots) of the unobserved 

region are checked and if they are all walls, then the unobserved region is filled in. (c) The filled in region. 
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4.2 The Action Graph 

The mental map structure ℳ is stored internally as a set of raster image layers, 

representing the agent’s knowledge of the environment at each grid cell location. However, 

for planning future actions, it is useful to represent the mental map as an attributed weighted 

graph. We begin by defining the action graph 𝐺𝐴 that is the most granular representation 

of the knowledge stored in ℳ. In Chapter 5 we will introduce the region graph, which 

summarizes the information in 𝐺𝐴 for distinct regions in the environment. Each vertex in 

𝐺𝐴 represents a grid cell where the agent can be located and edges represent the movement 

actions between adjacent grid cells. The vertex set is defined as 𝑉(𝐺𝐴) =

{𝑐 ∈ ℳ | OPEN(𝑐) = 1 ∨ OBSERVED(𝑐) = 0}, which represents every grid cell that has 

either been observed to be traversable, or has not yet been observed and therefore may be 

traversable. Each vertex 𝑣 ∈ 𝑉(𝐺𝐴) inherits the attributes of the grid cell associated with 

it. Adjacent grid cells are connected by a directed edge 𝑒 = (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑉(𝐺𝐴) and 

 

 (a) (b) (c) 

Figure 4.4  Fixing diagonal boundaries. (a) The wall layer of a mental map before fixing diagonals. Open 

space is white, walls are black, and the unobserved cells are gray. (b) Locations that match the pattern of 

diagonally adjacent wall cells with one open and one unobserved cell in between are marked in red. (c) The 

unobserved cells in these patterns are marked as walls. 
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the cell represented by 𝑢 is adjacent to the cell represented by 𝑣. We denote START(𝑒) = 𝑢 

as the starting vertex and END(𝑒) = 𝑣 as the ending vertex of edge 𝑒. The set of all edges 

in the graph forms the edge set 𝐸(𝐺𝐴). Figure 4.5 shows the action graphs computed from 

mental maps of two example environments. 

 

Consider a single edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝐺𝐴) where 𝑢 represents grid cell 𝑐1 and 𝑣 

represents an adjacent grid cell 𝑐2. If a grid cell is observed, then its attributes are known; 

otherwise the attributes are marked as NIL. We denote the terrain type of cell 𝑐𝑘 as 𝑡𝑘, the 

elevation (height) as ℎ𝑘, and the observability as 𝑜𝑘, where 𝑘 ∈ {1, 2}. (Note that we use ℎ 

to represent elevation to avoid confusion with the notation for graph edges.) 

 𝑜𝑘 = OBSERVED(𝑐𝑘) (4.1) 

 𝑡𝑘 = {
TERRAIN(𝑐𝑘), 𝑜𝑘 = 1

NIL, 𝑜𝑘 = 0
 (4.2) 

   

Figure 4.5  Examples of the action graph for two mental maps. All grid cells that are not walls are included 

as vertices, regardless of observability. Adjacent grid cells are connected with edges. 
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 ℎ𝑘 = {
ELEVATION(𝑐𝑘), 𝑜𝑘 = 1

NIL, 𝑜𝑘 = 0
 (4.3) 

The attributes of grid cell 𝑐𝑘 are defined as the pair (𝑡𝑘, ℎ𝑘) and the attributes of an edge 

can be written as the pair of pairs, ((𝑡1, ℎ1), (𝑡2, ℎ2)). For notational convenience, we 

define 𝑒. 𝑡1 and 𝑒. 𝑡2 as the starting and ending terrain types of an edge, 𝑒. ℎ1 and 𝑒. ℎ2 as 

the starting and ending elevations, and 𝑒. 𝑜1 and 𝑒. 𝑜2 as the observability of the starting 

and ending cells. We occasionally drop the 𝑒 prefix when referring to only a single edge. 

The terrain, elevation, and observability of 𝑐1 and 𝑐2 are used to define several features 

𝑓(𝑒) for an edge 𝑒. Multiple edge features are combined into a feature vector 

𝐟(𝑒) = (𝑓1(𝑒),… , 𝑓𝑚(𝑒)), where 𝑓𝑖: 𝑒 ↦ ℝ≥0 for all 𝑖 = 1,… ,𝑚. We assume that each 

feature maps into a non-negative real number to aid in the formulation of agent objective 

functions, which will be defined so that edge features are minimized. The next two sections 

give several possible feature functions that an agent can use to define 𝐟(𝑒). We first 

consider the case in which both grid cells are observed, resulting in a crisp feature vector 

with no uncertainty. Then, we show how these features become fuzzy when one or both 

grid cells are unobserved. 

4.3 Crisp Feature Functions 

In the case where both grid cells of an edge 𝑒 are observed (i.e. 𝑒. 𝑜1 = 𝑒. 𝑜2 = 1), 

the attributes are known exactly and the resulting feature vector contains no uncertainty. 

The following subsections define several crisp features for action graph edges. An edge 

feature 𝑓(𝑒) may depend only on some of the cell attributes, so for notational clarity, only 
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the required arguments are included in the following feature definitions. An example 

showing the computation of these features is given in Section 4.3.6. 

4.3.1 Distance Feature 

The simplest feature we consider is a basic measure of the distance the agent has 

traveled. We denote this feature as 𝑓𝑑. For a single edge in a uniform grid, the distance 

feature is defined as a constant value, 

 𝑓𝑑 = 1. (4.4) 

The distance feature is independent of the grid cell attributes and can be applied in any 

environment. 

4.3.2 Terrain Type Features 

In environments with multiple types of terrain, we can define a separate feature for 

each terrain type. These features indicate how much of each type of terrain is represented 

by an edge. For terrain type 𝑖, we denote this feature as 𝑓𝑡(𝑖), defined as 

 𝑓𝑡(𝑖)(𝑡1, 𝑡2) = {

0, 𝑡1 ≠ 𝑖 ∧ 𝑡2 ≠ 𝑖
0.5, 𝑡1 ≠ 𝑖 ∧ 𝑡2 = 𝑖
0.5, 𝑡1 = 𝑖 ∧ 𝑡2 ≠ 𝑖
1, 𝑡1 = 𝑖 ∧ 𝑡2 = 𝑖 .

 (4.5) 

There are four possible cases considered, where each cell either is or is not of terrain type 

𝑖. Equation 4.5 can be expressed more compactly as 

 𝑓𝑡(𝑖)(𝑡1, 𝑡2) =
1

2
[𝑡1 = 𝑖] +

1

2
[𝑡2 = 𝑖], (4.6) 

where the notation [∗] evaluates to 1 if the condition in the brackets is true and 0 otherwise. 

A terrain type feature is computed for each terrain type 𝑖 ∈ 𝒯. The feature will be 1 if both 
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grid cells are of type 𝑖 and 0 if neither grid cell is of type 𝑖. If only one grid cell is of type 

𝑖, the feature will evaluate to 0.5. 

4.3.3 Terrain Transition Features 

In some circumstances, it may be important for the agent to consider the transition 

between different types of terrain (e.g. when getting into or out of a boat at the edge of a 

lake). For these types of features, we define a transition matrix T ∈ {0, 1}|𝒯|×|𝒯| where 𝑡𝑖𝑗 

is 1 if the transition between two grid cells is from terrain type 𝑖 to terrain type 𝑗 and 0 

otherwise. If the direction of the transition is important, we can use each element of T as a 

separate feature. We denote these directional terrain transition features as 𝑓𝑡〈𝑖,𝑗〉 and define 

them formally as 

 𝑓𝑡〈𝑖,𝑗〉(𝑡1, 𝑡2) = {
1, 𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗
0, otherwise .

 (4.7) 

This can also be written as 

 𝑓𝑡〈𝑖,𝑗〉(𝑡1, 𝑡2) = [(𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗)]. (4.8) 

If the direction of the transition is unimportant, we can reduce the number of features by 

accounting for symmetries. The symmetric terrain transition features are denoted as 𝑓𝑡{𝑖,𝑗} 

where we assume that 𝑖 ≤ 𝑗 and they are defined as 

 𝑓𝑡{𝑖,𝑗}(𝑡1, 𝑡2) = {
1, 𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗
1, 𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖
0, otherwise .

 (4.9) 

Again, this can be written in square bracket notation as 

 𝑓𝑡{𝑖,𝑗}(𝑡1, 𝑡2) = [(𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗) ∨ (𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖)]. (4.10) 
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Table 4.1 shows the difference between the terrain type features and the terrain transition 

features for all possible combinations of terrain types for the two cells. 

Table 4.1 Crisp terrain type and terrain transition features 

𝑡1 𝑡2 𝑓𝑡(𝑖) 𝑓𝑡(𝑗)  𝑓𝑡{𝑖,𝑖} 𝑓𝑡{𝑖,𝑗} 𝑓𝑡{𝑗,𝑗}  𝑓𝑡〈𝑖,𝑖〉 𝑓𝑡〈𝑖,𝑗〉 𝑓𝑡〈𝑗,𝑖〉 𝑓𝑡〈𝑗,𝑗〉 

𝑖 𝑖 1 0  1 0 0  1 0 0 0 

𝑖 𝑗 0.5 0.5  0 1 0  0 1 0 0 

𝑖 ¬(𝑖 ∨ 𝑗) 0.5 0  0 0 0  0 0 0 0 

𝑗 𝑖 0.5 0.5  0 1 0  0 0 1 0 

𝑗 𝑗 0 1  0 0 1  0 0 0 1 

𝑗 ¬(𝑖 ∨ 𝑗) 0 0.5  0 0 0  0 0 0 0 

¬(𝑖 ∨ 𝑗) 𝑖 0.5 0  0 0 0  0 0 0 0 

¬(𝑖 ∨ 𝑗) 𝑗 0 0.5  0 0 0  0 0 0 0 

¬(𝑖 ∨ 𝑗) ¬(𝑖 ∨ 𝑗) 0 0  0 0 0  0 0 0 0 

 

Note that we define a separate directional terrain transition feature for each terrain 

type pair (𝑖, 𝑗) and (𝑗, 𝑖) whereas we only need to define the symmetric terrain transition 

feature for the pair (𝑖, 𝑗) where 𝑖 ≤ 𝑗. Also, note that the self-transition features 𝑓𝑡{𝑖,𝑖} and 

𝑓𝑡〈𝑖,𝑖〉 are not quite the same as the terrain type feature 𝑓𝑡(𝑖) since the terrain transition 

features can only take binary values. However, an agent need only use one of the terrain-

based feature sets because the same information is simply distributed across a different 

number of features. For 𝑁 terrain types, there are 𝑁 terrain type features, 𝑁2 directional 

terrain transition features, and 
𝑁2+𝑁

2
 symmetrical terrain transition features. 

4.3.4 Elevation Features 

Whereas terrain is a discrete feature type, the difference in elevation between two 

grid cells is a continuous feature domain. Recall that the elevation values of the starting 
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and ending edge cells are given as ℎ1 and ℎ2. The absolute difference in elevation for the 

edge is a feature that we denote as 𝑓ℎ and define as 

 𝑓ℎ(ℎ1, ℎ2) = |ℎ1 − ℎ2|. (4.11) 

Often, an agent will want to differentiate between an uphill slope and a downhill slope. To 

account for this, we define the uphill slope feature 𝑓ℎ↑ as 

 𝑓ℎ↑(ℎ1, ℎ2) = max(0, ℎ2 − ℎ1), (4.12) 

And the downhill slope feature 𝑓ℎ↓ as 

 𝑓ℎ↓(ℎ1, ℎ2) = max(0, ℎ1 − ℎ2). (4.13) 

Note that the features are always non-negative to ensure that the objective values never go 

below zero. The uphill and downhill slope features are complementary and at least one of 

them will always be zero. The absolute elevation difference feature represents a 

combination of the two directional elevation difference features, so an agent will usually 

only use either just 𝑓ℎ or the pair 𝑓ℎ↑ and 𝑓ℎ↓. Figure 4.6 shows plots of the elevation 

difference features for all values of ℎ1 and ℎ2 within the allowed range of [0, 1]. 

 

   
 (a) (b) (c) 

Figure 4.6  Plots of the elevation difference features. (a) The absolute elevation difference 𝑓ℎ. (b) the uphill 

elevation difference 𝑓ℎ↑. (c) The downhill elevation difference 𝑓ℎ↓. 
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4.3.5 Other Features 

We limit our study in this work to the above features, but this list is by no means 

exhaustive. Many different problems can be expressed in this framework so long as it is 

possible to compute a feature for each edge based only on the attributes of its vertices. For 

instance, one could compute additional features in the environment such as proximity to a 

wall or the amount of terrain that is visible from a grid cell and develop edge features based 

on these environment attributes. We should mention that features that depend on multiple 

edges, such as the curviness or uniqueness of a path might be more difficult to use in this 

framework. These types of features would be more suitably defined over paths rather than 

individual edges, which would require different agent strategies than the ones presented 

here. 

4.3.6 Example 

Figure 4.7 shows four examples of the edge features computed between two grid 

cells. Each example shows a pair of cells representing a single edge going from the left cell 

to the right cell. The colors indicate the terrain type with light tan representing terrain type 

1 (meadow) and green representing terrain type 2 (forest). The numbers inside each cell 

indicate the elevation, and the computed features are shown below each example. 
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Figure 4.7  Four examples demonstrating the computation of the feature functions considered in this work 

for a single transition between two grid cells. The light tan region represents terrain type 1 (meadow) and the 

green region represents terrain type 2 (forest). The numbers in each cell indicate the elevation value. 

The distance feature 𝑓𝑑 is a constant 1 for each of the examples. The terrain type 

features (𝑓𝑡(1), 𝑓𝑡(2)) are either (1,0), (0,1), or (0.5, 0.5) depending on if the pair of cells 

is all of terrain type 1, 2, or both. The symmetric terrain transition features 

(𝑓{1,1}, 𝑓{1,2}, 𝑓{2,2}) are either (1,0,0), (0,1,0), or (0,0,1), with the single nonzero element 

indicating which pair of terrain types is present in each example. Likewise, the directional 

terrain transition features (𝑓𝑡〈1,1〉, 𝑓𝑡〈1,2〉, 𝑓𝑡〈2,1〉, 𝑓𝑡〈2,2〉) each have a single nonzero element 

that indicates the appropriate configuration of the two terrain types. The absolute elevation 

difference feature 𝑓ℎ is simply the absolute difference in elevation between the two grid 
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cells. The directional elevation difference features (𝑓ℎ↑, 𝑓ℎ↓) indicate the direction of the 

slope and have one element equal to 𝑓ℎ and the other set to zero. An agent could use various 

subsets of these features to define its objective functions, which will be discussed further 

in Chapter 6. 

4.4 Fuzzy Feature Functions 

We now consider the case in which one or both grid cells of an edge 𝑒 are 

unobserved (i.e. 𝑒. 𝑜1 = 0 and/or 𝑒. 𝑜2 = 0). When this occurs, we introduce uncertainty 

into the feature vector, which now needs to capture the range and distribution of possible 

feature values given the unobserved attributes. Fuzzy numbers are well-suited for this task, 

as they can represent a range of values with different weights specified by a membership 

function. A fuzzy number 𝐴 ⊆ ℝ is a normalized convex fuzzy set with a membership 

function 𝜇𝐴: 𝐴 → [0, 1] that specifies how well a number 𝑥 ∈ 𝐴 is represented by 𝐴. We 

use triangular fuzzy numbers in this work for their relative simplicity. For a value 𝑥 ∈ ℝ, 

the membership function of a triangular fuzzy number 𝐴 = Tri(𝑎, 𝑏, 𝑐) is defined as 

 𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 < 𝑏

1, 𝑥 = 𝑏
𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 < 𝑐

0, 𝑥 ≥ 𝑐 .

 (4.14) 

Whereas a crisp feature function 𝑓(𝑒) only needs to define a single value, a fuzzy feature 

function 𝑓(𝑒) needs to define the three control parameters for the triangular fuzzy number. 

A natural interpretation of these parameters is the min, mean, and max values that the 

corresponding crisp feature function could take if the hidden grid cells were observed. 



119 

Using the notation from Equation 4.14, we denote these as 𝑎 = 𝑓min(𝑒), 𝑏 = 𝑓mean(𝑒), 

and 𝑐 = 𝑓max(𝑒). The following sections define these values for each of the feature 

functions considered in this work. 

4.4.1 Distance Feature 

Unlike the other features, the distance feature for a single edge is unaffected by 

observability. Because all edges in the action graph have the same length, the distance 

feature is defined as a crisp value of 1, regardless of whether the grid cells are observed or 

not. 

 𝑓𝑑
min(𝑒) = 𝑓𝑑

mean(𝑒) = 𝑓𝑑
max(𝑒) = 1. (4.15) 

The resulting fuzzy feature is defined as 

 𝑓𝑑(𝑒) = Tri(1, 1, 1). (4.16) 

4.4.2 Terrain Type Features 

The terrain type features measure the amount of an edge that occurs within terrain 

type 𝑖. In the crisp case, the possible values are 0, 0.5, and 1, indicating that neither, one, 

or both grid cells were of type 𝑖. In the fuzzy case, we need to consider what the minimum, 

maximum, and expected values of the crisp feature would be over all possible 

configurations of the unknown terrain types. We start by defining some additional notation. 

Let 𝑡1
∗, 𝑡2

∗ ∈ 𝒯 be the true terrain types of the starting and ending cells respectively. 

The value of the terrain type feature in the fully observable case is given by Equation 4.5 

or Equation 4.6 as 𝑓𝑡(𝑖)(𝑡1
∗, 𝑡2

∗). When either 𝑡1
∗ or 𝑡2

∗ is unknown, this value cannot be 
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evaluated directly, but we can determine the range and most likely value. Let 𝑇𝑘𝑖 be the 

event that 𝑡𝑘
∗ = 𝑖 for 𝑘 ∈ {1, 2}. The probability that event 𝑇𝑘𝑖 occurs is defined as 

 𝑝(𝑇𝑘𝑖)  = {

1, 𝑜𝑘 = 1 ∧ 𝑡𝑘 = 𝑖
0, 𝑜𝑘 = 1 ∧ 𝑡𝑘 ≠ 𝑖

𝑝(𝑖), 𝑜𝑘 = 0 ,
 (4.17) 

where 𝑝(𝑖) is the prior likelihood of observing terrain type 𝑖. Often, 𝑝(𝑖) =
1

|𝒯|
, where |𝒯| 

is the number of possible terrain types, but other priors are possible. The complementary 

event 𝑇𝑘𝑖
𝑐  is defined as the event that 𝑡𝑘

∗ ≠ 𝑖 for 𝑘 ∈ {1, 2}. Since these are the only two 

possible events describing the state of a single cell, 

 𝑝(𝑇𝑘𝑖
𝑐 )  = 1 − 𝑝(𝑇𝑘𝑖). (4.18) 

For the two cells involved in a graph edge, there are four possible states that need to be 

considered: 

• 𝑠12 = (𝑇1𝑖, 𝑇2𝑖), (4.19) 

• 𝑠1 = (𝑇1𝑖, 𝑇2𝑖
𝑐 ), (4.20) 

• 𝑠2 = (𝑇1𝑖
𝑐 , 𝑇2𝑖), and (4.21) 

• 𝑠0 = (𝑇1𝑖
𝑐 , 𝑇2𝑖

𝑐 ). (4.22) 

Here, 𝑠12 is the state where both grid cells have terrain type 𝑖, 𝑠0 is the state where neither 

cell has terrain 𝑖, and 𝑠1 and 𝑠2 are the states where just one of the cells is of terrain type 𝑖. 

We call the set of all possible states 𝑆 = {𝑠12, 𝑠1, 𝑠2, 𝑠0}, and each of these states results in 

a crisp terrain type feature vector for the edge. Adapting Equation 4.5 gives 

 𝑓𝑡(𝑖)(𝑠) = {

0, 𝑠 = 𝑠0
0.5, 𝑠 = 𝑠1 ∨ 𝑠 = 𝑠2
1, 𝑠 = 𝑠12 .

 (4.23) 
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We assume that the terrain types of the two cells are independent, so the following 

expressions give the probability that each state is the true state of the environment. 

 𝑝(𝑠12) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖) (4.24) 

 𝑝(𝑠1) = 𝑝(𝑇1𝑖)(1 − 𝑝(𝑇2𝑖)) (4.25) 

 𝑝(𝑠2) = (1 − 𝑝(𝑇1𝑖))𝑝(𝑇2𝑖) (4.26) 

 𝑝(𝑠0) = (1 − 𝑝(𝑇1𝑖))(1 − 𝑝(𝑇2𝑖)) (4.27) 

If the probability of a state is greater than zero, then it has some chance of occurring. We 

define the possibility that a state occurs as 

 pos(𝑠) = [𝑝(𝑠) > 0], (4.28) 

and the set of all possible states is given as 

 𝑆pos = {𝑠 ∈ 𝑆|pos(𝑠) > 0}. (4.29) 

We can now express the minimum, maximum, and expected values of the terrain type 

feature for an edge 𝑒 and terrain type 𝑖. 

 𝑓𝑡(𝑖)
min(𝑒) = min

𝑠∈𝑆pos
𝑓(𝑠) (4.30) 

 𝑓𝑡(𝑖)
max(𝑒) = max

𝑠∈𝑆pos
𝑓(𝑠) (4.31) 

 𝑓𝑡(𝑖)
mean(𝑒) =∑𝑓(𝑠)𝑝(𝑠)

𝑠∈𝑆

 (4.32) 

In practice, the fuzzy terrain type feature values are computed using the following 

equivalent definitions. 
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 𝑓𝑡(𝑖)
min(𝑒) =

1

2
[𝑡1 = 𝑖 ∧ 𝑜1 = 1] +

1

2
[𝑡2 = 𝑖 ∧ 𝑜1 = 1] (4.33) 

 𝑓𝑡(𝑖)
max(𝑒) =

1

2
[𝑡1 = 𝑖 ∨ 𝑜1 = 0] +

1

2
[𝑡2 = 𝑖 ∨ 𝑜2 = 0] (4.34) 

 

𝑓𝑡(𝑖)
mean(𝑒) =

1

2
[𝑡1 = 𝑖 ∧ 𝑜1 = 1] +

1

2
𝑝(𝑖)[𝑜1 = 0] + 

 
1

2
[𝑡2 = 𝑖 ∧ 𝑜2 = 1] +

1

2
𝑝(𝑖)[𝑜2 = 0] 

(4.35) 

The fuzzy number representing the overall terrain type feature is defined as 

 𝑓𝑡(𝑖)(𝑒) = Tri (𝑓𝑡(𝑖)
min(𝑒),   𝑓𝑡(𝑖)

mean(𝑒),   𝑓𝑡(𝑖)
max(𝑒)). (4.36) 

A summary of the triangular fuzzy number feature values is given in Table 4.2 for the case 

where |𝒯| = 2 and 𝑝(𝑖) = 0.5. Note that when both grid cells are observed, the fuzzy 

numbers are equivalent to the crisp version. 

Table 4.2 Example of the fuzzy terrain type feature when |𝒯| = 2 and 𝑝(𝑖) = 0.5 

𝑓𝑡(𝑖)(𝑒) 
𝑜2 = 1 𝑜2 = 0 

𝑡2 = 𝑖 𝑡2 ≠ 𝑖  

𝑜1 = 1 
𝑡1 = 𝑖 Tri(1,1,1) Tri(0.5, 0.5, 0.5) Tri(0.5, 0.75, 1) 

𝑡1 ≠ 𝑖 Tri(0.5, 0.5, 0.5) Tri(0, 0, 0) Tri(0, 0.25, 0.5) 

𝑜1 = 0  Tri(0.5, 0.75, 1) Tri(0, 0.25, 0.5) Tri(0, 0.5, 1) 

  

To demonstrate, consider the examples in Figure 4.8. In (a), both cells are observed, 

so the fuzzy terrain type feature value is equivalent to the crisp case and the fuzzy number 

is a singleton value of 0.5 for both terrain type 1 (meadow) and 2 (forest). In (b), the first 

cell is observed to be terrain type 1 and the second cell is unobserved. Both terrain types 

have equal priors, so the second grid cell is equally likely to be either terrain type. If the 

second cell is type 1, then the crisp terrain type features would be 𝑓𝑡(1) = 1 and 𝑓𝑡(2) = 0. 
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If the second cell is type 2, then they would be 𝑓𝑡(1) = 0.5 and 𝑓𝑡(2) = 0.5. Clearly, the 

minimum value of 𝑓𝑡(1) is 0.5 and the maximum is 1. Likewise, the minimum of 𝑓𝑡(2) is 0 

and the maximum is 0.5. Since the priors are equal, the mean values are the averages of 

these two extremes. In (c), the first grid cell is unobserved and the priors favor terrain type 

1. The resulting triangular fuzzy numbers are skewed to reflect that the most likely outcome 

is that the unobserved cell is type 1 and the resulting crisp feature value would be 0.5. In 

(d), both cells are unobserved, so both terrain type features span the entire range [0, 1]. 

Because the priors slightly favor terrain type 1, the mean value of 𝑓𝑡(1) is slightly higher 

than that of 𝑓𝑡(2). 

 

 

 (a) (b) (c) (d) 

Figure 4.8  Four examples demonstrating the computation of the fuzzy terrain type features for a single 

transition between two adjacent grid cells. The light tan region represents terrain type 1 (meadow) and the 

green region represents terrain type 2 (forest). Gray cells are unobserved. The plots compare the fuzzy terrain 

type features for each example. 
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4.4.3 Terrain Transition Features 

The directional terrain transition feature 𝑓𝑡〈𝑖,𝑗〉(𝑒) indicates if an edge 𝑒 goes from 

terrain type 𝑖 to terrain type 𝑗, whereas the symmetric terrain transition feature 𝑓𝑡{𝑖,𝑗}(𝑒) 

only checks if an edge 𝑒 includes both terrain types 𝑖 and 𝑗. In the fully observable case, 

these features could only take binary values. However, in the partially observable case, the 

terrain transition features are represented as triangular fuzzy numbers. Following the 

notation from the previous section, let 𝑡1
∗, 𝑡2

∗ ∈ 𝒯 be the true terrain types of the starting and 

ending grid cells for an edge 𝑒, and let 𝑇𝑘𝑖 be the event that 𝑡𝑘
∗ = 𝑖 and 𝑇𝑘𝑗 the event that 

𝑡𝑘
∗ = 𝑗 for 𝑘 ∈ {1, 2}. Equation 4.17 gives the probability of each event as 𝑝(𝑇𝑘𝑖) and 

𝑝(𝑇𝑘𝑗). Note that the terrain priors 𝑝(𝑖) and 𝑝(𝑗) may be different, but the terrain priors 

for all terrain types must satisfy the requirements of a multinomial probability distribution 

(i.e. ∑ 𝑝(𝑘)𝑘∈𝒯 = 1 and 𝑝(𝑘) ≥ 0 for all 𝑘 ∈ 𝒯). For the directional terrain transition 

features, the only environment state that gives a feature value of one is (𝑇1𝑖, 𝑇2𝑗); all other 

states give a feature value of zero. The probability of this state is defined as 𝑝(𝑇1𝑖, 𝑇2𝑗), 

which is equivalent to 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) since the two terrain types are independent of each 

other. For the symmetric terrain transition features, both (𝑇1𝑖, 𝑇2𝑗) and (𝑇1𝑗 , 𝑇2𝑖) give a 

feature value of one with all other states being zero. The probability of this occurring is 

𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) if 𝑖 ≠ 𝑗 and 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖) if 𝑖 = 𝑗. The different expression 

for when 𝑖 and 𝑗 refer to the same terrain type is because there is only a single environment 

state where both terrain types are the same (type 𝑖), so it should only be counted once.  

As with the terrain type features, the fuzzy terrain transition features are defined 

using the minimum, maximum, and expected value of the crisp features over all possible 
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environment states. For the fuzzy directional terrain transition features, the expected value 

is given as 

 𝑓𝑡〈𝑖,𝑗〉
mean(𝑒) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗), (4.37) 

and for the fuzzy symmetric terrain transition features, the expected value is given as 

 𝑓𝑡{𝑖,𝑗}
mean(𝑒) = {

𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖), 𝑖 ≠ 𝑗

𝑝(𝑇1𝑖)𝑝(𝑇2𝑖), 𝑖 = 𝑗 .
 (4.38) 

Because the crisp feature value is binary, we can infer that the minimum possible feature 

value will be zero, unless both terrain types are known and the feature value is observed to 

be one. In other words, if the expected value is less than one, then the minimum value will 

be zero; otherwise it will be one. Likewise, the maximum possible feature value will be 

one if the expected value is greater than zero; otherwise it will be zero. Formally, 

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 1

0, otherwise
, and (4.39) 

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 0

1, otherwise
 (4.40) 

for the fuzzy directional terrain transition features and 

 𝑓𝑡{𝑖,𝑗}
min (𝑒) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 1

0, otherwise
, and (4.41) 

 𝑓𝑡{𝑖,𝑗}
max (𝑒) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 0

1, otherwise
 (4.42) 

for the fuzzy symmetric terrain transition features. In practice, the fuzzy terrain transition 

features are computed using the following equivalent definitions. 

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒) = [𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1] (4.43) 

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒) = [(𝑡1 = 𝑖 ∨ 𝑜1 = 0) ∧ (𝑡2 = 𝑗 ∨ 𝑜2 = 0)] (4.44) 
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 𝑓𝑡〈𝑖,𝑗〉
mean(𝑒) =

{
 
 

 
 

1, 𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1

𝑝(𝑗), 𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑜2 = 0

𝑝(𝑖), 𝑜1 = 0 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1

𝑝(𝑖)𝑝(𝑗), 𝑜1 = 0 ∧ 𝑜2 = 0
0, otherwise

 (4.45) 

 𝑓𝑡{𝑖,𝑗}
min (𝑒) = [((𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗) ∨ (𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖)) ∧ 𝑜1 = 1 ∧ 𝑜2 = 1] (4.46) 

 𝑓𝑡{𝑖,𝑗}
max (𝑒) = [(𝑡1 = 𝑖 ∨ 𝑡1 = 𝑗 ∨ 𝑜1 = 0) ∧ (𝑡2 = 𝑖 ∨ 𝑡2 = 𝑗 ∨ 𝑜2 = 0)] (4.47) 

 𝑓𝑡{𝑖,𝑗}
mean(𝑒) =

{
 
 
 
 
 
 

 
 
 
 
 
 

1, ((𝑡1 = 𝑖 ∧ 𝑡2 = 𝑗) ∨ (𝑡1 = 𝑗 ∧ 𝑡2 = 𝑖)) ∧

𝑜1 = 1 ∧ 𝑜2 = 1

 

𝑝(𝑗), (𝑡1 = 𝑖 ∧ 𝑜1 = 1 ∧ 𝑜2 = 0) ∨
(𝑜1 = 0 ∧ 𝑡2 = 𝑖 ∧ 𝑜2 = 1)

𝑝(𝑖), (𝑡1 = 𝑗 ∧ 𝑜1 = 1 ∧ 𝑜2 = 0) ∨
(𝑜1 = 0 ∧ 𝑡2 = 𝑗 ∧ 𝑜2 = 1)

𝑝(𝑖)2, 𝑜1 = 0 ∧ 𝑜2 = 0 ∧ 𝑖 = 𝑗

2𝑝(𝑖)𝑝(𝑗), 𝑜1 = 0 ∧ 𝑜2 = 0 ∧ 𝑖 ≠ 𝑗

0, otherwise

 (4.48) 

The fuzzy numbers representing the directional and symmetric terrain transition features 

are defined as 

 𝑓𝑡{𝑖,𝑗}(𝑒) = Tri (𝑓𝑡{𝑖,𝑗}
min (𝑒),   𝑓𝑡{𝑖,𝑗}

mean(𝑒),   𝑓𝑡{𝑖,𝑗}
max (𝑒)) , and (4.49) 

 𝑓𝑡〈𝑖,𝑗〉(𝑒) = Tri (𝑓𝑡〈𝑖,𝑗〉
min (𝑒),   𝑓𝑡〈𝑖,𝑗〉

mean(𝑒),   𝑓𝑡〈𝑖,𝑗〉
max (𝑒)). (4.50) 

A summary of these features is shown in Table 4.3 and Table 4.4. Note that this 

differs from the terrain type feature summary in Table 4.2 since we consider a problem 

with more than two terrain types (|𝒯| > 2), and unequal terrain type priors. There are a 

few noticeable differences between the symmetric and directional versions. In the 

directional version, only the case where 𝑡1 = 𝑖 and 𝑡2 = 𝑗 (blue) is a crisp 1, whereas in 
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the symmetric version, the case where 𝑡1 = 𝑗 and 𝑡2 = 𝑖 (red) is also a crisp 1. The bottom 

row and rightmost column indicate configurations where at least one of the cells is 

unobserved. The nonzero configurations are shaded to show the similarity between the two 

versions of the feature. Note that the mean feature value of the configuration where both 

cells are unobserved is twice as large in the symmetric version of the feature as compared 

to the directional version. (We assume that 𝑖 ≠ 𝑗.) 

Table 4.3 Example of the fuzzy symmetric terrain transition feature when 

 |𝒯| > 2, 𝑝(𝑖) = 0.7, and 𝑝(𝑗) = 0.2 (𝑖 ≠ 𝑗) 

𝑓𝑡{𝑖,𝑗}(𝑒) 
𝑜2 = 1 𝑜2 = 0 

𝑡2 = 𝑖 𝑡2 = 𝑗 𝑡2 ≠ 𝑖 ∧ 𝑡2 ≠ 𝑗  

𝑜1 = 1 

𝑡1 = 𝑖 Tri(0,0,0) Tri(1, 1, 1) Tri(0, 0, 0) Tri(0, 0.2, 1) 

𝑡1 = 𝑗 Tri(1, 1, 1) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0.7, 1) 

𝑡1 ≠ 𝑖 ∧ 
𝑡1 ≠ 𝑗 

Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) 

𝑜1 = 0  Tri(0, 0.2, 1) Tri(0, 0.7, 1) Tri(0, 0, 0) Tri(0, 0.28, 1) 

  

Table 4.4 Example of the fuzzy directional terrain transition feature when 

 |𝒯| > 2, 𝑝(𝑖) = 0.7, and 𝑝(𝑗) = 0.2 (𝑖 ≠ 𝑗) 

𝑓𝑡〈𝑖,𝑗〉(𝑒) 
𝑜2 = 1 𝑜2 = 0 

𝑡2 = 𝑖 𝑡2 = 𝑗 𝑡2 ≠ 𝑖 ∧ 𝑡2 ≠ 𝑗  

𝑜1 = 1 

𝑡1 = 𝑖 Tri(0,0,0) Tri(1, 1, 1) Tri(0, 0, 0) Tri(0, 0.2, 1) 

𝑡1 = 𝑗 Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) 

𝑡1 ≠ 𝑖 ∧ 
𝑡1 ≠ 𝑗 

Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) Tri(0, 0, 0) 

𝑜1 = 0  Tri(0, 0, 0) Tri(0, 0.7, 1) Tri(0, 0, 0) Tri(0, 0.14, 1) 
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Figure 4.9 shows the same four examples from Figure 4.8, now evaluated for the 

terrain transition features. We assume that |𝒯| = 2 in all cases. In (a), both cells are 

observed, so the terrain transition features are crisp binary values. In (b), the second cell is 

unobserved and is equally likely to be either terrain type 1 (meadow) or type 2 (forest). The 

feature values are either zero if the observation is incompatible with the feature type, or a 

completely uncertain fuzzy number spanning the range [0, 1] with a mean of 0.5. In (c), 

the first cell is unobserved and the priors favor terrain type 1. This changes the means of 

the fuzzy numbers to reflect the greater likelihood that the unobserved region is type 1. In 

(d), both cells are unobserved with unequal priors, making each feature span the range 

[0, 1], but with different mean values. Note that 𝑓𝑡{𝑖,𝑗} and 𝑓𝑡〈𝑖,𝑗〉 are identical when 𝑖 = 𝑗, 

and that 𝑓𝑡{1,2}
mean = 2𝑓𝑡〈1,2〉

mean. Again, this is because when 𝑖 ≠ 𝑗, the symmetric version of the 

feature will consider the both cases where (𝑡1, 𝑡2) is (𝑖, 𝑗) and (𝑗, 𝑖), but when 𝑖 = 𝑗, there 

is only a single case, (𝑖, 𝑖). 
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4.4.4 Elevation Features 

Unlike the discrete terrain features, the crisp elevation features come from the 

continuous domain [0, 1]. We defined three elevation features in Section 4.3.4, given by 

Equations 4.11, 4.12, and 4.13: the absolute, uphill, and downhill elevation difference. In 

 
 (a) (b) (c) (d) 

Figure 4.9  Four examples demonstrating the computation of the fuzzy terrain transition features for a single 

transition between two adjacent grid cells. The light tan region represents terrain type 1 (meadow) and the 

green region represents terrain type 2 (forest). Gray cells are unobserved. The plots compare the fuzzy terrain 

transition features for each example. 
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the partially observed case, we need to compute the minimum, maximum, and expected 

values of these features over all possible configurations. To simplify the analysis, we 

assume that the elevation attributes of a grid cell are bounded by the range [0, 1] and that 

the values are distributed uniformly over this range, so that all elevations are equally likely. 

Recall that the elevation values of the starting and ending edge cells are given as 

ℎ1, ℎ2 ∈ [0, 1] and we denote the observability of the cells as 𝑜1 and 𝑜2. If one or both cells 

of an edge are unobserved, then the minimum elevation difference for all three feature 

types will always be zero, because it is possible that both cells have the same elevation. 

 𝑓ℎ
min(𝑒) = {

|ℎ1 − ℎ2|, 𝑜1 = 1 ∧ 𝑜2 = 1
0, otherwise

 (4.51) 

 𝑓ℎ↑
min(𝑒) = {

max(0, ℎ2 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 1
0, otherwise

 (4.52) 

 𝑓ℎ↓
min(𝑒) = {

max(0, ℎ1 − ℎ2) , 𝑜1 = 1 ∧ 𝑜2 = 1
0, otherwise

 (4.53) 

If neither cell is observed, the maximum elevation difference is one, and if just one cell is 

observed, the maximum elevation difference is determined by the observed elevation value. 

 𝑓ℎ
max(𝑒) = {

|ℎ1 − ℎ2|, 𝑜1 = 1 ∧ 𝑜2 = 1

max(ℎ1, 1 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 0

max(ℎ2, 1 − ℎ2) , 𝑜1 = 0 ∧ 𝑜2 = 1
1, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.54) 

 𝑓ℎ↑
max(𝑒) = {

max(0, ℎ2 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 1
1 − ℎ1, 𝑜1 = 1 ∧ 𝑜2 = 0

ℎ2, 𝑜1 = 0 ∧ 𝑜2 = 1
1, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.55) 

 𝑓ℎ↓
max(𝑒) = {

max(0, ℎ1 − ℎ2) , 𝑜1 = 1 ∧ 𝑜2 = 1
ℎ1, 𝑜1 = 1 ∧ 𝑜2 = 0

1 − ℎ2, 𝑜1 = 0 ∧ 𝑜2 = 1
1, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.56) 
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For instance, if the first cell is observed but not the second, then the biggest absolute 

elevation difference is the greater of ℎ1 and 1 − ℎ1, since these are the differences between 

the two extremes of the possible range for ℎ2. Similar reasoning follows for the other cases 

and feature types. 

To get the expected elevation difference, we need to integrate over all possible 

unobserved values. Consider the plots shown in Figure 4.10. These plots show how the 

value of the elevation difference features change when just one grid cell is observed. In 

this case, we can express the expected value of the elevation difference features as 

 𝑓ℎ∗
mean(𝑒) = ∫ 𝑓ℎ∗(𝑥|𝑧)𝑝(𝑥)𝑑𝑥

1

0

,   (𝑜1 = 1 ∧ 𝑜2 = 0) ∨ (𝑜1 = 0 ∧ 𝑜2 = 1). (4.57) 

Here, 𝑓ℎ∗ is the crisp feature function for either the absolute elevation difference 𝑓ℎ, the 

uphill elevation difference 𝑓ℎ↑, or the downhill elevation difference 𝑓ℎ↓. The function 

parameter 𝑥 is the unobserved elevation value and 𝑧 is the elevation value from the 

observed cell. The probability of observing 𝑥 is given as 𝑝(𝑥), which can be ignored since 

we assume a uniform distribution over the interval [0, 1] and therefore 𝑝(𝑥) = 1. 
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As an example, consider the case where the first cell is observed with an elevation 

of 𝑧 and the second cell is unobserved (top row of Figure 4.10). The value of the absolute 

elevation difference can be written as a piecewise linear function of 𝑥, 

 𝑓ℎ(𝑥|𝑧) = {
𝑧 − 𝑥, 𝑥 < 𝑧
𝑥 − 𝑧, 𝑥 ≥ 𝑧 .

 (4.58) 

 

Figure 4.10  Plots of the elevation difference features when one cell is unobserved. The top row assumes that 

the second cell is unobserved (𝑜1 = 1 and 𝑜2 = 0) and the first cell has the value given in the plot title. The 

bottom row shows the opposite case, where the first cell is unobserved (𝑜1 = 0 and 𝑜2 = 1). These plots are 

cross-sections of the bivariate feature plots shown in Figure 4.6. 
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The expected value is then calculated as 

 𝑓ℎ
mean(𝑧) = ∫ (𝑧 − 𝑥)𝑑𝑥

𝑧

0

+∫ (𝑥 − 𝑧)𝑑𝑥
1

𝑧

 (4.59a) 

 = [𝑥𝑧 −
1

2
𝑥2]

0

𝑧

+ [
1

2
𝑥2 − 𝑥𝑧]

𝑧

1

   (4.59b) 

 = (
1

2
𝑧2) + (

1

2
𝑧2 − 𝑧 +

1

2
)          (4.59c) 

 = 𝑧2 − 𝑧 +
1

2
 .                                 (4.59d) 

The uphill and downhill elevation difference functions each contain only one of the linear 

segments from the absolute elevation difference with the other set to zero. 

 𝑓ℎ↑(𝑥|𝑧) = {
0, 𝑥 < 𝑧

𝑥 − 𝑧, 𝑥 ≥ 𝑧
 (4.60) 

 𝑓ℎ↓(𝑥|𝑧) = {
𝑧 − 𝑥, 𝑥 < 𝑧

0, 𝑥 ≥ 𝑧
 (4.61) 

The expected values of these functions are the corresponding components of the overall 

integral from Equation 4.59. 

𝑓ℎ↑
mean(𝑧) = ∫ (𝑥 − 𝑧)𝑑𝑥

1

𝑧

=
1

2
𝑧2 − 𝑧 +

1

2
 (4.62) 

𝑓ℎ↓
mean(𝑧) = ∫ (𝑧 − 𝑥)𝑑𝑥

𝑧

0

=
1

2
𝑧2 (4.63) 

These functions are shown in Figure 4.11 for all possible values where only one cell is 

observed. Note that the expected elevation difference value is bounded by the range 

[0, 0.5]. 
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Finally, we consider the case where both grid cells are unobserved. The expected 

elevation difference in this case is the double integral over both possible elevation values,  

 𝑓ℎ∗
mean(𝑒) = ∫ ∫ 𝑓ℎ∗(𝑥, 𝑦)𝑝(𝑥)𝑑𝑥

1

0

𝑝(𝑦)𝑑𝑦
1

0

,   𝑜1 = 0 ∧ 𝑜2 = 0. (4.64) 

Here, 𝑓ℎ∗(𝑥, 𝑦) is one of the crisp elevation difference feature functions for two elevation 

values, 𝑥 and 𝑦. These are given by Equations 4.11, 4.12, and 4.13. Again, since we assume 

a uniform distribution for 𝑥 and 𝑦, 𝑝(𝑥) = 𝑝(𝑦) = 1. First, consider the absolute elevation 

difference feature. To compute the double integral, the expression is divided into two parts, 

 
 (a) (b) 

Figure 4.11  Plots of the expected elevation difference features when only the first cell (a) or the second cell 

(b) is observed. Note that the uphill and downhill elevation difference features are switched in the two cases. 
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 𝑓ℎ
mean(𝑒) = ∫ ∫ |𝑥 − 𝑦|𝑑𝑥

1

0

𝑑𝑦
1

0

                                             (4.65a) 

 = ∫ ∫ (𝑦 − 𝑥)𝑑𝑥
𝑦

0

𝑑𝑦
1

0

+∫ ∫ (𝑥 − 𝑦)𝑑𝑥
1

𝑦

𝑑𝑦
1

0

 (4.65b) 

 = ∫ [𝑥𝑦 −
1

2
𝑥2]

0

𝑦

𝑑𝑦
1

0

+∫ [
1

2
𝑥2 − 𝑥𝑦]

𝑦

1

𝑑𝑦
1

0

   (4.65c) 

 = ∫ (
1

2
𝑦2) 𝑑𝑦

1

0

+∫ (
1

2
𝑦2 − 𝑦 +

1

2
)𝑑𝑦

1

0

           (4.65d) 

 = [
1

6
𝑦3]

0

1

+ [
1

6
𝑦3 −

1

2
𝑦2 +

1

2
𝑦]
0

1

                        (4.65e) 

 =
1

6
+
1

6
=
1

3
, 𝑜1 = 0 ∧ 𝑜2 = 0.                     (4.65f) 

As before, the expected values of the uphill and downhill elevation difference features each 

contain only the corresponding component of the absolute elevation difference. 

𝑓ℎ↑
mean(𝑒) = ∫ ∫ (𝑦 − 𝑥)𝑑𝑥

𝑦

0

𝑑𝑦
1

0

=
1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0 (4.66) 

𝑓ℎ↓
mean(𝑒) = ∫ ∫ (𝑥 − 𝑦)𝑑𝑥

1

𝑦

𝑑𝑦
1

0

=
1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0 (4.67) 
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Collecting all the above definitions, we have the following expressions for the expected 

elevation difference. 

 𝑓ℎ
mean(𝑒) =

{
  
 

  
 

|ℎ1 − ℎ2|, 𝑜1 = 1 ∧ 𝑜2 = 1

ℎ1
2 − ℎ1 +

1

2
, 𝑜1 = 1 ∧ 𝑜2 = 0

ℎ2
2 − ℎ2 +

1

2
, 𝑜1 = 0 ∧ 𝑜2 = 1

1

3
, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.68) 

 𝑓ℎ↑
mean(𝑒) =

{
  
 

  
 
max(0, ℎ2 − ℎ1) , 𝑜1 = 1 ∧ 𝑜2 = 1
1

2
ℎ1
2 − ℎ1 +

1

2
, 𝑜1 = 1 ∧ 𝑜2 = 0

1

2
ℎ2
2, 𝑜1 = 0 ∧ 𝑜2 = 1

1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.69) 

 𝑓ℎ↓
mean(𝑒) =

{
  
 

  
 
max(0, ℎ1 − ℎ2) , 𝑜1 = 1 ∧ 𝑜2 = 1

1

2
ℎ1
2, 𝑜1 = 1 ∧ 𝑜2 = 0

1

2
ℎ2
2 − ℎ2 +

1

2
, 𝑜1 = 0 ∧ 𝑜2 = 1

1

6
, 𝑜1 = 0 ∧ 𝑜2 = 0

 (4.70) 

As before, the triangular fuzzy numbers for each of the elevation difference features are 

defined using the min, mean, and max values computed above. 

 𝑓ℎ(𝑒) = Tri (𝑓ℎ
min(𝑒),   𝑓ℎ

mean(𝑒),   𝑓ℎ
max(𝑒)) (4.71) 

 𝑓ℎ↑(𝑒) = Tri (𝑓ℎ↑
min(𝑒),   𝑓ℎ↑

mean(𝑒),   𝑓ℎ↑
max(𝑒)) (4.72) 

 𝑓ℎ↓(𝑒) = Tri (𝑓ℎ↓
min(𝑒),   𝑓ℎ↓

mean(𝑒),   𝑓ℎ↓
max(𝑒)) (4.73) 

Figure 4.12 shows the computation of the fuzzy elevation difference features for 

four different cases. In (a), both cells are observed, so the features are all crisp values. In 
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(b), only the first cell is observed with a height value of 0.4. The minimum possible value 

for all three features is 0. If the unobserved cell were to have a height of 1, 𝑓ℎ↑ would have 

its maximum value of 0.6, whereas if it were to have a height of 0, 𝑓ℎ↓ would have its 

maximum value of 0.4. The maximum of 𝑓ℎ is the greater of these two, 0.6. The mean 

values of all three features are given by the above definitions, and one can see that because 

the observed value is less than 0.5, 𝑓ℎ↓ has the smallest expected value. The expected value 

of 𝑓ℎ is greater than that of 𝑓ℎ↑ because the latter will be zero if the true height of the second 

cell is anything less than 0.4. In (c), the first cell is unobserved and the second cell is 

observed to be zero. Since the height of the first cell cannot be less than 0, there is no 

possibility of an uphill slope, so 𝑓ℎ↑ is a crisp 0. The other two features, 𝑓ℎ and 𝑓ℎ↓, both 

scale linearly with the unobserved height value and have a maximum value of 1 and an 

average value of 0.5. In (d), both cells are unobserved, so the feature definitions are given 

by the expressions derived previously. The minimum value of all three features is 0 and 

the maximum is 1. The expected value of 𝑓ℎ is 
1

3
 (≈ 0.33), and the expected value of both 

𝑓ℎ↑ and 𝑓ℎ↓ is 
1

6
 (≈ 0.17). 
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4.5 Summary 

This chapter introduced the mental map grid and the action graph used by the agent to 

represent the observed environment in the CMM framework. The simulation server keeps 

track of the agent’s location within the environment and computes the viewshed region 

using line-of-sight, considering obstructions from elevation and terrain. The agent 

maintains a record of all the observations it receives and stores the information in grid 

layers representing the attributes of the environment. An additional layer indicates which 

cells have been observed and which cells still have unknown properties. 

The action graph is defined over all grid cells that are potentially traversable and 

indicates possible movement actions by the agent. Each movement step is an edge in the 

graph between adjacent grid cells. Several features are defined for each edge representing 

 
 (a) (b) (c) (d) 

Figure 4.12  Four examples demonstrating the computation of the fuzzy elevation difference features for a 

single transition between two adjacent grid cells. The numbers inside the cells indicate the height value. Gray 

cells are unobserved. The plots compare the fuzzy elevation difference features for each example. 
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distance, the terrain type of each cell, and the change in elevation. When both cells are 

observed, the feature values are known with no uncertainty and are stored as crisp values. 

If one or both grid cells is unobserved, then there is some uncertainty in the feature values, 

which are represented as triangular fuzzy numbers. While the action graph provides a low-

level analysis of the cost of moving through the environment, it can often be helpful to 

summarize this information, both to reduce the number of decision points in the planning 

process and to more closely model the humanistic concepts of spatial reasoning. The next 

chapter introduces the region graph, which provides this summary by grouping similar 

nearby grid cells into regions and computing the feature costs between adjacent regions. 
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5 THE REGION GRAPH 

In this chapter, we introduce the concept of the region graph, which summarizes 

the information in the mental map and allows the agent to develop plans at a higher level. 

Whereas the action graph specifies the cost of individual actions, the region graph specifies 

the cost of multiple aggregated actions that cannot be performed immediately, but may be 

used in future plans. The region graph must therefore deal with the uncertainty inherent in 

extending the single-step feature definitions to multi-step features defined over regions of 

the environment. 

5.1 The Region Graph 

Up to this point, we have considered only single-step transitions between adjacent 

grid cells. These short edges comprise the action graph 𝐺𝐴 and represent the actual steps 

that an agent can take within the environment. Each edge 𝑒 in the action graph is attributed 

with one or more feature values to give a feature vector 𝐟(𝑒), which in the general case is 

comprised of triangular fuzzy numbers. While the action graph gives a low-level 

representation of the information in the mental map ℳ, the decision-maker is often unable 

to fully utilize all this knowledge. Planning typically occurs at a higher level of cognition 

where the spatial information and feature values have been summarized into a more 

succinct form. We introduce the region graph 𝐺𝑅 to provide this summary of the 

information in the action graph. Note that the region graph will be less precise than the 

more granular action graph, but will allow planning to take place at a higher level with 

fewer decision points. 
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Our concept of the region graph is to combine similar nearby grid cells into a single 

region that is represented as one vertex in the graph. Adjacent regions are connected by 

bidirectional edges. This can drastically reduce the size of the graph and make it easier to 

develop high-level plans. To construct the region graph, we use the region partitioning 

algorithm introduced in Section 3.3. Each terrain type and the unobserved areas are 

partitioned separately to ensure that each resulting region is either completely unobserved 

or contains only a single type of terrain. This is an important restriction that we employ to 

facilitate the computation of fuzzy features in the region graph, which will be described in 

Sections 5.2 and 5.3. Additionally, we define a local region around the agent and any 

observed resources that will not be clustered. This ensures that the grid cells immediately 

surrounding the agent and any goal locations are given their own vertices in the region 

graph. The region graph within the local region is identical to the action graph, which 

means that the immediate decision actions available to the agent are actual movement steps 

that the agent can take in the environment. Without this restriction, an agent might develop 

a plan to move into an adjacent region that is accessible from multiple directions, but not 

specify to the simulation server which direction to move. The region graph is updated after 

each movement action by the agent, which will be discussed in Section 5.4. 

Algorithm 5.1 provides a high-level overview of the process for creating the initial 

region graph. The function takes the current mental map ℳ as input and a set of options 

specified by the variable opt. The first step is to get the local region (lines 1 and 2), which 

is given in Algorithm 5.2. Then, a clustering mask Q is created to define all areas outside 

of the local region as regions that need to be clustered (lines 3-5). The region boundaries 
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are defined on line 6 using Algorithm 5.3. Line 7 creates the structure and features of the 

region graph using Algorithm 5.5. The updated mental map structure is returned on line 8. 

 

5.1.1 Defining the Local Region 

The local region is first defined on line 1 of Algorithm 5.1 using the 

GET_LOCAL_REGION function in Algorithm 5.2. There are two methods we consider for 

defining the local region, specified by the option opt.lrMethod. If opt.lrMethod = “all”, 

then the entire traversable space is marked as part of the local region (lines 3-4 of Algorithm 

5.2). This is essentially a control parameter to allow for experimentation with no region 

clustering. In the default case, the local region is first defined as all observed grid cells 

within a distance of opt.lrDist from the current agent position using the GRID_DISTANCE 

 

Algorithm 5.1 Create the Initial Region Graph 

 

INITIALIZE_REGION_GRAPH(ℳ, opt) 

 

/* Get the local region */ 

1: LR ← GET_LOCAL_REGION(ℳ, opt) // Algorithm 5.2 

2: ℳ.localRegion ← LR 

 

/* Create the region boundaries */ 

3: (n, m) ← ℳ.size 

4: Q ← n  m grid initalized to 1 

5: Q[LR] ← 0  

6: ℳ.L  ← CLUSTER_MENTAL_MAP_REGIONS(ℳ, LR, Q, opt) // Algorithm 5.3 

 

/* Construct the region graph */ 

7: ℳ.𝐺𝑅 ← CREATE_REGION_GRAPH(ℳ) // Algorithm 5.5 

 

8: return ℳ 
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function from Algorithm 3.6 (lines 6-10). Next, any observed resources are included as 

part of the local region (line 11). This is done to ensure that cells that contain resources are 

given their own vertices in the region graph. This also ensures that a region will not contain 

more than one resource. Figure 5.1. shows an example of defining the local region. 

 

 

Algorithm 5.2 Get the Local Region 

 

GET_LOCAL_REGION(ℳ, opt) 

1: (n, m) ← ℳ.size 

2: LR ← n  m grid initalized to 0 

3: if opt.lrMethod = “all” 

4: LR[ℳ.𝑊 ≠ 0] ← 1  // Include all potentially traversable cells 

5: else 

6: (ai, aj) ← ℳ.pos 
7: W ← ℳ.𝑊 

8: W [ℳ.𝑊 ≠ 1] ← 0 

9: D ← GRID_DISTANCE(W, ai, aj, opt.lrDist) // Algorithm 3.6 

10: LR[𝐷 ≤ opt.lrDist] ← 1 // Include observed cells near the agent 

11: LR[ℳ.𝑅 > 0] ← 1  // Include observed resource locations 

12: return LR 
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5.1.2 Creating the Region Boundaries 

After determining the local region, the next step is to cluster the remaining area to 

define the region boundaries. This is done by the CLUSTER_MENTAL_MAP_REGIONS 

function in Algorithm 5.3. Lines 2-7 initialize the region label matrix L by assigning a 

unique label to each cell in the local region. Then, each type of terrain is clustered 

separately (lines 8-17). Line 9 identifies the grid cells within the clustering mask Q with 

terrain type t, and if there are none, the loop proceeds to the next terrain type (lines 10-11). 

A wall matrix is defined for these cells (lines 12-13) and the corresponding elevation values 

are extracted from the mental map (lines 14-15). These are passed to the 

PARTITION_REGIONS function from Algorithm 3.4 with a cluster separation radius defined 

by opt.regionSize to get a set of labels U (line 16). These labels are added to the region 

   
 (a) (b) 

Figure 5.1  An example of determining the local region. (a) The initial observation an agent receives in a new 

environment. (b) The local region is highlighted within a distance of 3 cells from the agent and in the cell 

containing an observed resource. Note that unobserved cells and walls are excluded from the local region. 
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label matrix using the UPDATE_REGION_MAP function given in Algorithm 5.4. This 

function ensures that the label indices from U do not conflict with those already in L. 

Once the terrain has been clustered, lines 18-24 of Algorithm 5.3 cluster the 

unobserved areas. The elevation matrix is set to all zeros and the separation radius for the 

PARTITION_REGIONS function is set by opt.hiddenSize, which we usually set to be larger 

than opt.regionSize to reduce the number of unobserved regions. After the entire 

environment has been clustered, the region labels are returned on line 25. The final region 

boundaries from the example in Figure 5.1 are shown in Figure 5.2 (a). 
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Algorithm 5.3 Create the Initial Mental Map Regions 

 

CLUSTER_MENTAL_MAP_REGIONS(ℳ, LR, Q, opt) 

1: (n, m) ← ℳ.size 

 

/* Assign labels to cells in the local region */ 

2: L ← n  m grid initalized to 0 

3: I ← {(i, j) | LR[i, j] = 1} 

4: k ← 1 

5: for each (i, j)  I 

6: L[i, j] ← k 

7: k ← k + 1 

 

/* Cluster each terrain type separately */ 

8: for each t ∈ ℳ.𝒯 

9: I ← {(i, j) | ℳ.𝑇[i, j] = t  Q[i, j] = 1} 

10: if I = ∅ 

11: continue 

12: W ← n  m grid initalized to 0 

13: W [I ] ← 1 

14: E ← ℳ.𝐸 

15: E[W = 0] ← NIL 

16: U ← PARTITION_REGIONS(W, E, opt.regionSize, opt.we, opt.𝜖) // Algorithm 3.4 

17: L ← UPDATE_REGION_MAP(L, U) // Algorithm 5.4 

 

/* Cluster the unobserved areas */ 

18: I ← {(i, j) | ℳ.𝑊[i, j] = NIL  Q[i, j] = 1} 

19: if | I | > 0 

20: W ← n  m grid initalized to 0 

21: W [I ] ← 1 

22: E ← n  m grid initalized to 0 

23: U ← PARTITION_REGIONS(W, E, opt.hiddenSize, opt.we, opt.𝜖) // Algorithm 3.4 

24: L ← UPDATE_REGION_MAP(L, U)  // Algorithm 5.4 

 

25: return L 
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5.1.3 Constructing the Region Graph 

The final step in creating the initial region graph is to define the structure and 

features of the graph itself. The region graph 𝐺𝑅 is built from the current information stored 

in the mental map ℳ. Each region with a unique label in the label map ℳ.𝐿 is defined as 

a vertex of the region graph, and adjacent regions are connected with bidirectional edges. 

 

Algorithm 5.4 Update Region Map 

 

UPDATE_REGION_MAP(L, U) 

1: kmax ← max(L) 

2: for k in 1 to max(U) 

3: I ← {(i, j) | U [i, j] = k} 

4: L[I ] ← kmax + k 

5: return L 

 

   
 (a) (b) 

Figure 5.2  (a) Region boundaries computed from the example in Figure 5.1 using Algorithm 5.3. (b) The 

region graph defined from the region labels. Each pair of adjacent regions is connected by a bidirectional 

edge in the graph. 



148 

Sections 5.2 and 5.3 describe the process for computing features for edges between regions. 

Within the local region, and anywhere that adjacent regions each contain only a single grid 

cell, the region graph and its edge attributes are identical to the corresponding vertices and 

edges of the action graph. Elsewhere, the region graph summarizes the information in the 

action graph using the structure presented in this section and the features computed in the 

next two sections. For consistency, we always use the region graph for planning agent 

actions, even in special circumstances where the region graph is identical to the action 

graph, such as when the local region method is defined using opt.lrMethod = “all”, making 

each region a single cell. 

Algorithm 5.5 shows the procedure for creating the region graph. The function 

takes the mental map structure ℳ as input and returns a structure representing the region 

graph. We begin by creating the graph vertices on lines 2-6, which are stored in the list V. 

The center point of each region is found on line 2 using the GET_REGION_CENTERS 

function from Algorithm 3.9. This is saved along with a the cells belonging to each region 

on lines 4-6. After defining the graph vertices, lines 7-20 define the graph edges. We start 

with an empty adjacency matrix A on line 7 and an empty list of edge features on line 8. 

Line 9 initalizes the edge index, which is used to associate edge features with the adjacency 

matrix. For each vertex, lines 11 and 12 construct a mask of the region assigned to this 

vertex. This mask is dilated on line 13 to get the 4-connected neighbors. Line 14 identifies 

the region labels of the neighboring regions, and each one is added as an edge in lines 15-

20. The current edge index is incremented on line 16 and saved in the adjacency matrix on 

line 17. This allows for a quick lookup into the edge feature list E, which will contain the 

features computed by the COMPUTE_REGION_FEATURES function, discussed further in 
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Sections 5.2 and 5.3. Lines 18 and 19 create a region map R for each edge, with cells 

belonging to the first region labeled 1, cells belonging to the second region labeled 2, and 

all other cells labeled 0. This map is used to compute the region features for the edge using 

Algorithm 5.10 on line 20. After defining all the graph edges, the vertices, adjacency 

matrix, and edge features are all saved and returned as the region graph 𝐺𝑅 on lines 21-25. 

Figure 5.2 (b) shows the region graph for the example in Figure 5.1 with vertices drawn at 

the region centers. Note that while the edge is only drawn between the center points of 

adjacent regions, the edge exists conceptually between the two regions as a whole. 
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Algorithm 5.5 Create Region Graph 

 

CREATE_REGION_GRAPH(ℳ) 

1: (n, m) ← ℳ.size 

 

/* Add vertices for each region */ 

2: C ← GET_REGION_CENTERS(ℳ.𝐿) // Algorithm 3.9 

3: V ← list of | C | uninitialized vertices 

4: for k in 1 to | C | 

5: V [k].region ← {(i, j) | ℳ.𝐿[i, j] = k} 

6: V [k].center ← C [k] 

 

/* Add edges for adjacent regions */ 

7: A ← | C |  | C | adjacency matrix initalized to 0 

8: E ← empty list of edge features 

9: i ← 0 

10: for k in 1 to | C | 

11: U ← n  m grid initalized to 0 

12: U [V [k].region] ← 1 

13: U' ← U  [0 1 0; 1 1 1; 0 1 0] // Dilate to get neighboring cells 

14: N ← {l | l ∈ ℳ.𝐿[U' = 1]  l ≠ 0  l ≠ k} 

15: for n in 1 to | N | 

16: i ← i + 1 

17: A[k][n] ← i 

18: R ← U 

19: R[V [n].region] ← 2 

20: E [i] ← COMPUTE_REGION_FEATURES(ℳ, R) // Algorithm 5.10 

 

/* Save the graph structure */ 

21: 𝐺𝑅 ← empty graph structure 

22: 𝐺𝑅 . 𝑉 ← V 

23: 𝐺𝑅 . 𝐴 ← A 

24: 𝐺𝑅 . 𝐸 ← E 

 

25: return 𝐺𝑅 
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5.2 Fuzzy Region Distance 

Each edge 𝑒 of the region graph 𝐺𝑅 connects two adjacent regions and is annotated 

with the same features defined in the previous chapter. Let 𝑅1 be the starting region and 

𝑅2 be the ending region. We define the fuzzy region features of the edge 𝑒𝑅1𝑅2 ∈ 𝐸(𝐺𝑅) as 

triangular fuzzy numbers that represent the minimum, maximum, and average feature 

values that the agent could expect to encounter when moving from any grid cell in 𝑅1 to 

any grid cell in 𝑅2. Consider the example in Figure 5.3 (a) that shows two adjacent regions 

of different terrain types with labeled elevation values. Let 𝐺12 be a subgraph of the action 

graph 𝐺𝐴 that contains only the vertices belonging to 𝑅1 or 𝑅2. We define three additional 

subgraphs of 𝐺12 that will be used to compute the fuzzy region features. 𝐺1 is the subgraph 

of 𝐺12 that contains only the vertices belonging to grid cells in 𝑅1. Likewise, 𝐺2 is the 

subgraph of 𝐺12 for 𝑅2. The boundary graph 𝐺bnd consists of only the edges and vertices 

belonging to the transition between the two regions. For every edge 𝑒 ∈ 𝐸(𝐺bnd), 

START(𝑒) ∈ 𝑅1 and END(𝑒) ∈ 𝑅2. Note that the only edges from 𝐺12 that are not assigned to 

𝐺1, 𝐺2, or 𝐺bnd are those that return from 𝑅2 back to 𝑅1. These three graphs are shown in 

Figure 5.3 (b). All edges except the boundary edges are bidirectional, indicating that only 

one boundary edge can be used in a path from 𝑅1 to 𝑅2. In this section, we define a measure 

of the distance between two adjacent regions. This will be used to define the distance and 

terrain-based fuzzy region features. Section 5.3 will extend this approach to the elevation 

feature. 
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5.2.1 Computing the Distance Cost Matrix 

A prerequisite for many of the fuzzy region features is a measure of the distance 

between the two regions. Assume that each edge 𝑒 ∈ 𝐸(𝐺12) is assigned a crisp cost value 

of 1, corresponding to the distance feature in Equation 4.4. (In the following sections, we 

may consider a different cost for each edge.) An agent in 𝑅1 could exist in any one of the 

cells belonging to this region and need to know the minimum total distance cost required 

to get to any one of the cells in 𝑅2. We define all possible costs using the matrix 𝐶, where 

𝐶𝑖𝑗 represents the minimum cost required to move from cell 𝑖 ∈ 𝑅1 to cell 𝑗 ∈ 𝑅2. In the 

special case where all edge costs are 1, this is equivalent to the distance between the two 

cells, restricted to only using cells from the two regions. This can be cast as a special case 

of the all-pairs shortest path problem where we are only interested in paths that originate 

in 𝑅1 and end in 𝑅2. One way to compute this is to run the Floyd-Warshall algorithm (Floyd 

1962; Warshall 1962) on 𝐺12 and then extract the submatrix corresponding to only the 

 
 (a) (b) 

Figure 5.3  (a) An example of two regions used to demonstrate the computation of fuzzy region features. The 

left region 𝑅1 is terrain type 1 (meadow) and the right region 𝑅2 is terrain type 2 (forest). The numbers in 

each cell indicate the elevation. (b) There are three graphs for the two regions. 𝐺1 (blue) and 𝐺2 (orange) are 

bidirectional graphs that are each completely contained in 𝑅1 and 𝑅2 respectively. 𝐺bnd (purple) consists of 

only the edges that start in 𝑅1 and end in 𝑅2.  
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paths that start in 𝑅1 and end in 𝑅2. The Floyd-Warshall algorithm has a computational 

complexity of 𝑂(|𝑉|3), and results in significant overhead for this problem, since most of 

the computed distances are disregarded. Our approach improves on this by utilizing the 

regular grid structure of the graph and an additional requirement that each path can only 

contain one transition edge between the two regions. This ensures that the agent moves 

directly from 𝑅1 to 𝑅2 without moving repeatedly between the two regions. 

To compute the cost matrix 𝐶 efficiently, we consider each boundary edge 

independently and analyze the costs of all paths using that boundary edge. This allows us 

to only compute the single-source shortest path costs to and from each boundary edge, as 

opposed to the shortest paths between all pairs of cells.1 For each boundary edge 

𝑘 ∈ 𝐸(𝐺bnd), let 𝑢𝑖𝑘
1  be the minimum cost required to get from cell 𝑖 ∈ 𝑅1 to the start of 

boundary edge 𝑘. Likewise, let 𝑢𝑗𝑘
2  be the minimum cost required to get from the end of 

boundary edge 𝑘 to cell 𝑗 ∈ 𝑅2. Also, let 𝑢𝑘
bnd be the cost of boundary edge 𝑘 (set to 1 for 

the distance feature). The distance feature computes the cost of a path as the total sum of 

the individual edge costs. This is an example of summation aggregation. Alternatively, the 

cost of a path for some features may be evaluated as the maximum cost of an edge in the 

path, such as when planning a path that minimizes the maximum change in elevation for 

each edge (see Section 5.3). We define the minimum cost of a path from cell 𝑖 to cell 𝑗 

using boundary edge 𝑘 as 𝑢𝑖𝑗𝑘 where 

 𝑢𝑖𝑗𝑘 = 𝑢𝑖𝑘
1 + 𝑢𝑘

bnd + 𝑢𝑗𝑘
2  (5.1) 

 
1 This approach is different from computing the shortest paths to any cell on the region boundary using a 

shortest path algorithm with multiple source cells. Such an approach would overlook the cost of traveling 

along the region boundary, essentially allowing free travel from one end of the border to the other. 
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when using the summation aggregation method (as with the distance feature) and  

 𝑢𝑖𝑗𝑘 = max(𝑢𝑖𝑘
1 , 𝑢𝑘

bnd, 𝑢𝑗𝑘
2 ) (5.2) 

when using the maximization aggregation method. The overall minimum cost to get from 

cell 𝑖 to cell 𝑗 is defined over all boundary edges as 

 𝐶𝑖𝑗 = min
𝑘
𝑢𝑖𝑗𝑘. (5.3) 

The cost matrix for the distance feature is somewhat of a special case, since all 

edges are given a uniform cost of 1. This is true even if a region is unobserved. Since we 

define the region boundaries with no uncertainty, the only factor that influences the 

distance feature is the shape and arrangement of the two adjacent regions. We define the 

distance cost matrix as 𝐶𝑑 and the individual region cost matrices as 𝑈𝑑1 and 𝑈𝑑2. These 

can be computed from the region map R using the GET_REGION_DISTANCE function in 

Algorithm 5.6. The input R is a grid that spans the two regions, with cells in 𝑅1 marked 1, 

cells in 𝑅2 marked 2, and all other cells marked 0. Line 1 gets the indices of the two regions 

using Algorithm 5.7. Note that these are stored as ordered lists of tuples that define a 

lexographic ordering of the grid cells. Lines 2-5 construct the individual regions maps W1 

and W2 that are 1 inside of their respective regions and 0 elsewhere. Line 6 gets the 

boundary edges Ebnd between the two regions using Algorithm 5.8. This function also 

defines an ordering of the boundary edges to maintain consistency between the various cost 

matrices. Each edge in Ebnd is represented as a 4-tuple (i1, j1, i2, j2), where (i1, j1) is a cell in 

𝑅1 and (i2, j2) is an adjacent cell in 𝑅2. Lines 7-9 initialize the output matrices, where 𝑈𝑑1 

stores the distances from cells in 𝑅1 to each boundary edge, 𝑈𝑑2 stores the distances from 

each boundary edge to cells in 𝑅2, and 𝐶𝑑 stores the distances between all pairs of cells in 
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the two regions. Lines 10-15 compute the distances to and from each boundary edge using 

the GRID_DISTANCE function from Algorithm 3.6. The starting and ending cells of each 

boundary edge are used as the starting points for the distance computations using the region 

map for each region. After computing the distances for the entire grid on lines 12 and 13, 

the distance values within each region are saved to 𝑈𝑑1 and 𝑈𝑑2 on lines 14 and 15. Finally, 

we compute the overall distance cost matrix 𝐶𝑑 for each pair of cells in the two regions 

using Equations 5.1 and 5.3 on lines 16 and 17. Note that the 𝑢𝑘
bnd values are set to 1, since 

the distance cost of each boundary edge is always 1. The cost matrices are returned on line 

18. 
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Algorithm 5.6 Get Fuzzy Distance Cost Matrices for Two Regions 

 

GET_REGION_DISTANCE(R) 

 

/* Get the indices of the two regions */ 

1: I1, I2 ← GET_REGION_INDICES(R) // Algorithm 5.7 

 

/* Create individual region maps */ 

2: (n, m) ← size of R 

3: W1, W2 ← n  m matrices initalized to 0 

4: W1[I1] ← 1 

5: W2[I2] ← 1 

 

/* Get the boundary edges */ 

6: Ebnd ← GET_BOUNDARY_EDGES(n, m, I1, I2) // Algorithm 5.8 

 

/* Initialize the output matrices */ 

7: 𝑈𝑑1 ← | I1 |  | Ebnd | matrix initalized to ∞ 

8: 𝑈𝑑2 ← | I2 |  | Ebnd | matrix initalized to ∞ 

9: 𝐶𝑑 ← | I1 |  | I2 | matrix initalized to ∞ 

 

/* Compute region distances */ 

10: for k in 1 to | Ebnd | 

11: (i1, j1, i2, j2) ← Ebnd[k] 

12: D1 ← GRID_DISTANCE(W1, i1, j1, ∞) // Algorithm 3.6 

13: D2 ← GRID_DISTANCE(W2, i2, j2, ∞) // Algorithm 3.6 

14: 𝑈𝑑1[ : , k] ← D1[I1] 

15: 𝑈𝑑2[ : , k] ← D2[I2] 

  

/* Find the boundary edge that gives the minimum cost */ 

16: for each (i, j)  in {(i, j) | 1 ≤ i ≤ | I1 |  1 ≤ j ≤ | I2 |} 

17: 𝐶𝑑  [i, j] ← mink{𝑈
𝑑1[i, k] + 1 + 𝑈𝑑2[ j, k]} 

 

18: return 𝐶𝑑, 𝑈𝑑1, 𝑈𝑑2 
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Algorithm 5.7 Get Region Indices 

 

GET_REGION_INDICES(R) 

1: (n, m) ← size of R 

2: I1, I2 ← empty lists 

3: N1, N2 ← 0 

4: for j in 1 to m 

5: for i in 1 to n 

6: if R[i, j] = 1 

7: N1 ← N1 + 1 

8: I1[N1]  ← (i, j) 

9: else if R[i, j] = 2 

10: N2 ← N2 + 1 

11: I2[N2]  ← (i, j) 

12: return I1, I2 

 

 

Algorithm 5.8 Get Boundary Edges 

 

GET_BOUNDARY_EDGES(n, m, I1, I2) 

1: Ebnd ← empty list 

2: K ← 0 

3: for j in 1 to m 

4: for i in 1 to n 

5: if (i, j)  I1 

6: if (i, j–1)  I2 

7: K ← K + 1 

8: Ebnd[K] = (i, j, i, j–1) 

9: if (i, j+1)  I2 

10: K ← K + 1 

11: Ebnd[K] = (i, j, i, j+1) 

12: if (i–1, j)  I2 

13: K ← K + 1 

14: Ebnd[K] = (i–1, j, i, j) 

15: if (i+1, j)  I2 

16: K ← K + 1 

17: Ebnd[K] = (i+1, j, i, j) 

18: return Ebnd 
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Figure 5.4 shows the composite distance grids computed for the example problem 

in Figure 5.3. These are the values returned by the GRID_DISTANCE function on lines 12 

and 13 of Algorithm 5.6. The individual region and overall distance cost matrices for this 

example are shown in Figure 5.5. The grid cells are indexed by consecutive columns from 

left to right, and from top to bottom within each column. Note that the values of each 

column of 𝑈𝑑1 and 𝑈𝑑2 match the values of the corresponding distance grid region in 

Figure 5.4. 

 

 

 

   
 k = 1 k = 2 k = 3 

Figure 5.4  Composite distance grids for each of the three boundary edges for the example in Figure 5.3. The 

numbers indicate the number of steps required to get to or from the boundary edge. The index k is used to 

reference each of the three boundary edges. 

 

Figure 5.5  Individual region and overall distance cost matrices for the example in Figure 5.4, given as the 

output of Algorithm 5.6. 
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5.2.2 Region Distance Feature 

As mentioned previously, the fuzzy region features are defined to represent the 

minimum, mean, and maximum feature values that the agent could encounter when moving 

between regions. Let 𝑒𝑅1𝑅2 ∈ 𝐸(𝐺𝑅) be the region graph edge from 𝑅1 to 𝑅2 for which we 

need to compute a fuzzy feature value, and let 𝐺12 be the subgraph of the action graph 𝐺𝐴 

that is completely within 𝑅1 and 𝑅2. We define 𝐶𝑑 as the cost matrix computed by 

Algorithm 5.6 using the distance feature for all edges, i.e. 𝑓(𝑒) = 𝑓𝑑 = 1 ∀ 𝑒 ∈ 𝐸(𝐺12). 

The min, mean, and max region distance features are defined as 

 
𝑓𝑑
min(𝑒𝑅1𝑅2) = 𝐶min

𝑑 = min
𝑖=1,…,|𝑅1|

𝑗=1,…,|𝑅2|

𝐶𝑖𝑗
𝑑 , 

(5.4) 

 
𝑓𝑑
mean(𝑒𝑅1𝑅2) = 𝐶mean

𝑑 =
1

|𝑅1||𝑅2|
∑ 𝐶𝑖𝑗

𝑑

𝑖=1,…,|𝑅1|

𝑗=1,…,|𝑅2|

, and 
(5.5) 

 
𝑓𝑑
max(𝑒𝑅1𝑅2) = 𝐶max

𝑑 = max
𝑖=1,…,|𝑅1|

𝑗=1,…,|𝑅2|

𝐶𝑖𝑗
𝑑 . 

(5.6) 

The resulting fuzzy region distance feature is 

 𝑓𝑑(𝑒𝑅1𝑅2) = Tri (𝑓𝑑
min(𝑒𝑅1𝑅2),   𝑓𝑑

mean(𝑒𝑅1𝑅2),   𝑓𝑑
max(𝑒𝑅1𝑅2)). (5.7) 

To get the fuzzy region distance feature for the example problem in Figure 5.3, we 

compute the overall and individual distance cost matrices using Algorithm 5.6. The 

distance grids for each boundary edge shown in Figure 5.4 are used to define the individual 

region cost matrices 𝑈𝑑1 and 𝑈𝑑2, shown in Figure 5.5. The overall cost matrix 𝐶𝑑 is 

computed using Equations 5.1 and 5.3. Using this as the input for the above equations gives 

a fuzzy region distance feature value of 𝑓𝑑(𝑒𝑅1𝑅2) = Tri(1, 5.03, 9). 
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5.2.3 Region Terrain Type Features 

The terrain type features measure the amount of distance traveled in each type of 

terrain. For the fully observed single-step features defined in Section 4.3.2, this is a value 

between 0 and 1 that depends only on the two terrain types 𝑡1 and 𝑡2. In Section 4.4.2, we 

consider the fuzzy case where we include the observability of each cell 𝑜1 and 𝑜2 and define 

the feature as a triangular fuzzy number that represents the minimum, maximum, and 

expected crisp feature values based on the prior likelihoods of each terrain type. For the 

region terrain type features, we extend this definition to account for the greater distance 

within each region. Equations 5.4-5.6 define the min, mean, and max values of the overall 

distance cost matrix 𝐶𝑑. As a shorthand, we notate these as 𝐶min
𝑑 , 𝐶mean

𝑑 , and 𝐶max
𝑑 . For the 

individual region cost matrices 𝑈𝑑1 and 𝑈𝑑2, we first determine the minimum distance 

from each grid cell to one of the boundary edges. We define these matrices as 𝑉𝑑1 and 𝑉𝑑2 

where  

 𝑉𝑖
𝑑1 = min

𝑘=1,…,𝐾
𝑈𝑖𝑘
𝑑1, (5.8) 

 𝑉𝑗
𝑑2 = min

𝑘=1,…,𝐾
𝑈𝑗𝑘
𝑑2, (5.9) 

and 𝐾 is the number of boundary edges. The min, mean, and max values of these two 

matrices are given as 𝑉min
𝑑1 , 𝑉mean

𝑑1 , 𝑉max
𝑑1 , and 𝑉min

𝑑2 , 𝑉mean
𝑑2 , 𝑉max

𝑑2 , respectively. They represent 

the expected distances that an agent would need to travel to reach the nearest boundary 

edge from each cell within a region and assumes that the nearest boundary edge is the best 

option when moving to the adjacent region.  We make this assumption to avoid computing 

an explicit probability distribution of which boundary edge is used for each pair of cells in 

𝑅1 and 𝑅2. Such a distribution likely depends on other factors (such as elevation, which is 
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evaluated separately), and may be infeasible to compute accurately. The nearest boundary 

assumption is a simple and straightforward heuristic that works in most cases and provides 

a reasonable approximation of the required distances. Note that the minimum values 𝑉min
𝑑1  

and 𝑉min
𝑑2  will always equal zero, since at least one of the cells in each region is already part 

of a boundary edge. 

Because we have defined each region to be only a single terrain type or completely 

unobserved, we can use the same approach as Section 4.4.2, treating each region as one of 

the two adjacent cells, but multiplying by some measure of the size of each region. Let 𝑡1
∗ 

and 𝑡2
∗ be the true terrain types of the two regions and let 𝑇𝑘𝑖 be the event that 𝑡𝑘

∗ = 𝑖 for 

𝑘 ∈ {1, 2}. The probability that event 𝑇𝑘𝑖 occurs is defined as 

 𝑝(𝑇𝑘𝑖)  = {

1, 𝑜𝑘 = 1 ∧ 𝑡𝑘 = 𝑖
0, 𝑜𝑘 = 1 ∧ 𝑡𝑘 ≠ 𝑖

𝑝(𝑖), 𝑜𝑘 = 0 ,
 (5.10) 

where 𝑝(𝑖) is the prior likelihood of observing terrain type 𝑖. The four possible state 

configurations that need to be considered are given as 𝑆 = {𝑠12, 𝑠1, 𝑠2, 𝑠0}, where  

 𝑝(𝑠12) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖), (5.11) 

 𝑝(𝑠1) = 𝑝(𝑇1𝑖)(1 − 𝑝(𝑇2𝑖)), (5.12) 

 𝑝(𝑠2) = (1 − 𝑝(𝑇1𝑖))𝑝(𝑇2𝑖), and (5.13) 

 𝑝(𝑠0) = (1 − 𝑝(𝑇1𝑖))(1 − 𝑝(𝑇2𝑖)). (5.14) 

States that have a probability greater than zero have some chance of occurring and are 

added to the set of possible states, 

 𝑆pos = {𝑠 ∈ 𝑆 | 𝑝(𝑠) > 0}. (5.15) 
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For each of the possible states, we consider the minimum, average, and maximum 

of the terrain type feature values. The minimum value for each state is defined as 

 𝑓𝑡(𝑖)
min(𝑠) = {

0, 𝑠 = 𝑠0
0.5, 𝑠 = 𝑠1 ∨ 𝑠 = 𝑠2
1, 𝑠 = 𝑠12 .

 (5.16) 

This is equivalent to the single-step feature, since the minimum value occurs when the 

agent only needs to take one step across the boundary edge. The maximum value for each 

state is defined as  

 𝑓𝑡(𝑖)
max(𝑠) =

{
 

 
0, 𝑠 = 𝑠0

𝑉max
𝑑1 + 0.5, 𝑠 = 𝑠1
𝑉max
𝑑2 + 0.5, 𝑠 = 𝑠2

𝐶max
𝑑 , 𝑠 = 𝑠12

 
 

.

 (5.17) 

This uses the maximum values from each of the region cost matrices: 𝑉max
𝑑1  when only 

region 1 is of terrain type 𝑖, 𝑉max
𝑑2  when only region 2 is of terrain type 𝑖, and 𝐶max

𝑑  when 

both regions are of terrain type 𝑖. When only one region is the appropriate terrain type, 0.5 

is added to the feature value to include half of the cost of traveling the boundary edge. 

Since we may not know the true state if one or both regions are unobserved, the min and 

max overall terrain type feature values are given as the minimum and maximum of the 

costs for all possible states.  

 𝑓𝑡(𝑖)
min(𝑒𝑅1𝑅2) = min

𝑠∈𝑆pos
𝑓𝑡(𝑖)
min(𝑠) (5.18) 

 𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2) = max

𝑠∈𝑆pos
𝑓𝑡(𝑖)
max(𝑠) (5.19) 

To get the average feature value, we sum up the mean distance costs multiplied by 

the expected likelihood of each state, 
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𝑓𝑡(𝑖)
mean(𝑒𝑅1𝑅2) = 𝑝(𝑠1)(𝑉mean

𝑑1 + 0.5) + 𝑝(𝑠2)(𝑉mean
𝑑2 + 0.5) + 𝑝(𝑠12)𝐶mean

𝑑 . (5.20) 

Note that we do not need to consider 𝑠0 since the feature value in this case would be zero. 

The resulting fuzzy region terrain type feature is 

 𝑓𝑡(𝑖)(𝑒𝑅1𝑅2) = Tri (𝑓𝑡(𝑖)
min(𝑒𝑅1𝑅2),   𝑓𝑡(𝑖)

mean(𝑒𝑅1𝑅2),   𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2)). (5.21) 

For the example in Figure 5.3, the two terrain type features are computed as follows. 

Since both regions are observed, the true state is known with no uncertainty. For terrain 

type 1 (meadow), the state is 𝑠1 and for terrain type 2 (forest) the state is 𝑠2. For both of 

these states, 𝑓𝑡(𝑖)
min = 0.5. With only one possible state, 𝑓𝑡(𝑖)

min(𝑒𝑅1𝑅2) = 0.5. From Figure 5.5 

we can see that 𝑉max
𝑑1 = 4 and 𝑉max

𝑑2 = 4. For both 𝑠1 and 𝑠2, 𝑓𝑡(𝑖)
max = 4.5 and therefore 

𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2) = 4.5. The average values of the individual region cost matrices are computed 

as 𝑉mean
𝑑1 = 2 and 𝑉mean

𝑑2 ≈ 1.67. Since there is no uncertainty, 𝑓𝑡(1)
mean(𝑒𝑅1𝑅2) = 2.5 and 

𝑓𝑡(2)
mean(𝑒𝑅1𝑅2) ≈ 2.17. The overall fuzzy region terrain type features are then defined as 

𝑓𝑡(1)(𝑒𝑅1𝑅2) = Tri(0.5, 2.5, 4.5) and 𝑓𝑡(2)(𝑒𝑅1𝑅2) = Tri(0.5, 2.17, 4.5). 

Consider now if both regions were unobserved. All four states would be possible 

and their likelihoods would be determined by the terrain type priors. Assume that 𝑝(𝑡1) =

0.75 and 𝑝(𝑡2) = 0.25. For terrain type 1, the state probabilities are computed as: 

• 𝑝(𝑠12) = (0.75)(0.75) ≈ 0.56 

• 𝑝(𝑠1) = (0.75)(1 − 0.75) ≈ 0.19 

• 𝑝(𝑠1) = (1 − 0.75)(0.75) ≈ 0.19 

• 𝑝(𝑠0) = (1 − 0.75)(1 − 0.75) ≈ 0.06 
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For terrain type 2, the state probabilities are computed as: 

• 𝑝(𝑠12) = (0.25)(0.25) ≈ 0.06 

• 𝑝(𝑠1) = (0.25)(1 − 0.25) ≈ 0.19 

• 𝑝(𝑠1) = (1 − 0.25)(0.25) ≈ 0.19 

• 𝑝(𝑠0) = (1 − 0.25)(1 − 0.25) ≈ 0.56. 

The minimum feature value 𝑓𝑡(𝑖)
min(𝑒𝑅1𝑅2) would be 0, since 𝑠0 has a nonzero probability for 

both terrain types. The maximum feature value 𝑓𝑡(𝑖)
max(𝑒𝑅1𝑅2) would be 𝐶max

𝑑 = 9, since 𝑠12 

is possible for both terrain types. For the average value, we would use 𝑉mean
𝑑1 = 2 and 

𝑉mean
𝑑2 ≈ 1.67 as calculated before, and 𝐶mean

𝑑 ≈ 5.03. Using Equation 5.20, for terrain type 

1 we compute  

𝑓𝑡(1)
mean(𝑒𝑅1𝑅2) ≈ (0.19)(2 + 0.5) + (0.19)(1.67 + 0.5) + (0.56)(5.03) ≈ 3.70. 

and for terrain type 2 we compute 

𝑓𝑡(2)
mean(𝑒𝑅1𝑅2) ≈ (0.19)(2 + 0.5) + (0.19)(1.67 + 0.5) + (0.06)(5.03) ≈ 1.19. 

Using Equation 5.21, the overall fuzzy region terrain type features are defined as 

𝑓𝑡(1)(𝑒𝑅1𝑅2) = Tri(0, 3.70, 9) and 𝑓𝑡(2)(𝑒𝑅1𝑅2) = Tri(0, 1.19, 9). Comparing these 

features to the observed case, we see that being unable to observe the regions increases the 

overall uncertainty. 

5.2.4 Region Terrain Transition Features 

In the same way that the previous section extended the single-step terrain type 

features to compute region features, the fuzzy region directional terrain transition features 

𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) and symmetric terrain transition features 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) are computed as an 
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extension of the definitions presented in Sections 4.3.3 and 4.4.3. Recall from Section 4.3.3 

that the directional and symmetric terrain transition features always take binary values in 

the observable case. Given two terrain types 𝑖 and 𝑗, the feature is 1 if the edge represents 

a transition from 𝑖 to 𝑗 and 0 otherwise. (The transition from 𝑗 to 𝑖 is also allowed in the 

symmetric feature version.) When one or both cells (now regions) are unobserved, the 

fuzzy feature is defined in Section 4.4.3 using the possibility and probability that the true 

state is the specified type. Consider first the fuzzy region directional terrain transition 

features 𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) and symmetric terrain transition features 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) when 𝑖 ≠ 𝑗. 

Since we have defined the terrain within each region to be uniform and have the restricted 

the agent to only cross the region boundary once, the only edge on a path from 𝑅1 to 𝑅2 

that could have a different starting and ending terrain type is the boundary edge. Therefore, 

if 𝑖 ≠ 𝑗, the 𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) and 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) feature definitions are identical to those 

presented in Section 4.4.3 for the single-step case. The maximum value of the feature in 

this case is 1, regardless of the region sizes. 

We start by defining the true terrain types of the two regions as 𝑡1
∗ and 𝑡2

∗. Let 𝑇𝑘𝑖 be 

the event that 𝑡𝑘
∗ = 𝑖 and 𝑇𝑘𝑗 the event that 𝑡𝑘

∗ = 𝑗 for 𝑘 ∈ {1, 2}. The directional terrain 

transition feature is nonzero only when the environment state is (𝑇1𝑖, 𝑇2𝑗), which occurs 

with probability 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗). These values can be obtained from the observed terrain 

types and terrain priors using Equation 5.10. The symmetric terrain transition feature is 

nonzero for environment states (𝑇1𝑖, 𝑇2𝑗) and (𝑇1𝑗, 𝑇2𝑖), which occur with probability 

𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) if 𝑖 ≠ 𝑗 and 𝑝(𝑇1𝑖)𝑝(𝑇2𝑖) if 𝑖 = 𝑗. For the case where 𝑖 ≠ 𝑗, 
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the fuzzy region directional terrain transition features are defined using the following 

equations based on those in Section 4.4.3. 

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒𝑅1𝑅2) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 1

0, otherwise
 (5.22) 

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒𝑅1𝑅2) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) = 0

1, otherwise
 (5.23) 

 𝑓𝑡〈𝑖,𝑗〉
mean(𝑒𝑅1𝑅2) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) (5.24) 

For the symmetric terrain transition feature when 𝑖 ≠ 𝑗, the equations are as follows. 

 𝑓𝑡{𝑖,𝑗}
min (𝑒𝑅1𝑅2) = {

1, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 1

0, otherwise
 (5.25) 

 𝑓𝑡{𝑖,𝑗}
max (𝑒𝑅1𝑅2) = {

0, 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) = 0

1, otherwise
 (5.26) 

 𝑓𝑡{𝑖,𝑗}
mean(𝑒𝑅1𝑅2) = 𝑝(𝑇1𝑖)𝑝(𝑇2𝑗) + 𝑝(𝑇1𝑗)𝑝(𝑇2𝑖) (5.27) 

When 𝑖 = 𝑗, both the directional and symmetric terrain transition features behave 

like the terrain type feature, essentially measuring the number of steps taken within the 

specified terrain type. The only real difference between the two is the handling of the region 

boundary transition. In the previous section, we added 0.5 to the cost values for states that 

only had one region of the specified terrain type to represent half the cost of crossing the 

region boundary. This meant that the boundary edge could have a cost of 0.5 instead of a 

binary value like the terrain transition features. Therefore, we redefine the equations from 

the previous section for the terrain transition features when 𝑖 = 𝑗. Equations 5.10-5.15 
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remain the same, noting that 𝑝(𝑇𝑘𝑖) = 𝑝(𝑇𝑘𝑗) since 𝑖 = 𝑗. The minimum feature value for 

each state is defined as 

 𝑓𝑡𝑡(𝑖)
min (𝑠) = {

0, 𝑠 = 𝑠0 ∨ 𝑠 = 𝑠1 ∨ 𝑠 = 𝑠2
1, 𝑠 = 𝑠12

 (5.28) 

and the maximum feature values are defined as 

 𝑓𝑡𝑡(𝑖)
max(𝑠) =

{
 

 
0, 𝑠 = 𝑠0

𝑉max
𝑑1 , 𝑠 = 𝑠1
𝑉max
𝑑2 , 𝑠 = 𝑠2

𝐶max
𝑑 , 𝑠 = 𝑠12

 
 

.

 (5.29) 

From this it follows that the minimum and maximum of the feature values are the minimum 

and maximum values of all possible states for both the directional and symmetric feature 

versions. 

 𝑓𝑡〈𝑖,𝑗〉
min (𝑒𝑅1𝑅2) = 𝑓𝑡{𝑖,𝑗}

min (𝑒𝑅1𝑅2) = min
𝑠∈𝑆pos

𝑓𝑡𝑡(𝑖)
min (𝑠) (5.30) 

 𝑓𝑡〈𝑖,𝑗〉
max (𝑒𝑅1𝑅2) = 𝑓𝑡{𝑖,𝑗}

max (𝑒𝑅1𝑅2) = max
𝑠∈𝑆pos

𝑓𝑡𝑡(𝑖)
max(𝑠) (5.31) 

The mean value for both types is defined by multiplying the likelihood of each state by the 

mean distance costs and computing the sum. 

𝑓𝑡〈𝑖,𝑗〉
mean(𝑒𝑅1𝑅2) = 𝑓𝑡{𝑖,𝑗}

mean(𝑒𝑅1𝑅2) = 𝑝(𝑠1)𝑉mean
𝑑1 + 𝑝(𝑠2)𝑉mean

𝑑2 + 𝑝(𝑠12)𝐶mean
𝑑 . (5.32) 

The resulting fuzzy region directional terrain transition feature is given as 

 𝑓𝑡〈𝑖,𝑗〉(𝑒𝑅1𝑅2) = Tri (𝑓𝑡〈𝑖,𝑗〉
min (𝑒𝑅1𝑅2),   𝑓𝑡〈𝑖,𝑗〉

mean(𝑒𝑅1𝑅2),   𝑓𝑡〈𝑖,𝑗〉
max (𝑒𝑅1𝑅2)), (5.33) 

and the fuzzy region symmetric terrain transition feature is given as 

 𝑓𝑡{𝑖,𝑗}(𝑒𝑅1𝑅2) = Tri (𝑓𝑡{𝑖,𝑗}
min (𝑒𝑅1𝑅2),   𝑓𝑡{𝑖,𝑗}

mean(𝑒𝑅1𝑅2),   𝑓𝑡{𝑖,𝑗}
max (𝑒𝑅1𝑅2)). (5.34) 
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For the example in Figure 5.3, the fuzzy region directional terrain transition features 

are defined as 

• 𝑓𝑡〈1,1〉(𝑒𝑅1𝑅2) = Tri(0, 2, 4), 

• 𝑓𝑡〈1,2〉(𝑒𝑅1𝑅2) = Tri(1, 1, 1), 

• 𝑓𝑡〈2,1〉(𝑒𝑅1𝑅2) = Tri(0, 0, 0), 

• 𝑓𝑡〈2,2〉(𝑒𝑅1𝑅2) = Tri(0, 1.67, 4), 

and the symmetric terrain transition features are defined as 

• 𝑓𝑡{1,1}(𝑒𝑅1𝑅2) = Tri(0, 2, 4), 

• 𝑓𝑡{1,2}(𝑒𝑅1𝑅2) = Tri(1, 1, 1), 

• 𝑓𝑡{2,2}(𝑒𝑅1𝑅2) = Tri(0, 1.67, 4). 

Note that when 𝑖 = 𝑗, both feature versions are 0.5 less than the corresponding terrain type 

feature in the previous section. When 𝑖 ≠ 𝑗, the feature is a crisp binary value indicating if 

the terrain transition is of the appropriate type. 

If we consider the situation where both regions are unobserved as in the previous 

section with the same terrain priors, 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) = 0.25, the fuzzy region 

terrain transition features are defined as 

• 𝑓𝑡〈1,1〉(𝑒𝑅1𝑅2) = 𝑓𝑡{1,1}(𝑒𝑅1𝑅2) = Tri(0, 3.52, 9), 

• 𝑓𝑡〈2,2〉(𝑒𝑅1𝑅2) = 𝑓𝑡{2,2}(𝑒𝑅1𝑅2) = Tri(0, 1.00, 9), 

• 𝑓𝑡〈1,2〉(𝑒𝑅1𝑅2) = 𝑓𝑡〈2,1〉(𝑒𝑅1𝑅2) = Tri(0, 0.19, 1), 

• 𝑓𝑡{1,2}(𝑒𝑅1𝑅2) = Tri(0, 0.38, 1). 
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Note that the features where 𝑖 = 𝑗 have slightly lower mean values than the corresponding 

terrain type features in the previous section. This comes from the possibility that only one 

region is of the specified type and the 0.5 cost of the boundary edge is not incurred. The 

symmetric 𝑓𝑡{1,2}(𝑒𝑅1𝑅2) feature also has a mean value that is the sum of the two directional 

variants, indicating that both terrain configurations would contribute to the feature value. 

5.3 General Fuzzy Region Features 

In the previous section, we defined the graph 𝐺12 for every pair of adjacent regions 

𝑅1 and 𝑅2 in the region graph 𝐺𝑅. By assigning a uniform cost of 1 to each edge of 𝐺12, 

we computed the distance cost matrices 𝐶𝑑, 𝑈𝑑1, and 𝑈𝑑2, and used these to compute the 

distance and terrain-based fuzzy region features between the two regions. For the elevation 

feature, we can no longer assume that each edge has a uniform weight since the cost is 

defined as the difference in elevation between adjacent grid cells. Because of this, we 

introduce a more generic algorithm in this section for computing the cost matrices that can 

handle non-uniform edge weights. 

5.3.1 General Framework for Computing Region Features 

The three subgraphs of 𝐺12 are 𝐺1, 𝐺2, and 𝐺bnd, where 𝐺1 contains only the vertices 

from 𝑅1, 𝐺2 contains only the vertices from 𝑅2, and 𝐺bnd contains the boundary edges. In 

practice, we represent the three subgraphs 𝐺1, 𝐺2, or 𝐺bnd as edge sets, where each edge 𝑒 

is a 4-tuple (i1, j1, i2, j2). The pair (i1, j1) indicates the starting cell, START(𝑒), and (i2, j2) is 

the ending cell, END(𝑒). The edges for the 𝐺1 and 𝐺2 subgraphs are separated by direction 
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into four sets: up, down, left, and right. This makes it straightforward to define the edge 

sets and allows the shortest path algorithm to be optimized for grid world domains. 

 

Algorithm 5.9 gives the procedure for creating the edge sets E1, E2, and Ebnd for 

each of the three subgraphs using the function CREATE_REGION_EDGE_SETS. The 

algorithm takes a region map R as input, where cells are labeled 1 for 𝑅1, 2 for 𝑅2, and 0 

elsewhere. The indices for each region are found on line 2 using Algorithm 5.7, which 

provides an ordering that is consistant with the distance cost matrices computed in the 

previous section. Lines 3-8 create the directional edge sets E1 and E2 by identifying the 

adjacent grid cells in each direction. Note that these sets do not need to be ordered. Line 9 

gets the boundary edges using Algorithm 5.8, which also maintains the same ordering as 

the previous section. These three edge sets are returned on line 10 and are used in 

conjunction with the attributes of the mental map to compute the fuzzy features between 

the two regions. 

 

Algorithm 5.9 Create Region Edge Sets 

 

CREATE_REGION_EDGE_SETS(R) 

1: (n, m) ← size of R 

2: I1, I2 ← GET_REGION_INDICES(R) // Algorithm 5.7 

3: E1, E2  ← empty structures 

4: for r in {1, 2} 

5: Er.up  ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  i2 = i1 − 1} 

6: Er.down  ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  i2 = i1 + 1} 

7: Er.left ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  j2 = j1 − 1} 

8: Er.right  ← {(i1, j1, i2, j2) | (i1, j1)  Ir  (i2, j2)  Ir  j2 = j1 + 1} 

9: Ebnd ← GET_BOUNDARY_EDGES(n, m, I1, I2) // Algorithm 5.8 

10: return E1, E2, Ebnd 
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The general algorithm for computing all the region features for a given edge of the 

region graph is given in Algorithm 5.10. The COMPUTE_REGION_FEATURES function is 

called on line 20 of the CREATE_REGION_GRAPH function from Algorithm 5.5 and takes 

the current mental map structure ℳ and the region map R as inputs. The first half of the 

function computes the distance and terrain-based features from the previous section. Lines 

1-5 get the terrain types and observability of each region and line 6 initializes an empty 

structure to hold the features. Line 7 gets the region distance matrices using Algorithm 5.6, 

which will be used to compute many of the features. Line 8 computes the distance feature 

using the formulas from Section 5.2.2. Lines 9-14 loop over each terrain type in the set of 

all terrain types, ℳ.𝒯. The terrain type feature from Section 5.2.3 is computed on line 10 

using the distance matrices computed previously by the GET_REGION_DISTANCE function. 

Lines 11-14 loop again over each terrain type to compute the terrain transition features 

from Section 5.2.4. The directional terrain transition features are computed on line 12, and 

if 𝑖 ≤ 𝑗, then the symmetrical features are also computed on line 14. It is possible to skip 

any of these feature computations if they are not required by the problem. 
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Algorithm 5.10 Compute Region Features 

 

COMPUTE_REGION_FEATURES(ℳ, R) 

1: (n, m) ← ℳ. 𝑠𝑖𝑧𝑒 

2: 𝑡1 ← {ℳ.𝑇[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 1} 

3: 𝑡2 ← {ℳ.𝑇[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 2} 

4: 𝑜1 ← {ℳ.𝑉[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 1} 

5: 𝑜2 ← {ℳ.𝑉[i, j] | 1 ≤ i ≤ n  1 ≤ j ≤ m  R[i, j] = 2} 

6: 𝐹 ← empty structure 

 

/* Compute distance cost matrices */ 

7: 𝐶𝑑, 𝑈𝑑1, 𝑈𝑑2 ← GET_REGION_DISTANCE(R) // Algorithm 5.6 

 

/* Compute distance and terrain-based features (Sections 5.2.2-5.2.4) */ 

8: 𝐹. 𝑓𝑑 ← DISTANCE_FEATURE(𝐶𝑑  ) 

9: for 𝑖 in 1 to | ℳ.𝒯  |  

10: 𝐹. 𝑓𝑡(𝑖) ← TERRAIN_TYPE_FEATURE(𝑖, 𝐶𝑑  , 𝑈𝑑1, 𝑈𝑑2, 𝑡1, 𝑡2, 𝑜1, 𝑜2) 

11: for 𝑗 in 1 to | ℳ.𝒯 |  

12: 𝐹. 𝑓𝑡〈𝑖,𝑗〉 ← DIR_TERRAIN_FEATURE(𝑖, 𝑗, 𝐶𝑑  , 𝑈𝑑1, 𝑈𝑑2, 𝑡1, 𝑡2, 𝑜1, 𝑜2) 

13: if 𝑖 ≤ 𝑗 

14: 𝐹. 𝑓𝑡{𝑖,𝑗} ← SYM_TERRAIN_FEATURE(𝑖, 𝑗, 𝐶𝑑, 𝑈𝑑1, 𝑈𝑑2, 𝑡1, 𝑡2, 𝑜1, 𝑜2) 

 

/* Get edge sets */ 

15: E1, E2, Ebnd ← CREATE_REGION_EDGE_SETS(R) // Algorithm 5.9 

 

/* Compute elevation edge costs (Algorithm 5.11) */ 

16: E1_abs, E2_abs, Ebnd_abs ← GET_ELEVATION_EDGE_COSTS(ℳ.𝐸, E1, E2, Ebnd, “abs”) 

17: E1_↑, E2_↑, Ebnd_↑ ← GET_ELEVATION_EDGE_COSTS(ℳ.𝐸, E1, E2, Ebnd, “up”) 

18: E1_↓, E2_↓, Ebnd_↓ ← GET_ELEVATION_EDGE_COSTS(ℳ.𝐸, E1, E2, Ebnd, “down”) 

 

/* Compute elevation features (Algorithm 5.12) */ 

19: 𝐹. 𝑓ℎ_max ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_abs, E2_abs, Ebnd_abs, “abs”, “max”) 

20: 𝐹. 𝑓ℎ↑_max ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↓, E2_↑, Ebnd_↑, “up”, “max”) 

21: 𝐹. 𝑓ℎ↓_max ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↑, E2_↓, Ebnd_↓, “down”, “max”) 

22: 𝐹. 𝑓ℎ_sum ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_abs, E2_abs, Ebnd_abs, “abs”, “sum”) 

23: 𝐹. 𝑓ℎ↑_sum ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↓, E2_↑, Ebnd_↑, “up”, “sum”) 

24: 𝐹. 𝑓ℎ↓_sum ← ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1_↑, E2_↓, Ebnd_↓, “down”, “sum”) 

 

25: return 𝐹 

 



173 

The second half of Algorithm 5.10 computes the elevation features between the two 

specified regions. This process begins on line 15, where the edge sets E1, E2, and Ebnd are 

constructed using the CREATE_REGION_EDGE_SETS function from Algorithm 5.9. These 

sets provide the starting and ending grid cells for the edges in each region and the boundary 

set. On lines 16-19, we append these edges with the elevation features defined in Chapter 

4. This is accomplished by the GET_ELEVATION_EDGE_COSTS function in Algorithm 5.11, 

which is called three times. Each function call computes a different feature: the absolute 

value of the elevation difference, the uphill difference, or the downhill difference. 

The inputs to Algorithm 5.11 are the heightmap H from the mental map, the edge 

sets E1, E2, and Ebnd, and a type flag indicating which elevation feature to compute. Lines 

1-14 compute the crisp elevation features for the two region edge sets. Since each region 

is either completely observed or unobserved, the feature values of each edge will either be 

known exactly or be unknown with maximum uncertainty. If the region is unobserved, the 

feature value of each edge is set to NIL (lines 5-6). We will discuss how unobserved regions 

are handled in more detail in the next section. In each direction, the edge (i1, j1, i2, j2) is 

used to compute the appropriate feature value c using Equations 4.11-4.13 (lines 7-12). 

These features are appended to the edges creating a 5-tuple (i1, j1, i2, j2, c), which is saved 

back to the edge set (lines 13-14). Note that it is not necessary to maintain the edge order 

within each of the region edge sets. 
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Algorithm 5.11 Get Elevation Edge Costs 

 

GET_ELEVATION_EDGE_COSTS(H, E1, E2, Ebnd, type) 

 

/* Get costs for each region */ 

1: for 𝑟 in {1, 2} 

2: for dir in {up, down, left, right} 

3: F ← ∅ 

4: for each (i1, j1, i2, j2)  Er.{dir} 

5: if H[i1, j1] = NIL  H[i2, j2] = NIL 

6: c ← NIL 

7: else if type = “abs” 

8: c ← | H[i1, j1] – H[i2, j2] | // Equation 4.11 

9: else if type = “up” 

10: c ← max(0, H[i2, j2] – H[i1, j1]) // Equation 4.12 

11: else if type = “down” 

12: c ← max(0, H[i1, j1] – H[i2, j2]) // Equation 4.13 

13: F ← F ∪ (i1, j1, i2, j2, c) 

14:  Er.{dir} ← F 

 

/* Get boundary edge costs */ 

15: for k in 1 to | Ebnd | 

16: (i1, j1, i2, j2) ← Ebnd[k] 

17: ℎ1 ← H[i1, j1]  

18: ℎ2 ← H[i2, j2] 

19: 𝑜1 ← [H[i1, j1]  NIL] 

20: 𝑜2 ← [H[i2, j2]  NIL] 

21: if type = “abs” 

22: c ← 𝑓ℎ(ℎ1, ℎ2, 𝑜1, 𝑜2) // Equation 4.71 

23: else if type = “up” 

24: c ← 𝑓ℎ↑(ℎ1, ℎ2, 𝑜1, 𝑜2) // Equation 4.72 

25: else if type = “down” 

26: c ← 𝑓ℎ↓(ℎ1, ℎ2, 𝑜1, 𝑜2) // Equation 4.73 

27: Ebnd[k] ← (i1, j1, i2, j2, c) 

 

28: return E1, E2, Ebnd 
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The elevation features for the boundary edges are computed on lines 15-27 of 

Algorithm 5.11. The order of these edges is maintained, and for each edge, we determine 

the starting and ending heights and observability (lines 16-20). These values are used to 

compute the appropriate fuzzy elevation features using Equations 4.71-4.73 (lines 21-26). 

Note that unlike the edge sets for each region, it is possible for only one side to be observed. 

Therefore, we save the complete fuzzy feature for each boundary edge, represented as a 

triangular fuzzy number. In practice, we only save the min, mean, and max points used to 

define the membership function. Once all the edge features have been computed, the 

updated edge sets are returned on line 28. 

Each call to the GET_ELEVATION_EDGE_COSTS function on lines 16-18 of 

Algorithm 5.10 returns three edge sets with either the absolute, uphill, or downhill 

elevation difference features appended to each edge. These are saved as the sets E1_abs, 

E2_abs, and Ebnd_abs for the absolute elevation difference, E1_↑, E2_↑, and Ebnd_↑ for the uphill 

elevation difference, and E1_↓, E2_↓, and Ebnd_↓ for the downhill elevation difference. The 

actual elevation features are computed on lines 19-24 using different subsets of these edge 

sets, which will be discussed in the following sections. Note that for the uphill and downhill 

elevation features, the edge set for region 1 is opposite that of the boundary edges and 

region 2. This is done because costs are aggregated in the direction moving away from the 

boundary edge. For region 1, this is opposite of the direction of agent movement, so the 

edge set is replaced with that of the other elevation difference feature. This works because 

the uphill cost in one direction is equal to the downhill cost in the opposite direction. As 

with the distance and terrain type features, any features not required by the problem can be 
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skipped. The final set of features for this edge of the region graph is returned on line 25 to 

the CREATE_REGION_GRAPH function in Algorithm 5.5. 

Figure 5.6 shows the elevation edge costs computed for the example in Figure 5.3. 

The three images show the absolute, uphill, and downhill elevation difference features. 

These are saved in the corresponding edge sets and separated by edge direction. Note that 

the uphill costs in each direction are equal to the downhill costs in the opposite direction. 

 

 
 (a) 

   

 (b) (c) 

Figure 5.6  Elevation edge costs computed for the example in Figure 5.3. The elevation of each cell is shown 

in gray and the edge costs are displayed next to each edge. (a) Absolute elevation difference. (b) Uphill 

elevation difference. (c) Downhill elevation difference. 
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5.3.2 Region Elevation Features 

As mentioned previously, computing the region elevation features requires a 

generalization of the distance cost algorithm presented in the last section to account for 

non-uniform edge weights. Algorithm 5.12 shows the approach we use to compute the 

elevation features, which is very much like the GET_REGION_DISTANCE function in 

Algorithm 5.6. The function takes the following input arguments: 

• an 𝑛 ×𝑚 grid map R, where cells in 𝑅1 are marked 1, cells in 𝑅2 are marked 2, and 

all other cells are 0, 

• region distance matrices 𝑈𝑑1 and 𝑈𝑑2, obtained as the outputs of Algorithm 5.6 on 

the grid map R,  

• the observability of the two regions 𝑜1 and 𝑜2, 

• weighted edge sets E1, E2, and Ebnd, obtained as the outputs of Algorithm 5.11, 

• a type parameter set to either “abs”, “up”, or “down” to indicate which elevation 

feature to compute, and 

• an agg parameter set to either “sum” or “max” to indicate if summation or 

maximization aggregation should be used. 

The algorithm starts by obtaining the indices of the two regions using Algorithm 5.7 (line 

2) and initializing the cost matrices (lines 3-5). 𝑈1 and 𝑈2 will hold the expected 

aggregated elevation feature costs from each cell in 𝑅1 and 𝑅2 respectively to each 

boundary edge. 𝑈bnd will hold the three triangular fuzzy number parameters (min, mean, 

and max) for each boundary edge. 
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Algorithm 5.12 Elevation Feature 

 

ELEV_FEATURE(R, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, E1, E2, Ebnd, type, agg) 

1: (n, m) ← size of R 

 

/* Get the indices of the two regions */ 

2: I1, I2 ← GET_REGION_INDICES(R) // Algorithm 5.7 

 

/* Initialize the cost matrices */ 

3: 𝑈1 ← | I1 |  | Ebnd | matrix initalized to ∞ 

4: 𝑈2 ← | I2 |  | Ebnd | matrix initalized to ∞ 

5: 𝑈bnd ← | Ebnd |  3 matrix initalized to ∞ 

 

/* Compute region costs */ 

6: for 𝑟 in {1, 2} 

7: if 𝑜𝑟 = 1 

8: for k in 1 to | Ebnd | 

9: (i1, j1, i2, j2, c) ← Ebnd[k] 

10: D ← n  m matrix initalized to ∞ 

11: D[ir, jr] ← 0 

12: D ← BELLMAN_FORD_GRID_DIST(D, Er, agg) // Algorithm 5.13 

13: 𝑈𝑟[ : , k] ← D[Ir] 

14: else 

15: 𝑈𝑟 ← UNOBSERVED_ELEVATION_COST(𝑈𝑑𝑟, type, agg) // Algorithm 5.14 

 

/* Get boundary edge costs */ 

16: for k in 1 to | Ebnd | 

17: (i1, j1, i2, j2, Tri(𝑓min, 𝑓mean, 𝑓max)) ← Ebnd[k] 

18: 𝑈bnd[k, 1] ← 𝑓min 

19: 𝑈bnd[k, 2] ← 𝑓mean 

20: 𝑈bnd[k, 3] ← 𝑓max 
 

/* Compute the feature (Algorithm 5.15) */ 

21: F ← COMBINE_ELEVATION_COSTS(𝑈1, 𝑈2, 𝑈bnd, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, type, agg) 

 

22: return F 
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The first part of Algorithm 5.12 computes the region costs to fill in the 𝑈1 and 𝑈2 

matrices. For each region that is observed, we cycle over each boundary edge and compute 

the costs from that edge to each grid cell in the region. Unobserved regions are treated as 

a special case and are discussed in the next section. Whereas Algorithm 5.6 used the 

GRID_DISTANCE function from Algorithm 3.6 for each boundary edge in both regions, we 

rely here on a variation of the Bellman-Ford algorithm presented in Algorithm 5.13, which 

allows for non-uniform edge weights. Lines 9-11 prepare a distance grid D for the 

algorithm, where all values in D are set to infinity except for the source grid cell, which is 

set to zero at one of the boundary edge cells. 

The Bellman-Ford algorithm (Bellman 1958; Ford Jr. 1956) operates by iteratively 

relaxing an upper bound on the cost to each vertex from some source. Each vertex starts 

with an initial value of infinity except for the source, which starts with zero. The entire set 

of edges 𝐸 is evaluated for a maximum of |𝑉| − 1 iterations, and each time an edge is 

found that results in a smaller cost to reach a vertex, the upper bound is relaxed. The 

algorithm can terminate early if no edges are relaxed in an iteration. The worst-case runtime 

performance is given as 𝑂(|𝑉||𝐸|), but the best-case performance is only 𝑂(|𝐸|). Our 

implementation of the Bellman-Ford algorithm is specifically designed to operate on grid 

graphs, where the edges can be divided into four sets: up, down, left, and right. This allows 

the cost updates to occur simultaneously for each set. This is possible because within each 

set, each vertex has at most one incoming edge that could change its current value. In 

practice, this results in a wave propagation of settled costs radiating outward from the 

source, similar to the breadth-first search approach of the Lee algorithm (Lee 1961) and 

our previous GRID_DISTANCE function. 
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The BELLMAN_FORD_GRID_DIST function presented in Algorithm 5.13 takes the 

following inputs: 

• a distance grid D, where all cells have been initialized to infinity except for the 

source cell, which is set to zero,  

• a set of edges E, that has been subdivided into four sets, up, down, left, and right, 

based on edge direction, and 

 

Algorithm 5.13 Bellman-Ford Grid Distance 

 

BELLMAN_FORD_GRID_DIST(D, E, agg) 

/* D is a grid initialized to ∞ with source cells set to 0 */ 

 

1: (n, m) ← size of D 

2: Dold ← D 

3: while True 

 

/* Loop over the edges in each direction */ 

4: for dir in {up, down, left, right} 

5: for each (i1, j1, i2, j2, c)  E.{dir} 

6: s ← D[i1, j1]   // Get value of D at edge starting point 

7: t ← D[i2, j2]   // Get value of D at edge ending point 

8: if agg = “sum” 

9: u ← s + c 

10: else if agg = “max” 

11: u ← max(s, c) 

12: D[i2, j2] ← min(u, t ) 

 

/* Check if finished */ 

13: if D = Dold 

14: break 

15: else 

16: Dold ← D 

 

17: return D 
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• an option parameter agg that indicates if summation or maximization aggregation 

is to be used. 

The distance grid D represents an upper bound on the minimum cost required to reach 

each cell from the source. As the algorithm proceeds, the values in D are replaced with 

better estimates. The main loop of Algorithm 5.13 begins on line 3 and continues until D 

does not change, which is checked on lines 13-16. For each main loop iteration, each of 

the four directional edge sets is evaluated in sequence (lines 4-12). Lines 5-12 loop over 

each edge in the edge set. For each edge, we get the current values in D of the starting cell 

(i1, j1) and ending cell (i2, j2), saved as the variables s and t (lines 6 and 7). The cost of the 

edge is given as c and is aggregated with the value s, which represents the best-known cost 

from the source to (i1, j1). If using summation aggregation, this is evaluated as s + c (line 

9), whereas it is evaluated as max(s, c) if using maximization aggregation (line 11). The 

resulting value is saved as the variable u and is compared with t, which represents the best-

known cost from the source to (i2, j2). If u is less than t, then the edge offers a better path 

to (i2, j2). The value D[i2, j2] is updated to be the minimum of u and t on line 12. Note that 

we do not save the shortest paths themselves, but only the costs associated with the paths. 

Since we only consider edges in one direction at a time, each cell can have only a 

single incoming edge and a single outgoing edge. This ensures that there are no conflicts 

when the values in D are updated and allows lines 5-12 to operate in parallel, which can 

greatly improve the speed of the algorithm. If no values in D have changed after evaluating 

the edges in each direction (checked on lines 13-16), the algorithm terminates and D is 

returned on line 17. 
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Figure 5.7  Composite distance grids computed using Algorithm 5.13 for the example in Figure 5.3 using the 

maximum aggregation method. The top row shows the absolute elevation difference feature costs, the middle 

row shows the uphill costs, and the bottom row shows the downhill costs. The three columns show the 

different costs for reaching each of the three boundary edges. 

  

Figure 5.8  Composite distance grids computed using Algorithm 5.13 for the example in Figure 5.3 using the 

summation aggregation method. The top row shows the absolute elevation difference feature costs, the 

middle row shows the uphill costs, and the bottom row shows the downhill costs. The three columns show 

the different costs for reaching each of the three boundary edges. 
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Figure 5.7 shows the output of the BELLMAN_FORD_GRID_DIST function on the 

example from Figure 5.3 using the maximization aggregation method. Likewise, Figure 

5.8 shows the output when using summation. Each image shows the distance values 

computed for each grid cell in both regions using a specific boundary edge and feature 

type. The absolute, uphill, and downhill elevation difference features are shown. It can be 

helpful to reference the elevation edge costs computed in Figure 5.6 when examining these 

figures.  

5.3.3 Unobserved Elevation Costs 

We now return to the first part of Algorithm 5.12 where we compute the individual 

region elevation costs for each boundary edge. If the region is observed, the edge costs are 

computed using the BELLMAN_FORD_GRID_DIST function in Algorithm 5.13. However, if 

the region is unobserved, then each edge in the region will have an unknown cost. In this 

case, all edges can be assigned a fuzzy cost using the equations in Section 4.4.4. Because 

each edge has the same fuzzy cost value, we can make use of the distance cost matrices 

computed by the GET_REGION_DISTANCE function from Algorithm 5.6. 

Consider first the average cost value of reaching one of the boundary edges from 

each grid cell within a region. The matrices 𝑈𝑑1 and 𝑈𝑑2 give the number of steps required 

to reach each boundary edge from any location within one of the regions. In general, 𝑛 

steps are required where 𝑛 ≥ 0. Using the values computed in Equations 4.65-4.67, we 

know that the mean elevation feature value for a single unobserved edge is 
1

3
 for the 

absolute elevation difference and 
1

6
 for both the uphill and downhill elevation differences. 
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Therefore, for the summation aggregation method, the average total cost to reach one of 

the boundary edges is 
1

3
𝑈𝑑 for the absolute elevation difference and 

1

6
𝑈𝑑 for the uphill and 

downhill elevation differences. 

For maximization, the approach is not so straightforward. The average cost of 

reaching each boundary edge using maximization aggregation is the expected maximum 

value of 𝑛 randomly sampled elevation feature values. Consider a set of 𝑛 independent1 

and identically distributed (i.i.d.) random variables 𝑋1, 𝑋2, … , 𝑋𝑛 where each variable 𝑋𝑖 is 

sampled from a probability distribution 𝑓𝑋(𝑥). Let 𝑌𝑛 = max{𝑋1, 𝑋2, … , 𝑋𝑛} be the 

maximum value of the set. We can define the expected value of 𝑌𝑛 as 

 𝔼[𝑌𝑛] = ∫ 𝑦𝑓𝑌𝑛(𝑦)

∞

−∞

𝑑𝑦, (5.35) 

where 𝑓𝑌𝑛(𝑦) is the probability distribution function (PDF) of 𝑌𝑛. If the PDF is continuous, 

it can be computed as 

 𝑓𝑌𝑛(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌𝑛(𝑦), (5.36) 

where 𝐹𝑌𝑛(𝑦) is the cumulative distribution function (CDF) of 𝑌𝑛, which is defined as 

 𝐹𝑌𝑛(𝑦) = 𝑃(𝑌𝑛 ≤ 𝑦). (5.37) 

Replacing 𝑌𝑛 with its definition, we get 

 𝐹𝑌𝑛(𝑦) = 𝑃(max{𝑋1, 𝑋2, … , 𝑋𝑛} ≤ 𝑦). (5.38) 

 
1 The elevation features within a region are not actually independent since they depend on the shared heights 

of the grid cells. The heightmap is also generated in such a way that adjacent cells are more likely to have 

the same elevation, biasing the elevation difference features toward zero. However, we assume independence 

here for the sake of analysis and recognize that the resulting estimate will likely be larger than the true value. 
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Since the 𝑋𝑖 variables are independent, this can be expressed as 

 𝐹𝑌𝑛(𝑦) = 𝑃(𝑋1 ≤ 𝑦)𝑃(𝑋2 ≤ 𝑦)…𝑃(𝑋𝑛 ≤ 𝑦) (5.39a) 

 𝐹𝑌𝑛(𝑦) = [𝑃(𝑋𝑖 ≤ 𝑦)]
𝑛                                         (5.39b) 

 𝐹𝑌𝑛(𝑦) = [𝐹𝑋(𝑦)]
𝑛.                                                (5.39c) 

Here, 𝐹𝑋(𝑦) is the CDF of the random variable 𝑋, which is one of the elevation feature 

values. 

Each of the elevation features introduced in Section 4.3.4 are defined in terms of 

the starting and ending grid cell heights, ℎ1 and ℎ2. In the completely unobserved case, 

both values are assumed to be randomly sampled from a uniform distribution over the unit 

interval ℎ1, ℎ2 ~ 𝑈(0, 1). Let 𝑋ℎ be the absolute elevation difference feature computed 

from ℎ1 and ℎ2 such that  

 𝑋ℎ = |ℎ1 − ℎ2|. (5.40) 

The CDF of 𝑋ℎ is defined as 

 𝐹𝑋ℎ(𝑥) = 𝑃(𝑋ℎ ≤ 𝑥). (5.41) 

The easiest way to evaluate this expression is to imagine a unit square representing all 

possible values of the pair (ℎ1, ℎ2). The 3D surface plots of the elevation difference 

features were shown in Figure 4.6, and a top-down view is shown in Figure 5.9. For any 

value 𝑥, the area of the square where |ℎ1 − ℎ2| ≤ 𝑥 represents the probability that 𝑋ℎ ≤ 𝑥. 

From Figure 5.9 (a), we can see that this area is 1 − (1 − 𝑥)2. Simplifying this expression 

gives, 

 𝐹𝑋ℎ(𝑥) = 2𝑥 − 𝑥2,   0 ≤ 𝑥 ≤ 1. (5.42) 
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For the directional elevation difference features, we define 𝑋ℎ↑ and 𝑋ℎ↓ as 

 𝑋ℎ↑ = max(0, ℎ2 − ℎ1) , and (5.43) 

 𝑋ℎ↓ = max(0, ℎ1 − ℎ2).          (5.44) 

Again, the CDFs of 𝑋ℎ↑ and 𝑋ℎ↓ are defined as  

 𝐹𝑋ℎ↑(𝑥) = 𝑃(𝑋ℎ↑ ≤ 𝑥), and (5.45) 

 𝐹𝑋ℎ↓(𝑥) = 𝑃(𝑋ℎ↓ ≤ 𝑥).         (5.46) 

From Figure 5.9 (b) and (c), we see that the areas of the unit square where 

max(0, ℎ2 − ℎ1) ≤ 𝑥 and max(0, ℎ1 − ℎ2) ≤ 𝑥 are both 1 −
1

2
(1 − 𝑥)2. Simplifying 

gives 

 𝐹𝑋ℎ↑(𝑥) = 𝐹𝑋ℎ↓(𝑥) = −
𝑥2

2
+ 𝑥 +

1

2
,   0 ≤ 𝑥 ≤ 1. (5.47) 

 

Since the CDFs of the uphill and downhill elevation difference features are 

identical, we simplify our notation and refer to the two types of features as absolute and 

 
 (a) (b) (c) 

Figure 5.9  Plots of the elevation difference features over the unit square, with a shaded region showing the 

area where the function is less than a value 𝑥. (a) The absolute elevation difference 𝑓ℎ. (b) The uphill elevation 

difference 𝑓ℎ↑. (c) The downhill elevation difference 𝑓ℎ↓. These represent top-down views of the 3D surface 

plots shown in Figure 4.6. 

𝑓ℎ ℎ1 , ℎ2 = ℎ1 − ℎ2 𝑓ℎ↑ ℎ1 , ℎ2 = max 0, ℎ2 − ℎ1 𝑓ℎ↓ ℎ1, ℎ2 = max 0, ℎ1 − ℎ2
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directional elevation difference features. We notate these two CDFs as 𝐹𝑋abs = 𝐹𝑋ℎ and 

𝐹𝑋dir = 𝐹𝑋ℎ↑ = 𝐹𝑋ℎ↓. Figure 5.10 shows the plots of these CDFs as 𝑥 ranges between 0 and 

1. The value of each function for a given 𝑥 represents the probability that the feature value 

will be less than or equal to 𝑥. Note that 𝐹𝑋abs(0) = 0, whereas 𝐹𝑋dir(0) = 0.5. This is 

because for half of the possible values of ℎ1 and ℎ2, the directional features are zero. 

 

 

Figure 5.10  Plots of the cumulative distribution functions of the elevation difference features. 
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Returning to Equation 5.39, let 𝑌𝑛
abs be the maximum of 𝑛 values sampled from the 

distribution 𝑓𝑋ℎ, and let 𝑌𝑛
dir be the maximum of 𝑛 values sampled from either 𝑓𝑋ℎ↑ or 𝑓𝑋ℎ↓. 

We can express the CDF of 𝑌𝑛
abs as 

 𝐹𝑌𝑛abs(𝑦) = [𝐹𝑋abs(𝑦)]
𝑛
                         (5.48a) 

                  = (2𝑦 − 𝑦2)𝑛,   0 ≤ 𝑦 ≤ 1 (5.48b) 

and the CDF of 𝑌𝑛
dir as 

 𝐹𝑌𝑛dir(𝑦) = [𝐹𝑋dir(𝑦)]
𝑛
                                       (5.49a) 

                 = (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛

,   0 ≤ 𝑦 ≤ 1. (5.49b) 

Plots of these CDFs are shown in Figure 5.11. Note that 𝐹𝑌𝑛abs(0) = 0 and 𝐹𝑌𝑛dir(0) = 2
−𝑛. 

The functions shift toward higher values of 𝑦 as 𝑛 increases, indicating that the expected 

maximum value should increase with more samples. 

 

 

 (a) (b) 

Figure 5.11  CDFs of the maximum of 𝑛 elevation difference feature values. (a) CDF of 𝑌𝑛
abs for various 

values of 𝑛. (b) CDF of 𝑌𝑛
dir for various values of 𝑛. 
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To get the PDFs of these functions, we differentiate using Equation 5.36. For the 

absolute elevation difference, this gives 

 𝑓𝑌𝑛abs(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌𝑛abs(𝑦)                                                     (5.50a) 

                 = −𝑛(2𝑦 − 2)(2𝑦 − 𝑦2)𝑛−1,   0 ≤ 𝑦 ≤ 1. (5.50b) 

For the directional elevation difference, this gives 

 𝑓𝑌𝑛dir(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌𝑛dir(𝑦)                                                                              (5.51a) 

                = −𝑛(𝑦 − 1) (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛−1

+
𝛿(𝑦)

2𝑛
,   0 ≤ 𝑦 ≤ 1 (5.51b) 

where 𝛿 is the Dirac delta function that models the probability point mass at 𝑦 = 0. This 

represents the case where all sampled values are zero, and it is included to ensure that 

∫ 𝑓𝑌𝑛dir(𝑦)
1

0
𝑑𝑦 = 1. Figure 5.12 shows these PDFs for several values of 𝑛. Notice that the 

PDFs of the directional elevation features are skewed towards slightly lower values than 

those of the absolute elevation difference. This is in addition to the probability mass from 

the Dirac delta function at 𝑦 = 0, which is not shown. 

 

 

 (a) (b) 

Figure 5.12  PDFs of the maximum of 𝑛 elevation difference feature values. (a) PDF of 𝑌𝑛
abs for various 

values of 𝑛. (b) PDF of 𝑌𝑛
dir for various values of 𝑛. Note that 𝛿(𝑦) is not shown in these plots. 
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We use Equation 5.35 to get the expected values of 𝑌𝑛
abs and 𝑌𝑛

dir from their PDFs. 

For the expected absolute elevation difference, we obtain 

 𝔼[𝑌𝑛
abs] = ∫𝑦𝑓𝑌𝑛abs(𝑦)

1

0

𝑑𝑦                                    (5.52a) 

                = ∫−𝑛𝑦(2𝑦 − 2)(2𝑦 − 𝑦2)𝑛−1
1

0

𝑑𝑦. (5.52b) 

For the uphill and downhill elevation differences, we obtain 

 𝔼[𝑌𝑛
dir] = ∫𝑦𝑓𝑌𝑛dir(𝑦)

1

0

𝑑𝑦                                                             (5.53a) 

                 = ∫−𝑛𝑦(𝑦 − 1) (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛−1

+
𝑦𝛿(𝑦)

2𝑛

1

0

𝑑𝑦  (5.53b) 

         = ∫−𝑛𝑦(𝑦 − 1) (−
𝑦2

2
+ 𝑦 +

1

2
)

𝑛−11

0

𝑑𝑦.          (5.53c) 

Note that we can ignore the Dirac delta function here, since 𝑦𝛿(𝑦) = 0. Evaluating these 

integrals for large values of 𝑛 can become costly for real-time operation, so we precompute 

the expected values up to some limit (𝑛 = 100) and save these in a lookup table. Table 5.1 

shows the expected values of 𝑌𝑛
abs and 𝑌𝑛

dir for several values of 𝑛. 

Table 5.1 Expected values of 𝑌𝑛
abs and 𝑌𝑛

dir for various values of 𝑛 

𝑛 1 2 3 4 5 10 20 50 100 

𝔼[𝑌𝑛
abs] 0.333 0.467 0.543 0.594 0.631 0.730 0.806 0.876 0.912 

𝔼[𝑌𝑛
dir] 0.167 0.283 0.368 0.431 0.480 0.618 0.725 0.824 0.875 
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To verify that our method is correct, we randomly sampled 𝑛 values of ℎ1 and ℎ2 

from a uniform distribution 𝑈(0, 1) and computed the maximum value of the absolute and 

directional elevation features. This was repeated 100 times for each value of 𝑛 in 1,… ,100. 

Figure 5.13 shows the box plots of the distributions of computed values for each 𝑛 along 

with a curve representing the expected values 𝔼[𝑌𝑛
abs] and 𝔼[𝑌𝑛

dir] computed using 

Equations 5.52 and 5.53. The box plots show the maximum, minimum, median, and upper 

and lower quartiles of each distribution, along with any outliers. A green ‘x’ is plotted on 

each box plot at the location of the mean value. For both the absolute and directional 

elevation features, the red line representing the computed expected values is in alignment 

with the means of the sampled distributions. 
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Algorithm 5.14 shows how the above computations are implemented as part of the 

ELEV_FEATURE function in Algorithm 5.12.  Lines 6-15 of  Algorithm 5.12 compute the 

region cost matrices 𝑈1 and 𝑈2, using the BELLMAN_FORD_GRID_DIST function in 

Algorithm 5.13 when the regions are observed and the UNOBSERVED_ELEVATION_COST 

function in Algorithm 5.14 when the regions are unobserved. Algorithm 5.14 provides a 

cost matrix 𝑈𝑟 containing the expected elevation feature costs for a region using the 

distance cost matrix 𝑈𝑑 and the above definitions. For the maximum aggregation method, 

the values are precomputed in a lookup table to avoid unnecessary computation. 

 (a) (b) 

Figure 5.13  Expected values of (a) 𝑌𝑛
abs and (b) 𝑌𝑛

dir for 𝑛 in 1,… ,100. For each 𝑛, 100 samples of 𝑌𝑛 were 

computed for the absolute and directional elevation features and the resulting distributions are shown in blue 

as box plots. The mean value of each sampled distribution is shown as a green ‘x’. The red line indicates the 

expected value computed using Equations 5.52 and 5.53. 

𝔼
𝑌 𝑛
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s

𝔼
𝑌 𝑛
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5.3.4 Combining Region Elevation Costs 

The second half of Algorithm 5.12 combines the region elevation costs from both 

regions to compute the actual elevation difference feature. Lines 16-20 of Algorithm 5.12 

construct the 𝑈bnd matrix from the provided boundary edge list Ebnd. Each row of 𝑈bnd 

contains the min, mean, and max feature values of one of the boundary edges. Line 21 calls 

the COMBINE_ELEVATION_COSTS function, which is given in Algorithm 5.15. This 

function takes the following input arguments: 

• expected aggregated elevation cost matrices 𝑈1 and 𝑈2, containing the average 

costs of traveling between each grid cell and each boundary edge, 

• the boundary edge cost matrix 𝑈bnd, 

 

Algorithm 5.14 Unobserved Elevation Costs 

 

UNOBSERVED_ELEVATION_COST(𝑈𝑑, type, agg) 

1: (N, K) ← size of 𝑈𝑑 

2: 𝑈𝑟 ← N  K matrix initalized to ∞ 

3: for each (i, k)  {1 ≤ i ≤ N  1 ≤ k ≤ K} 

4: if agg = “sum” 

5: if type = “abs” 

6: 𝑈𝑟[i, k] ← 
1

3
× 𝑈𝑑[i, k] 

7: else if type = “up” or type = “down” 

8: 𝑈𝑟[i, k] ← 
1

6
× 𝑈𝑑[i, k] 

9: else if agg = “max” 

10: 𝑛 ← 𝑈𝑑[i, k] 

11: if type = “abs” 

12: 𝑈𝑟[i, k] ← 𝔼[𝑌𝑛
abs] 

13: else if type = “up” or type = “down” 

14: 𝑈𝑟[i, k] ← 𝔼[𝑌𝑛
dir] 

15: return 𝑈𝑟 
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• region distance cost matrices 𝑈𝑑1 and 𝑈𝑑2, containing the number of steps required 

to travel between each grid cell and each boundary edge, 

• the observability of the two regions 𝑜1 and 𝑜2, and 

• an agg parameter set to either “sum” or “max” to indicate if summation or 

maximization aggregation should be used. 

The algorithm starts on lines 1 and 2 by getting the number of cells in each region (N1 and 

N2) and the number of boundary edges (K). These are used to produce an index set I of 

starting and ending cells from the two regions (line 3) and to initialize the mean and max 

N1  N2 cost matrices 𝐶mean and 𝐶max (line 4). Note that we do not need a cost matrix for 

the minimum feature value because this will always be represented by a single-step 

transition along one of the boundary edges. 

We first consider the computation of the mean cost matrix 𝐶mean for both 

aggregation types. Recall from Equations 5.1 and 5.2 that the minimum cost of a path from 

cell i in 𝑅1 to cell j in 𝑅2 using boundary edge k is given as 𝑢𝑖𝑘
1 + 𝑢𝑘

bnd + 𝑢𝑗𝑘
2  for summation 

aggregation and as max(𝑢𝑖𝑘
1 , 𝑢𝑘

bnd, 𝑢𝑗𝑘
2 ) for maximization. The expected values of 𝑢𝑖𝑘

1  and 

𝑢𝑗𝑘
2  are provided by the 𝑈1 and 𝑈2 matrices respectively, and the mean cost of the boundary 

edge 𝑢𝑘
bnd is given by the second column of 𝑈bnd. From Equation 5.3, the minimum 

expected cost is defined using the boundary edge that gives the minimum value. Since 𝑈1 

and 𝑈2 have already been defined to contain the expected region elevation costs for the 

appropriate aggregation type regardless of observability, we can apply the above 

expressions to each pair of cells in the index I to get 𝐶mean on line 6 for the max type and 

on line 13 for the sum type. 
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To compute the maximum cost matrix 𝐶max, we need to update the definitions of 

𝑈1 and 𝑈2 depending on if each region has been observed. If a region has been observed, 

then the corresponding cost matrix contains the actual observed costs and does not need to 

be changed. However, if a region is unobserved (𝑜1 = 0 or 𝑜2 = 0), then we need to update 

the cost matrix to contain the maximum cost that the agent could encounter along the path 

between each cell and each boundary edge. 

First, consider an unobserved region with the maximum aggregation type. If the 

region distance cost matrix 𝑈𝑑1 or 𝑈𝑑2 indicates that a grid cell is one or more steps away 

from the boundary edge, then there is at least one completely unobserved edge that could 

take the maximum value of 1. Lines 8 and 10 apply this test to each cost matrix element in 

an unobserved region, setting the value of 𝑈1 or 𝑈2 to 1 if the corresponding value in 𝑈𝑑1 

or 𝑈𝑑2 is greater than zero and setting it to 0 otherwise. The only reason the expected cost 

is not simply set to 1 for any unobserved region is to handle the edge case where one region 

is unobserved and contains only a single grid cell. In this case, the maximum cost would 

be determined by the maximum region cost of the other region and the boundary edge, 

since there would be no edges completely within the unobserved region. 

Next, consider an unobserved region with the summation aggregation type. For 

summation, each unobserved step could mean the addition of the largest possible elevation 

difference feature value. In the worst case, an elevation pattern of (0, 1, 0, 1, 0, ...) would 

produce an absolute elevation difference of 1 for each grid step. Therefore, when the feature 

type is set to “abs” and one of the regions is unobserved with summation aggregation, the 

corresponding cost matrix 𝑈1 or 𝑈2 is set to be the same as the corresponding region 
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distance cost matrix 𝑈𝑑1 or 𝑈𝑑2 (lines 16 and 21). The situation is only half as bad for the 

directional elevation costs. Even in the worst case, the uphill or downhill feature value can 

only take its maximum every other step. Each element of the corresponding cost matrix is 

set to ⌈
𝑑

2
⌉ where 𝑑 is the value of the distance cost matrix 𝑈𝑑1 or 𝑈𝑑2 (lines 18 and 23). 

After updating the cost matrices 𝑈1 and 𝑈2 to account for unobserved regions, we 

compute the maximum cost matrix 𝐶max, using Equations 5.1 or 5.2 and Equation 5.3 as 

before, but using the third column of 𝑈bnd, which contains the maximum feature value of 

each boundary edge (lines 11 and 24). To get the final feature as a triangular fuzzy number, 

we first define the minimum feature value 𝑓min as the minimum of the first column of 𝑈bnd, 

which contains the minimum cost of each boundary edge (line 25). The mean feature value 

𝑓mean is the average of all values in the mean cost matrix 𝐶mean (line 26). The maximum 

feature value 𝑓max is the maximum of all values in 𝐶max (line 27). The final feature is 

constructed as the triangular fuzzy number Tri(𝑓min, 𝑓mean, 𝑓max) on line 28 and returned to 

the ELEV_FEATURE function in Algorithm 5.12 on line 29. This is eventually returned to 

the original COMPUTE_REGION_FEATURES function in Algorithm 5.10. 
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Algorithm 5.15 Combine Elevation Costs 

 

COMBINE_ELEVATION_COSTS(𝑈1, 𝑈2, 𝑈bnd, 𝑈𝑑1, 𝑈𝑑2, 𝑜1, 𝑜2, type, agg) 

1: (N1, K) ← size of 𝑈1 

2: (N2, K) ← size of 𝑈2 

3: I ← {(i, j) | 1 ≤ i ≤ N1  1 ≤ j ≤ N2} 

4: 𝐶mean, 𝐶max ← N1  N2 matrices initalized to ∞ 

 

/* Combine costs */ 

5: if agg = “max” 

6: 𝐶mean[i, j] ← mink{max(𝑈1[i, k], 𝑈bnd[k, 2], 𝑈2[ j, k])}  (i, j)  I 

7: if 𝑜1 = 0 

8: 𝑈1[i, k] ← [𝑈𝑑1[i, k] > 0]   (i, k)  {(i, k) | 1 ≤ i ≤ N1  1 ≤ k ≤ K} 

9: if 𝑜2 = 0 

10: 𝑈2[ j, k] ← [𝑈𝑑2[ j, k] > 0]  ( j, k)  {( j, k) | 1 ≤  j ≤ N2  1 ≤ k ≤ K} 

11: 𝐶max[i, j] ← mink{max(𝑈1[i, k], 𝑈bnd[k, 3], 𝑈2[ j, k])}  (i, j)  I 

12: else if agg = “sum” 

13: 𝐶mean[i, j] ← mink{𝑈
1[i, k] + 𝑈bnd[k, 2] + 𝑈2[ j, k]}  (i, j)  I 

14: if 𝑜1 = 0 

15: if type = “abs”  

16: 𝑈1 ← 𝑈𝑑1 

17: else if type = “up” or type = “down” 

18: 𝑈1[i, k] ← 𝑈𝑑1[i, k] / 2   (i, k)  {(i, k) | 1 ≤ i ≤ N1  1 ≤ k ≤ K} 

19: if 𝑜2 = 0 

20: if type = “abs”  

21: 𝑈2 ← 𝑈𝑑2 

22: else if type = “up” or type = “down” 

23: 𝑈2[ j, k] ← 𝑈𝑑2[ j, k] / 2   ( j, k)  {( j, k) | 1 ≤  j ≤ N2  1 ≤ k ≤ K} 

24: 𝐶max[i, j] ← mink{𝑈
1[i, k] + 𝑈bnd[k, 3] + 𝑈2[ j, k]}  (i, j)  I 

 

/* Construct feature */ 

25: 𝑓min ← mink{𝑈
bnd[k, 1]} 

26: 𝑓mean ← 
1

𝑁1𝑁2
∑ 𝐶mean[𝑖, 𝑗]𝑖,𝑗  

27: 𝑓max ← maxi, j{𝐶max[i, j]} 

28: F ← Tri(𝑓min, 𝑓mean, 𝑓max) 
 

29: return F 
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To demonstrate the computation of the elevation features for the example in Figure 

5.3, consider the maximum absolute elevation difference feature when region 1 is observed 

but region 2 is unobserved. The cost matrix 𝑈1 is implicitly given from the distance grid 

values from region 1 in the top row of Figure 5.7, 

𝑈1 =

[
 
 
 
 
 
 
 
 
 
 
0.3 0.3 0.3
0.3 0.3 0.3
0.5 0.5 0.5
0.1 0.2 0.2
0.1 0.2 0.2
0.2 0.2 0.2
0 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2
0 0.2 0.2
0.2 0 0 ]

 
 
 
 
 
 
 
 
 
 

. 

The boundary edge matrix 𝑈bnd comes from the boundary edge list Ebnd computed in 

Algorithm 5.11. Using Equation 4.71, we compute 

𝑈bnd = [
0 0.25 0.5
0 0.5 1
0 0.5 1

]. 

The region distance cost matrices 𝑈𝑑1 and 𝑈𝑑2 are the same as those in Figure 5.5. Because 

region 2 is unobserved, 𝑈2 is defined by Algorithm 5.14 using 𝑈𝑑2 and the “max-abs” 

configuration. The values are given by 𝔼[𝑌𝑛
abs], where 𝑛 comes from 𝑈𝑑2. Using the 

precomputed values shown partially in Table 5.1, the 𝑈2 matrix is computed as 
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𝑈2 =

[
 
 
 
 
 
 
 
 
 
 
 
0.594 0.467 0
0 0.467 0.594

0.333 0.333 0.543
0.467 0 0.467
0.543 0.333 0.333
0.467 0.467 0.594
0.543 0.333 0.543
0.594 0.467 0.467
0.594 0.594 0.659
0.543 0.543 0.631
0.594 0.467 0.594
0.594 0.594 0.659]

 
 
 
 
 
 
 
 
 
 
 

. 

The mean cost matrix 𝐶mean is computed on line 6 of Algorithm 5.15 as 

𝐶mean =

[
 
 
 
 
 
 
 
 
 
 
0.5 0.3 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.3 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59
0.5 0.25 0.33 0.47 0.5 0.47 0.5 0.5 0.59 0.54 0.5 0.59]

 
 
 
 
 
 
 
 
 
 

. 

The max cost matrix 𝐶max is computed on line 11 of Algorithm 5.15 after replacing the 𝑈2 

matrix with 1 for any value where 𝑈𝑑2 > 0, 

𝐶max =

[
 
 
 
 
 
 
 
 
 
 
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1
1 0.5 1 1 1 1 1 1 1 1 1 1]

 
 
 
 
 
 
 
 
 
 

. 
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From the boundary cost matrix, we compute 𝑓min = 0. The mean value of 𝐶mean is 

computed as 𝑓mean = 0.483, and the max value of 𝐶max is 𝑓max = 1. The fuzzy number cost 

for the maximum absolute elevation difference feature for this example is therefore 

computed as 𝑓ℎ_max = Tri(0, 0.483, 1). Other configurations can be computed in a similar 

way using the above algorithms and definitions. 

5.4 Approximate Fuzzy Region Features 

The region feature definitions presented in Sections 5.2 and 5.3 are sometimes too 

computationally intensive for use in real-time applications or when performing many 

Monte Carlo simulations. This can also be true in large environments or where regions 

share long borders, resulting in many region boundary edges. In these situations, it may be 

acceptable to approximate the region features using simpler approaches. Any problem with 

partial observability or region partitioning will be subject to some approximation in the 

feature definitions since there is uncertainty represented in the triangular fuzzy numbers. 

The quality of any feature approximation depends on the type of environment and region 

clustering parameters. The agent designer must decide what is an acceptable tradeoff for 

any given problem. 

By far, the costliest operations in the computation of region features are the grid 

distance searches used to define the region distance and elevation cost matrices. The 

GRID_DISTANCE function is called twice for each boundary edge regardless of 

observability, and for each elevation feature type that needs to be computed, the 

BELLMAN_FORD_GRID_DIST function is called once for each boundary edge in an 

observed region. The result of these functions is a region cost matrix that specifies the 
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feature cost between each grid cell in a region and one of the boundary edges. One way to 

significantly reduce the computation time is to eliminate the distance searches for each 

boundary edge and instead use a single approximation of the distance from each grid cell 

to the region boundary. This approach is similar to the method used to compute the terrain-

based region features using the 𝑉𝑑1 and 𝑉𝑑2 matrices defined by Equations 5.8 and 5.9. 

The distance to the region boundary can be approximated quickly by using the 

region centroids. The centroid of each region is computed using Algorithm 3.9 during the 

creation of the region graph in Algorithm 5.5. Consider two regions 𝑅1 and 𝑅2 with 

centroids (𝑐𝑥
1, 𝑐𝑦

1) and (𝑐𝑥
2, 𝑐𝑦

2). For every cell (𝑥, 𝑦) ∈ 𝑅1, the distance to the centroid of 

𝑅2 can be approximated as 

 𝐷𝑐
1(𝑥, 𝑦) = |𝑥 − 𝑐𝑥

2| + |𝑦 − 𝑐𝑦
2|. (5.54) 

Likewise, for every cell (𝑥, 𝑦) ∈ 𝑅2, the distance to the centroid of 𝑅1 is 

 𝐷𝑐
2(𝑥, 𝑦) = |𝑥 − 𝑐𝑥

1| + |𝑦 − 𝑐𝑦
1|. (5.55) 

This is simply the Manhattan distance from the centroids of each region. The minimum 

distance required to reach the region boundary from a cell (𝑥, 𝑦) ∈ 𝑅1 can be approximated 

as 

 𝑉𝑥𝑦
𝑑1 = 𝐷𝑐

1(𝑥, 𝑦) − min
(𝑢,𝑣)∈𝑅1

𝐷𝑐
1(𝑢, 𝑣). (5.56) 

Likewise, for a cell (𝑥, 𝑦) ∈ 𝑅2, 

 𝑉𝑥𝑦
𝑑2 = 𝐷𝑐

2(𝑥, 𝑦) − min
(𝑢,𝑣)∈𝑅2

𝐷𝑐
2(𝑢, 𝑣). (5.57) 

These matrices can be reshaped into single column vectors that include only the distances 

for the grid cells in each region. The distance cost matrix is then defined to approximate 
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the distance between all pairs of cells in the two regions. For a cell 𝑖 = (𝑥1, 𝑦1) ∈ 𝑅1 and 

a cell 𝑗 = (𝑥2, 𝑦2) ∈ 𝑅2, the distance cost is defined as 

 𝐶𝑖𝑗
𝑑 = 𝑉𝑥1𝑦1

𝑑1 + 𝑉𝑥2𝑦2
𝑑2 + 1, (5.58) 

where 1 is added to account for the cost of crossing the boundary edge. If there are no walls 

or obstacles to navigate around, then this is an accurate measure of the distance to a single 

point on the region boundary. It becomes less accurate when the regions have irregular 

shapes or when the shortest path between the regions is not a straight line. The region 

distance feature and terrain-based features can be computed using these substitutions for 

the 𝐶𝑑, 𝑉𝑑1, and 𝑉𝑑2 matrices. 

Figure 5.14 shows this approximation approach applied to the example in Figure 

5.3. The distances to each region centroid are shown in the top of each cell and the 

estimated distances to the region boundary are shown in the bottom of each cell. Figure 

5.15 shows the resulting cost matrices 𝑉𝑑1, 𝑉𝑑2, and 𝐶𝑑 for this example. Using the 

approximated 𝐶𝑑 matrix with Equations 5.4-5.7, we compute an approximate fuzzy region 

distance feature value of 𝑓𝑑(𝑒𝑅1𝑅2) = Tri(1, 5.38, 8). To compare, the original definition 

was 𝑓𝑑(𝑒𝑅1𝑅2) = Tri(1, 5.03, 9). A comparison for all features is shown at the end of this 

section in Table 5.2 and Table 5.3. 
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To get the approximations of the elevation difference features, we can use the 

COMBINE_ELEVATION_COSTS function in Algorithm 5.15 with some substitutions for the 

distance matrices. For the 𝑈𝑑1 and 𝑈𝑑2 matrices, we use 𝑉𝑑1 and 𝑉𝑑2 as computed above 

 

Figure 5.14  Approximation of the region distances using the region centroids for the example in Figure 5.3. 

The region centroids are marked with asterisks. The 𝐷𝑐
1 values (distance from the right centroid) are shown 

in the top right of each cell. The 𝐷𝑐
2 values (distance from the left centroid) are shown in the top left of each 

cell. The values in the bottom of each cell indicate the 𝑉𝑑1 and 𝑉𝑑2 values, which are the approximated 

distances to the region boundary. 

 

Figure 5.15  Approximation of the region distance cost matrices for the example in Figure 5.14. 
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using the region centroids. This implies only one boundary edge, so 𝑈bnd is computed as a 

13 matrix of the minimum, mean, and maximum feature values over all boundary edges 

between the two regions. The expeced aggregated elevation feature cost matrices 𝑈1 and 

𝑈2 are approximated using the 𝑉𝑑1 and 𝑉𝑑2 matrices and any observed elevation values. 

If a region is unobserved, the UNOBSERVED_ELEVATION_COST function from Algorithm 

5.14 is used with the appropriate substitution of 𝑉𝑑1 or 𝑉𝑑2 for the 𝑈𝑑 matrix. For observed 

regions, the most accurate cost measure requires a distance search with the 

BELLMAN_FORD_GRID_DIST function from Algorithm 5.13, either from one (good) or all 

(better) boundary edges. If just one boundary edge is used, it is prefereable to choose one 

near the center of the region boundary. If all boundary edges are used, then the original 

elevation feature definition from Algorithm 5.12 should be used. To avoid any iterative 

distance search when computational resources are extremely limited, the following 

procedure can be used to approximate the 𝑈1 and 𝑈2 matrices. 

First, let 𝑉𝑖
𝑑 be the approximated distance to the region boundary of grid cell 𝑖. 

Then, let 𝐸 be the set of all edges in a region where each edge 𝑒𝑖𝑗 ∈ 𝐸 represents the 

transition from grid cell 𝑖 to 𝑗, and let 𝑓(𝑒𝑖𝑗) be the elevation feature cost of that edge. 

Next, split the edge features into sets where set 𝑆𝑘 = {𝑓(𝑒𝑖𝑗)|𝑉𝑖
𝑑 < 𝑉𝑗

𝑑 = 𝑘}. Let 𝑈𝑖 be the 

entry in the expeced aggregated elevation feature cost matrix 𝑈1 or 𝑈2 for grid cell 𝑖. When 

using summation aggregation, define 

 𝑈𝑖 =∑{
1

|𝑆𝑘|
∑ 𝑓(𝑒)

𝑓(𝑒)∈𝑆𝑘

}

𝑉𝑖
𝑑

𝑘=1

, (5.59) 
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and when using maximization aggregation, define 

 𝑈𝑖 = max
𝑘=1,…,𝑉𝑖

𝑑
{ max
𝑓(𝑒)∈𝑆𝑘

𝑓(𝑒)}. (5.60) 

This assigns the same cost value to each grid cell using the feature values of each edge set 

up to the given distance value. For summation, the cost is the sum of the average feature 

values in each edge set, and the cost is the overall maximum feature value in each edge set 

for maximization. After defining 𝑈1 and 𝑈2, the elevation features can be computed using 

the COMBINE_ELEVATION_COSTS function in Algorithm 5.15. 

Figure 5.16 shows the edge sets used to approximate the elevation difference 

features for the example in Figure 5.3. Using these feature sets, we compute the expeced 

aggregated elevation feature cost matrices 𝑈1 and 𝑈2 for each feature type that needs to be 

computed. For example, to compute the 𝑓ℎ_sum feature using the absolute elevation 

difference and summation aggregation, we would assign the following values to each 

element 𝑈(𝑘)
1 , where 𝑉𝑖

𝑑 = 𝑘: 

• 𝑈(0)
1 = 0 

• 𝑈(1)
1 = 0.2 

• 𝑈(2)
1 = 0.2 +

1

2
(0.1 + 0.3) = 0.4 

• 𝑈(3)
1 = 0.4 +

1

5
(0.3 + 0.2 + 0.4 + 0.2 + 0) = 0.62 

• 𝑈(4)
1 = 0.62 +

1

5
(0.2 + 0.5 + 0.3 + 0.1 + 0.1) = 0.86 
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For elements 𝑈(𝑘)
2  in region 2, we compute 

• 𝑈(0)
2 = 0 

• 𝑈(1)
2 =

1

3
(0.1 + 0.5 + 0.1) = 0.233 

• 𝑈(2)
2 = 0.23 +

1

5
(0.2 + 0.6 + 0.2 + 0.2 + 0.1) = 0.493 

• 𝑈(3)
2 = 0.493 +

1

6
(0.3 + 0.2 + 0.4 + 0.2 + 0) = 0.627 

The resulting 𝑈1 and 𝑈2 matrices are used in Algorithm 5.15 to compute an overall feature 

value of 𝑓ℎ_sum = Tri(0.1, 1.46, 2.33). To compare, the original definition was 𝑓ℎ_sum =

Tri(0.1, 0.87, 2.1). Table 5.2 and Table 5.3 at the end of this section compare all the feature 

values using the original and approximate definitions for observed and unobserved cases. 

In the unobserved cases, we define the terrain type priors as 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) =

0.25. 

 

 

Figure 5.16  Elevation feature edge sets used to approximate the elevation difference features for the example 

in Figure 5.14. The numbers in the bottom corners of each cell show the approximate distances to the region 

boundary. Only edges that increase in distance are used. The elevation values are shown for each cell, and 

the feature sets are split based on the farthest distance of each edge. The sets 𝑆𝑘
1 and 𝑆𝑘

2 show the feature 

values from regions 1 and 2 respectively with max distance 𝑘. The actual feature values depend on which 

feature is being computed using one of the Equations 4.11-4.13. 

𝑆1
1 = 𝑓 0, 0.2

𝑆2
1 =

𝑓 0.2, 0.3

𝑓 0.2, 0.5
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All approximations result in some loss of accuracy, but these methods can be used 

in many cases to reduce computation time. This can lead to significant time savings that 

may allow for more analysis and planning to occur between updates. These approximations 

work best when the regions are generally convex and have relatively smooth elevation 

changes. When there are many sudden, unexpected elevation changes or when the region 

boundary does not lie between the region centroids, the approximations become less 

accurate. 

 

Table 5.2 Original and approximate region features with both regions either observed or unobserved. For 

unobserved cases, the terrain type priors are 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) = 0.25. 

 
 

Both Regions Observed   Both Regions Unobserved 

 
 

Original  Approximate   Original   Approximate 

 
 
𝑓min 𝑓mean 𝑓max  𝑓min 𝑓mean 𝑓max   𝑓min 𝑓mean 𝑓max  𝑓min 𝑓mean 𝑓max 

𝑓𝑑  1 5.03 9  1 5.38 8   1 5.03 9  1 5.38 8 

                  

𝑓𝑡(1)  0.5 2.5 4.5  0.5 3.05 4.5   0 3.70 9  0 4.03 8 

𝑓𝑡(2)  0.5 2.17 4.5  0.5 2.33 3.5   0 1.12 9  0 1.34 8 

                  

𝑓𝑡{1,1}  0 2 4  0 2.55 4   0 3.52 9  0 3.85 8 

𝑓𝑡{1,2}  1 1 1  1 1 1   0 0.38 1  0 0.38 1 

𝑓𝑡{2,2}  0 1.67 4  0 1.83 3   0 1.00 9  0 1.16 8 

                  

𝑓𝑡〈1,1〉  0 2 4  0 2.55 4   0 3.52 9  0 3.85 8 

𝑓𝑡〈1,2〉  1 1 1  1 1 1   0 0.19 1  0 0.19 1 

𝑓𝑡〈2,1〉  0 0 0  0 0 0   0 0.19 1  0 0.19 1 

𝑓𝑡〈2,2〉  0 1.67 4  0 1.83 3   0 1.00 9  0 1.16 8 

                  

𝑓ℎ_max  0.1 0.24 0.5  0.1 0.56 0.8   0 0.52 1  0 0.52 1 

𝑓ℎ↑_max  0 0.20 0.5  0 0.50 0.8   0 0.35 1  0 0.35 1 

𝑓ℎ↓_max  0 0.17 0.3  0 0.48 0.6   0 0.35 1  0 0.35 1 

                  

𝑓ℎ_sum  0.1 0.87 2.1  0.1 1.46 2.33   0 1.68 9  0 1.79 8 

𝑓ℎ↑_sum  0 0.44 1.2  0 0.78 1.31   0 0.84 5  0 0.90 5 

𝑓ℎ↓_sum  0 0.43 1.1  0 0.68 1.11   0 0.84 5  0 0.90 5 
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Table 5.3 Original and approximate region features with only one region observed. For unobserved cases, 

the terrain type priors are 𝑝(𝑡1) = 0.75 and 𝑝(𝑡2) = 0.25. 

 
 

Region 1 Observed; Region 2 Unobserved   Region 1 Unobserved; Region 2 Observed 

 
 

Original  Approximate   Original   Approximate 

 
 
𝑓min 𝑓mean 𝑓max  𝑓min 𝑓mean 𝑓max   𝑓min 𝑓mean 𝑓max  𝑓min 𝑓mean 𝑓max 

𝑓𝑑  1 5.03 9  1 5.38 8   1 5.03 9  1 5.38 8 

                  

𝑓𝑡(1)  0.5 4.40 9  0.5 4.80 8   0 1.88 4.5  0 2.28 4.5 

𝑓𝑡(2)  0 0.54 4.5  0 0.58 3.5   0.5 2.88 9  0.5 3.09 8 

                  

𝑓𝑡{1,1}  0 4.27 9  0 4.67 8   0 1.5 4  0 1.91 4 

𝑓𝑡{1,2}  0 0.25 1  0 0.25 1   0 0.75 1  0 0.75 1 

𝑓𝑡{2,2}  0 0.42 4  0 0.46 3   0 2.51 9  0 2.72 8 

                  

𝑓𝑡〈1,1〉  0 4.27 9  0 4.67 8   0 1.5 4  0 1.91 4 

𝑓𝑡〈1,2〉  0 0.25 1  0 0.25 1   0 0.75 1  0 0.75 1 

𝑓𝑡〈2,1〉  0 0 0  0 0 0   0 0 0  0 0 0 

𝑓𝑡〈2,2〉  0 0.42 4  0 0.46 3   0 2.51 9  0 2.72 8 

                  

𝑓ℎ_max  0 0.48 1  0 0.48 1   0 0.45 1  0 0.57 1 

𝑓ℎ↑_max  0 0.36 1  0 0.41 1   0 0.31 1  0 0.49 1 

𝑓ℎ↓_max  0 0.28 1  0 0.35 1   0 0.29 1  0 0.48 1 

                  

𝑓ℎ_sum  0 1.38 5.7  0 1.56 4.86   0 1.28 5.4  0 1.57 5.47 

𝑓ℎ↑_sum  0 0.70 3.2  0 0.71 3.12   0 0.65 3  0 0.90 3.19 

𝑓ℎ↓_sum  0 0.69 3  0 0.85 3.24   0 0.64 2.8  0 0.67 2.87 

 

5.5 Updating the Region Graph 

Up to this point, the region graph 𝐺𝑅 has been defined for static problems where 

the agent does not move. Section 5.1 gave the initial region boundaries and created the 

graph structure. Sections 5.2 and 5.3 defined the fuzzy feature values for each graph edge, 

and Section 5.4 provided a way to approximate these features quickly. These region 

boundaries and features are valid until the agent moves. When the agent does move, new 

parts of the environment may be discovered and the local region can change. These updates 
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need to be integrated into the existing region graph. Rather than recompute the entire region 

graph from scratch after each agent movement, we utilize the existing region graph and 

update only the parts of the graph that have changed, maintaining the existing graph 

structure and features where possible. This drastically improves the runtime efficiency of 

the algorithm by only changing portions of the region graph that have new information. 

Consider an existing mental map structure ℳ and a new observation 𝒪 provided 

by the environment server. Upon receiving the observation, the agent will update its current 

position and the mental map grid layers using Algorithm 4.4. The updated mental map is 

then passed to the UPDATE_MENTAL_MAP_REGIONS function in Algorithm 5.16 to update 

the regions and the region graph. This function begins on line 1 by computing a new local 

region from the agent's updated position using Algorithm 5.2. This is the same method 

used to initialize the local region at the start of the simulation. However, since the agent 

has just moved to a new location, the updated local region may have changed. 

An additional option given is by opt.lrMemory that dictates whether the new local 

region should replace or extend the existing local region in the mental map. If 

opt.lrMemory is true, then the local region will continue to grow as the agent explores the 

environment. This can be thought of as an agent that does not forget what it has learned 

about the feature values of the action graph and can help to reduce ocilatory behavior. 

Without this parameter setting, it becomes possible for the agent to wander back and forth 

between two grid cells when the unique region graphs computed from each location 

indicate that the best action is to move to the other cell. This will be explored further in 

Section 6.6. 



210 

 

 

 

 

Algorithm 5.16 Update Mental Map Regions 

 

UPDATE_MENTAL_MAP_REGIONS(ℳ, opt) 

 

/* Get the new local region */ 

1: LR ← GET_LOCAL_REGION(ℳ, opt) // Algorithm 5.2 

2: if opt.lrMemory 

3: LR[ℳ.localRegion = 1] ← 1 

 

/ * Determine the regions that need to be reclustered */  

4: Q ← GET_REGION_CLUSTERING_MASK(ℳ, LR) // Algorithm 5.17 

 

/* Create new region boundaries */ 

5: L  ← CLUSTER_MENTAL_MAP_REGIONS(ℳ, LR, Q, opt) // Algorithm 5.3 

 

/* Merge with existing regions */ 

6: L ← MERGE_REGION_LABELS(ℳ.𝐿, L, Q, LR) // Algorithm 5.18 

 

/* Update the region graph */ 

7: 𝐺𝑅 ← UPDATE_REGION_GRAPH(ℳ, L) // Algorithm 5.19 

 

/* Save the updated variables */ 

8: ℳ.L ← L 

9: ℳ.localRegion ← LR 

10: ℳ.𝐺𝑅 ← 𝐺𝑅 

 

11: return ℳ 
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 (a) (b) (c) 

   
 (d) (e) (f) 

   
 (g) (h) (i) 

Figure 5.17  Step-by-step example of determining new regions. (a) Old regions before agent moves. (b) New 

observation. (c) New local region. (d) Cells with new information. (e) Update mask before dilation. (f) 

Update mask after dilation. (g) Removing walls and the new local region. (h) Old regions that need to be 

reclustered. (i) New regions after clustering. 
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Figure 5.17 shows a step-by-step example of updating the region boundaries after 

an agent moves. This is a continuation of the example in Figure 5.2. Subfigures (a) through 

(c) show the definition of the new local region. (a) shows the old regions that were 

computed at the initial agent location. (b) shows the new observation after the agent moves 

one cell to the right. Grid cells that are no longer visible are darkened, whereas cells that 

have never been observed are solid gray. (c) shows the new local region after the agent has 

moved one grid cell to the right. The parameter opt.lrDist is set to 3, but notice that the 

agent still cannot observe beyond one cell into the forest region directly to the north. 

After determining the local region, the next step is to determine the set of cells that 

need to be reclustered. The GET_REGION_CLUSTERING_MASK function is called on line 4 

of Algorithm 5.16 and is defined in Algorithm 5.17. The function starts on lines 1-3 by 

defining a mask U that identifies the cells that have just been observed. This is given by 

the set ℳ.new, which was defined as part of Algorithm 4.4 and is shown in subfigure (d) 

of Figure 5.17. These cells will need to be integrated into their adjacent regions, which may 

affect where the region boundaries are drawn. Additionally, since the local region may 

have changed, cells that have just been added to the local region will need to have their old 

regions redrawn and cells that left the local region will need to be included in neighboring 

regions. Line 4 of Algorithm 5.17 adds cells from the current and previous local region to 

the mask U, which is shown in subfigure (e).  

To identify the cells from the neighboring regions, the mask is dilated on line 5, 

which is shown in subfigure (f). After dilation, line 6 removes from the mask any cells that 

are known walls or are part of the new local region. The remaining cells are shown in 

subfigure (g). These cells and their current regions will all need to be reclustered. Line 7 
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identifies K as the set of unique region labels in the updated mask. Finally, lines 8-10 

construct the mask Q that will be used for clustering the regions. This mask consists of all 

grid cells that are currently assigned one of the labels in K and are not part of the new local 

region. Subfigure (h) shows the region clustering mask Q for the example with the old 

region boundaries marked. The final regions obtained after re-clustering are shown in 

subfigure (i). 

 

 

Algorithm 5.17 Get the Region Clustering Mask 

 

GET_REGION_CLUSTERING_MASK(ℳ, LR) 

1: (n, m) ← ℳ.size 

 

/* Get a mask of the cells that need to be updated */ 

2: U ← n  m grid initalized to 0 

3: U [ℳ.new ] ← 1 

4: U [ℳ.localRegion  = 1  LR = 1] ← 1 

 

/* Dilate to include neighboring cells */ 

5: U' ← U  [0 1 0; 1 1 1; 0 1 0] 

 

/* Remove cells that are walls and cells that are part of the new local region */ 

6: U' [ℳ.𝑊 = 0  LR = 1] ← 0 

 

/* Get the labels of the regions that need to be reclustered */ 

7: K ← {k | k ∈ ℳ.𝐿[U' = 1]} 

 

/* Construct a mask of all cells in the identified regions */ 

8: Q ← n  m grid initalized to 0 

9: for each (i, j)  {(i, j) | ℳ.𝐿[i, j] ∈ K  LR[i, j] = 0} 

10: Q[i, j] ← 1 

 

11: return Q 
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Returning to Algorithm 5.16, we have now identified the local region LR and the 

region clustering mask Q. The next step is to cluster the grid cells within the clustering 

mask on line 5 using the CLUSTER_MENTAL_MAP_REGIONS function in Algorithm 5.3. As 

opposed to the first time this function was called during the creation of the initial region 

boundaries, the clustering mask Q now restricts where the new region labels are assigned 

outside of the local region. Only cells within the new local region and the clustering mask 

Q are assigned region labels greater than zero. These labels need to be merged with the 

existing region labels in ℳ.𝐿. This is accomplished by the MERGE_REGION_LABELS 

function on line 6, which is defined in Algorithm 5.18. 

 

 

Algorithm 5.18 Merge Region Labels 

 

MERGE_REGION_LABELS(U, L, Q, LR) 

 

/* Remove old region labels that have been replaced */ 

1: S ← {(i, j) | Q[i, j] = 1  LR[i, j] = 1} 

2: U[S] ← 0 

 

/* Merge the old and new region labels */ 

3: L ← UPDATE_REGION_MAP(L, U) // Algorithm 5.4 

 

/* Renumber regions */ 

4: K ← {k | ∃(i, j)(L[i, j] = k  k > 0)} 

5: L' ← L 

6: t ← 1 

7: for each k  K 

8: I ← {(i, j) | L[i, j] = k} 

9: L' [I ] ← t 

10: t ← t + 1 

 

11: return L' 
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The MERGE_REGION_LABELS function in Algorithm 5.18 takes a set of old region 

labels U, a set of new region labels L, a clustering mask Q, and the current local region LR. 

The first step in the algorithm is to eliminate old region labels that do not need to be 

included in the new label map. Line 1 identifies the cells that belong to either the clustering 

mask Q or the local region LR and line 2 sets these cells in U to zero. This allows us to use 

the UPDATE_REGION_MAP function from Algorithm 5.4 to combine the two sets of region 

labels (line 3). The combined region labels are likely not continuous, since some of the old 

regions were removed. Lines 4-10 renumber these regions so that each region is assigned 

a value between 1 and the total number of regions. 

Once the new regions have been defined, the region graph itself can be updated. 

Line 7 of Algorithm 5.16 calls the UPDATE_REGION_GRAPH function in Algorithm 5.19. 

This function provides a high-level overview of the region graph update. First, the graph 

vertices are reassigned on line 1 using Algorithm 5.20. Then the graph edges are updated 

on line 2 using Algorithm 5.21. These functions use the existing region graph from the 

mental map structure ℳ to avoid recomputing features that have not changed since the last 

update. Once the new graph has been defined, it is saved and returned on lines 3-7 as 𝐺𝑅. 
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The UPDATE_REGION_GRAPH_VERTICES function in Algorithm 5.20 uses the 

existing mental map structure ℳ and the new region label map L to construct a list of 

vertices V and a lookup table B that maps new region indices to old region indices. The 

function begins on line 1 by defining K as the number of regions in the new region map. 

Lines 2 and 3 initialize the lookup table B and the vertex list V with K elements. Then the 

algorithm loops on lines 4-16 for each region index k in K. Line 5 finds the grid cells in the 

new region map L that have index k and saves these as the set S. Line 6 saves S as the 

region cells of vertex V [k]. On line 7, we define T as the set of old region indices from 

ℳ.𝐿 that are included in the set S. We examine each index t in T on lines 8-12. Line 9 gets 

the set of cells from the old region map that have index t and saves these as the set U. If 

the sets S and U are identical (line 10), then we save the index t to B[k] (line 11) and copy 

the old vertex center from index t to the new vertex list at index k (line 12). The lookup 

 

Algorithm 5.19 Update Region Graph 

 

UPDATE_REGION_GRAPH(ℳ, L) 

 

/* Create a lookup table between old and new regions and get vertices */ 

1: B, V ← UPDATE_REGION_GRAPH_VERTICES(ℳ, L) // Algorithm 5.20 

 

/* Add edges for adjacent regions */ 

2: A, E ← UPDATE_REGION_GRAPH_EDGES(ℳ, L, B, V ) // Algorithm 5.21 

 

/* Save the graph structure */ 

3: 𝐺𝑅 ← empty graph structure 

4: 𝐺𝑅 . 𝑉 ← V 

5: 𝐺𝑅 . 𝐴 ← A 

6: 𝐺𝑅 . 𝐸 ← E 

 

7: return 𝐺𝑅 
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table B will contain the corresponding old region index for each new region index if there 

is a matching region; otherwise it will be zero. Line 13 checks if B[k] = 0, which indicates 

that there was no matching region. In this case, the region center needs to be recomputed 

using Algorithm 3.9. Lines 14 and 15 prepare a grid R for the GET_REGION_CENTERS 

function, which is called on line 16. The lookup table B and new vertex list V are returned 

on line 17. 

 

After creating the lookup table B and the new vertex list V, these variables are 

passed to the UPDATE_REGION_GRAPH_EDGES function in Algorithm 5.21 along with the 

current mental map structure ℳ and the new region label map L. This function also begins 

on line 1 by defining K as the number of regions in L. Line 2 initializes the adjacency 

 

Algorithm 5.20 Update Region Graph Vertices 

 

UPDATE_REGION_GRAPH_VERTICES(ℳ, L) 

1: K ← max(L) 

2: B ← K-dimensional vector initialized to 0 

3: V ← list of K uninitialized vertices 

4: for k in 1 to K  

5: S ← {(i, j) | L[i, j] = k}  // Get cells with this new label 

6: V [k].region ← S 

7: T ← {ℳ.𝐿[i, j] | (i, j)  S}  // Get all old labels assigned to these cells 

8: for each t  T 

9: U ← {(i, j) | ℳ.𝐿[i, j] = t} // Get cells with this old label 

10: if  S = U    // New and old regions are identical 

11: B[k] ← t 

12: V [k].center ← ℳ.𝐺𝑅 . 𝑉[t].center 

13: if B[k] = 0    // New region needs to be recomputed 

14: R ← n  m grid initalized to 0 

15: R[S] ← 1 

16: V [k].center ← GET_REGION_CENTERS(R) // Algorithm 3.9 

17: return B, V 

 



218 

matrix A as a K  K matrix set to all zeros and line 3 creates an empty edge list E. Line 4 

starts the edge index counter at zero and lines 5-19 loop over each region index k in K. For 

each index, lines 6 and 7 create a mask U of the grid cells in the region. Lines 8 and 9 get 

the neighboring grid cells using image dilation and store the neighboring region labels as 

the set N. Lines 10-19 loop over each neighboring region label n in N. An edge is created 

for each neighbor between the vertices assigned to region indices k and n. For each 

neighbor, the edge index i is incremented (line 11) and then stored in the adjacency matrix 

at A[k][n] (line 12). We then use the lookup table B, to check if both regions already exist 

in the region graph (line 13). If so, then line 14 gets the index of the existing edge using 

the old adjacency matrix ℳ.𝐺𝑅 . 𝐴 and line 15 saves the features in the new edge list E. If 

either region does not already exist in the old region graph, the features need to be 

recomputed. Lines 17 and 18 prepare the region map R used to compute the region features 

on line 19 using Algorithm 5.10. After evaluating all the neighbors for each region, the 

final adjacency matrix A and edge list E are returned on line 20. 

The UPDATE_REGION_GRAPH function in Algorithm 5.19 uses the vertex list 

computed by the UPDATE_REGION_GRAPH_VERTICES function and the adjacency matrix 

and edge list computed by the UPDATE_REGION_GRAPH_EDGES function to construct the 

new region graph 𝐺𝑅 . This is returned to the UPDATE_MENTAL_MAP_REGIONS function on 

line 7 of Algorithm 5.16. The updated region labels, local region, and region graph are all 

saved to the mental map structure ℳ on lines 8-10 of Algorithm 5.16 and the new mental 

map can then be used to plan future actions as will be discussed in the next chapter. 
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5.6 Summary 

This chapter defined how an agent can represent the contents of its mental map as 

a region graph. The region graph is a fuzzy weighted graph that represents the minimum, 

maximum, and average feature values that an agent could expect to encounter when 

moving between adjacent regions in the environment. The first step in creating the region 

graph is to define the region boundaries. We start with a local region around the agent that 

contains a copy of the action graph to ensure that the next immediate action chosen by the 

agent corresponds to an edge in the region graph. Observed resources are also placed in 

 

Algorithm 5.21 Update Region Graph Edges 

 

UPDATE_REGION_GRAPH_EDGES(ℳ, L, B, V ) 

1: K ← max(L) 

2: A ← K  K adjacency matrix initalized to 0 

3: E ← empty list of edge features 

4: i ← 0 

5: for k in 1 to K 

6: U ← n  m grid initalized to 0 

7: U [V [k].region] ← 1 

8: U' ← U  [0 1 0; 1 1 1; 0 1 0] // Dilate to get neighboring cells 

9: N ← {l | l ∈ L[U' = 1]  l ≠ 0  l ≠ k} 

10: for n in 1 to | N | 

11: i ← i + 1 

12: A[k][n] ← i 

13: if B[k] > 0  B[n] > 0 

14: t ← ℳ.𝐺𝑅 . 𝐴[B[k], B[n]] // Get index of existing edge 

15: E [i] ← ℳ.𝐺𝑅 . 𝐸[t]  // Save existing edge features 

16: else 

17: R ← U 

18: R[V [n].region] ← 2 

19: E [i] ← COMPUTE_REGION_FEATURES(ℳ, R) // Algorithm 5.10 

20: return A, E 
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single-cell regions so that each vertex in the region graph will contain no more than one 

resource. Observed terrain types and unobserved areas are clustered separately to make 

sure that each region has only one type of terrain. The region graph is then constructed with 

a vertex for each region and an edge connecting adjacent regions. 

To compute the feature values, we begin by calculating the shortest path distance 

between each pair of cells in two bordering regions. We presented an algorithm to compute 

the distance matrices based on the distances within a region to each grid cell on the region 

boundary. From these matrices, we can compute the distance and terrain-based features. 

For the elevation features, we adapted the algorithm for non-uniform edge weights and 

minimax paths. We derived an estimate of the elevation features for unobserved regions 

using the expected feature values at different distances from the region boundary. A 

method for approximating these features without computing the shortest path distances was 

also presented. 

Lastly, we looked at how the region graph is updated when the agent moves and 

discovers new information. The local region is redefined and regions that border newly 

observed grid cells are reclustered. Features between regions that have not changed are 

copied into the new graph and new features are computed for the remaining edges. The 

region graph provides the computational problem for the agent to solve each timestep in 

the form of a least-cost path problem. The next chapter addresses how an agent can solve 

these problems for a given set of objectives and decide a course of action. 
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6 LEAST-COST PATH PROBLEMS 

This chapter shows how a fuzzy weighted graph, such as the region graph computed 

in the previous chapter, can be used to solve least-cost path problems in gridded domains 

and presents a greedy agent algorithm for solving these problems within the CMM 

framework. We begin with a discussion on the issue of selection bias that can arise when 

computing shortest paths in grid worlds. Next, we introduce the multiobjective fuzzy least-

cost path problem and present a method to solve it using a pre-scalarized decomposition 

approach. This is then compared with an evolutionary method using MOEA/D. We show 

several experiments to demonstrate these methods and conclude with a description of a 

greedy algorithm that uses these techniques to solve generic problems in the CMM 

framework. 

6.1 Shortest Paths in Grid Worlds 

The most straightforward pathfinding problem is to determine the shortest path 

between two points in an environment. In the simplest case, where there are no obstacles 

and the agent is permitted to travel freely in Euclidean space, the shortest path is just a 

straight line. However, in grid-based environments, the agent can only move at right angles, 

similar to how one navigates the grid layout of most city blocks. This geometry is 

sometimes called a taxicab geometry, and the associated distance metric can be referred to 

as the taxicab metric, city block distance, or Manhattan distance. Formally, the distance 
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𝑑1(𝑐𝑝, 𝑐𝑞) between two grid cells 𝑐𝑝 = 𝑐(𝑝𝑖, 𝑝𝑗) and 𝑐𝑞 = 𝑐(𝑞𝑖, 𝑞𝑗) is defined as the 𝐿1 

norm, 

 𝑑1(𝑐𝑝, 𝑐𝑞) = |𝑝𝑖 − 𝑞𝑖| + |𝑝𝑗 − 𝑞𝑗|. (6.1) 

When two grid cells are not in the same row or column, there may be many paths between 

the two cells that all have the same shortest distance. When the transition costs are all 

identical, any path that has the minimum required number of horizontal and vertical steps 

is a shortest path. If the two grid cells are far apart and diagonally separated, then the 

number of equidistant paths can grow to be very large. 

If all the shortest paths between two grid cells are otherwise equivalent1, they 

should each have an equal likelihood of being selected by the agent. However, selection 

bias can occur if the agent decides each step sequentially by randomly breaking ties 

between cells with the same remaining distance to the goal. To see this, consider the 3x4 

grid world shown in Figure 6.1 (a). There are 10 unique shortest paths between the grid 

cells (1,1) and (3,4). The 𝐿1 distance from cell (3,4) is shown in subfigure (b). To select a 

path, the agent starts at (1,1) and picks one of the adjacent cells with the smallest value. 

Since there are two cells with a distance of 4, the agent picks one uniformly at random. 

This process is repeated until the agent reaches the goal. Following this approach, the agent 

has a (0.5)2 = 0.25 chance of passing through cell (3,1) and a (0.5)3 = 0.125 chance of 

passing through cell (1,4) even though both cells only have a single path out of the 10 

possible paths passing through them. 

 
1 Even when all transitions have the same cost, a perceptive agent might notice that some paths have fewer 

turns or some other desirable criteria. In the CMM framework, these preferences would be modeled as 

additional objectives in addition to shortest distance, leading to a multiobjective problem in which the paths 

are not considered identical. 
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This issue is known as the selection bias (or label bias) problem, and is commonly 

addressed in the domain of conditional random fields (Lafferty, Mccallum, and Pereira 

2001). A decision made early in the sequence can adversely affect the likelihood that 

certain options will be available later. For example, once the agent reaches the cell (3,1), 

 

Figure 6.1  Example of the selection bias problem for choosing paths in grid-world domains. (a) There are 

10 unique shortest paths between grid cells (1,1) and (3,4). (b) The 𝐿1 distance is computed from (3,4). An 

agent at (1,1) picks a (biased) shortest path by repeatedly picking an adjacent cell with the smallest remaining 

distance, breaking ties uniformly at random. (c) The number of unique shortest paths leading to (3,4) is used 

to compute the weighted probabilities for each cell transition. (d) The normalized transition probabilities. 
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there is only a single way to reach the goal in three steps, yet this path will be chosen 25% 

of the time instead of 10%, which would better reflect the true likelihood of this path being 

chosen out of the 10 total paths. 

To resolve this issue, the options at each decision point can be weighted by the total 

number of unique paths from each grid cell to the destination as shown in Figure 6.1 (c). 

These values are calculated at the same time as the grid distance values for each cell using 

the NORMALIZED_GRID_DISTANCE function in Algorithm 6.1. This function is similar to 

the GRID_DISTANCE function in Algorithm 3.6, but includes an additional output N that 

aggregates the number of unique paths from each grid cell to the target cell (i, j). This 

matrix is initialized with zeros on line 3 and will be filled in along with the distance map 

D as cells progressively farther from the target cell are examined. The algorithm sets the 

distance counter d to 0 on line 4 and creates an open set on line 5 containing only the cell 

(i, j). The main loop (lines 7-20) is evaluated for each distance d up to a maximum of dmax 

while there are still cells in the open set. For each distance, a new frontier set is initialized 

(line 8) and the current N matrix is copied as N' (line 9). Each cell (u, v) in the open set is 

then examined (lines 10-18) and assigned the current distance value (line 11). The frontier 

set is updated with all unprocessed neighboring cells (lines 12-14) and the number of 

unique paths is calculated. For the first iteration, N [u, v] is set to 1 (lines 15 and 16), and 

for later iterations, N [u, v] is set to the sum of the N' values of all neighboring cells (line 

18). Since only the neighbors that were added in the previous iteration will have non-zero 

values in N' at the time of calculation, their sum represents the total number of unique paths 

to the target cell. It should be noted that this number can grow large very quickly if the grid 



225 

has large open spaces. For example, applying Algorithm 6.1 on a 100x100 open grid yields 

2.3x1058 unique paths between the opposite corners! 

 

Having computed the number of paths through each grid cell, the agent can use 

these values to normalize the probability of selecting the next location. Rather than giving 

equal weight to each option, the probability of transitioning from cell 𝑢 to cell 𝑣 is 

computed as 𝑁(𝑣) 𝑁(𝑢)⁄ , where 𝑁(𝑢) is the number of paths passing through cell 𝑢 and 

𝑁(𝑣) is the number of paths passing through cell 𝑣 as computed by Algorithm 6.1. These 

transition probabilities are shown in Figure 6.1 (d). 

 

Algorithm 6.1 Normalized Grid Distance 

 

NORMALIZED_GRID_DISTANCE(W, i, j, dmax) 

1: (n, m) ← size of W 

2: D ← n  m matrix initalized to ∞ 

3: N ← n  m matrix initalized to 0 

4: d ← 0 

5: open ← {(i, j)} 

6: closed ← ∅ 

7: while | open| > 0  d ≤ dmax 

8: frontier ← ∅ 

9: N' ← N 

10: for each (u, v)  open 

11: D [u, v] ← d 

12: closed ← closed ∪ (u, v)  

13: B ← {(u−1, v), (u+1, v), (u, v−1), (u, v+1)} 

14: frontier ← frontier ∪ {(u', v') | (u', v')  B  (u', v')  closed  W [u', v'] = 1} 

15: if d = 0 

16: N [u, v] ← 1 

17: else 

18: N [u, v] ← ∑ 𝑁′[𝑢′, 𝑣′](𝑢′,𝑣′)∈𝐵  

19: open ← frontier 

20: d ← d + 1 

21: return D, N 
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 To demonstrate the effect of selection bias, consider the example in Figure 6.2. 

Each of the subfigures shows 20 of the shortest paths sampled from the upper-left corner 

to the lower-right corner of an open grid world. Subfigure (a) shows the paths produced by 

using a uniform transition probability to select each subsequent grid cell. Notice how the 

paths generally follow a 45° angle to the lower-right until reaching the bottom edge and 

then follow the same path to the goal. With this selection strategy, the direction of the path 

is clearly apparent as having originated in the upper-left and terminating in the lower-right. 

It is very unlikely for a path to approach the lower-right corner from above with this 

method. This contrasts with the paths sampled in subfigure (b), where the transition 

probabilities are normalized using Algorithm 6.1. In this approach, the paths tend to lie on 

the true diagonal between the two corners and the direction is symmetric. 

Uniform Transition Probability Normalized Transition Probability 

  
(a) (b) 

  

Dijkstra’s Algorithm on Original Graph Dijkstra’s Algorithm with Noise 

  
(c) (d) 

  
Figure 6.2  Examples of shortest paths chosen between opposite corners of an open grid world. (a) Paths are 

sampled by starting in the upper-left and selecting each transition step with uniform probability. (b) Paths 

are sampled by starting in the upper-left and selecting each transition step according to the normalized 

transition probabilities. (c) Dijkstra’s shortest path algorithm with a deterministic tie-breaking rule. (d) 

Dijkstra’s shortest path algorithm on a graph with a small amount of uniform random noise applied to the 

edge weights. 
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Clearly the normalized transition probabilities lead to a better sampling of the true 

set of shortest paths without selection bias. In practice, however, we may wish to use an 

existing implementation of Dijkstra’s algorithm to compute the shortest path between two 

points1. This is especially true when the environment is represented as a graph rather than 

a grid. Most implementations of Dijkstra’s algorithm will return only a single path from a 

vertex to the source, if a path is returned at all. (Some implementations return only the 

shortest path distances from which a path can be constructed by backtracking.) Figure 6.2 

(c) shows the single path returned by the Matlab implementation of Dijkstra’s algorithm 

when computing the shortest path between the opposite corners of an open world grid. The 

path is constructed using a deterministic rule based on the lexicographic ordering of the 

graph vertices and is not very representative of the distribution of all shortest paths. The 

returned path can be improved by adding a small amount of uniform random noise2 to each 

edge weight before computing the shortest path distances. This makes it highly unlikely 

for any two paths to have the same distance, resulting in a single shortest path returned by 

the algorithm. A sample of these paths are shown in Figure 6.2 (d), where each path is 

found using different noise values. Notice that the path distribution closely matches the 

ideal distribution in Figure 6.2 (b). This approach of adding a small amount of random 

noise when computing shortest paths is used throughout our experiments with the CMM 

framework to produce more natural looking paths when path length is otherwise equivalent. 

 
1 Efficient implementations of Dijkstra’s algorithm will utilize a priority queue data structure such as a 

Fibonacci heap and can make other domain-specific optimizations. 

2 The noise values should be much smaller than the default edge weights, otherwise the shortest path 

algorithm may return a longer path than the true shortest path distance. Unless otherwise stated, we sample 

noise values from a uniform random distribution on the interval (0, 10-14). 
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6.2 The Multiobjective Fuzzy Least-Cost Path Problem 

The fundamental component of any pathfinding algorithm in the CMM framework 

is to find a least-cost path between two locations. This can be modeled as a multiobjective 

fuzzy least-cost path problem (MO-FLCPP) between two vertices in the region graph 

defined in Chapter 5. The region graph 𝐺𝑅 is a fuzzy weighted graph in which vertices 

represent regions in the environment and edges between adjacent regions are weighted with 

multiple fuzzy feature values indicating the minimum, maximum, and average costs 

associated with traversing each edge. The set 𝑃(𝑠, 𝑡) includes all paths from vertex 𝑠 to 

vertex 𝑡 through the graph. The goal of the MO-FLCPP is to find a path 𝑝 ∈ 𝑃(𝑠, 𝑡) that 

minimizes the aggregated cost vector 𝑨(𝑝) = (𝐴1(𝑝),… , 𝐴𝑚(𝑝)), where each component 

𝐴𝑖(𝑝) represents the aggregated cost of feature 𝑖 along path 𝑝. The agent specifies an 

indicator vector 𝜸 = (𝛾1, … , 𝛾𝑚), where 𝛾𝑖 = 0 if feature 𝑖 should be aggregated by 

summation and 𝛾𝑖 = 1 if feature 𝑖 should be aggregated using maximization. Recall from 

Section 2.4 that the aggregated value of feature 𝑖 is defined as 

 𝐴𝑖(𝑝) = {
∑ 𝐹𝑖(𝑒𝑗)

𝑛

𝑗=1
, 𝛾𝑖 = 0

max′
𝑗=1,…,𝑛

𝐹𝑖(𝑒𝑗) , 𝛾𝑖 = 1

 
 
 
,

 (6.2) 

where 𝐹𝑖(𝑒𝑗) is a triangular fuzzy number Tri(𝑎𝑖𝑗, 𝑏𝑖𝑗 , 𝑐𝑖𝑗) that represents the cost of feature 

𝑖 for edge 𝑗 in the path 𝑝 = (𝑒1, … , 𝑒𝑛). The max′ operator approximates the maximum of 

a set of triangular fuzzy numbers as a triangular fuzzy number and is defined in Equation 

2.11.  We can find a path that solves the MO-FLCPP using multiobjective optimization 

techniques. 
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6.2.1 Multiobjective Optimization for the MO-FLCPP 

In the jargon of multiobjective optimization from Section 2.5, the MO-FLCPP is 

defined as 

 
minimize 𝑨(𝑝) = (𝐴1(𝑝), … , 𝐴𝑚(𝑝))

subject to 𝑝 ∈ 𝑃(𝑠, 𝑡),
  

where 𝑚 ≥ 2. If 𝑚 = 1, then there is only a single objective and the least-cost path can be 

found using a standard implementation of Dijkstra's algorithm. When there are multiple 

conflicting objectives, the minimum value of one objective cannot be obtained without 

some tradeoff in the other objectives. Nevertheless, some solutions (paths) are clearly 

better than others. We say that a path 𝑝 dominates path 𝑝′ (𝑝 ≺ 𝑝′) if and only if 

𝐴𝑖(𝑝) ≤ 𝐴𝑖(𝑝
′) for all 𝑖 = 1, … ,𝑚 and there exists a 𝑗 ∈ {1, … ,𝑚} such that 

𝐴𝑗(𝑝) < 𝐴𝑗(𝑝
′). A path that dominates another path is at least as good as the other path in 

all objectives and is better in at least one objective. A path that is not dominated by any 

other known solution is said to be Pareto optimal. Formally, the Pareto optimal set 𝑃𝑆 is 

defined as 

 𝑃𝑆 = {𝑝 ∈ 𝑃(𝑠, 𝑡) | {𝑝′ ∈ 𝑃(𝑠, 𝑡) | 𝑝′ ≺ 𝑝} = ∅}. (6.3) 

The multiobjective cost vectors of the paths in 𝑃𝑆 define the Pareto front, 

 𝑃𝐹 = {𝑨(𝑝) | 𝑝 ∈ 𝑃𝑆}. (6.4) 

The native units of each objective may be incomparable, making it difficult to assess 

the relative value of each solution. To make the comparison between solutions meaningful, 

the original cost vectors are normalized into a unit hypercube. This ensures that each 

objective is treated equally. For instance, if the distance cost is measured in meters and the 

slope cost is measured as a percentage of some reference angle, the magnitudes of these 
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two dimensions should be normalized before being compared. To normalize the vectors, 

the minimum value of each objective is defined as zero and the maximum value is defined 

by the reference point 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗ ). Determining the optimal value of 𝒛∗ is not a trivial 

task and the value that is chosen can greatly affect the resulting decision. Ideally, 𝒛∗ should 

be the nadir vector of the Pareto front, in which each 𝑧𝑖
∗ is defined as 

 𝑧𝑖
∗ = max

𝑝∈𝑃𝑆′
𝑐𝑖𝑝, (6.5) 

where 𝐴𝑖(𝑝) = Tri(𝑎𝑖𝑝, 𝑏𝑖𝑝, 𝑐𝑖𝑝). Here, 𝑃𝑆′ is the current best approximation of the Pareto 

optimal set since the true set may be unknown. The normalized cost vectors are then 

computed as 𝑨′(𝑝) = (𝐴1
′ (𝑝),… , 𝐴𝑚

′ (𝑝)), where 

 𝐴𝑖
′(𝑝) = Tri (

𝑎𝑖𝑝

𝑧𝑖
∗ ,
𝑏𝑖𝑝

𝑧𝑖
∗ ,
𝑐𝑖𝑝

𝑧𝑖
∗ ) (6.6) 

for each 𝑖 = 1,… ,𝑚. 

6.2.2 Scalarization 

All solutions that are members of the Pareto optimal set would be rational choices 

for the decision-maker. However, the agent must ultimately choose a single path to follow. 

Typically, this decision is made using a scalarization function that reduces the 

multiobjective optimization problem into a single objective optimization problem. Given a 

multidimensional fuzzy cost vector 𝑿 = (𝑋1, … , 𝑋𝑚) where each 𝑋𝑖 is a fuzzy number, and 

an objective weight vector 𝝀 = (𝜆1, … , 𝜆𝑚) where 𝜆𝑖 ≥ 0 and ∑ 𝜆𝑖𝑖 = 1 for 𝑖 = 1,… ,𝑚, 

the scalarization function 𝑔(𝑿|𝝀) reduces the cost vector 𝑿 to a single fuzzy number. This 
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value can then be used to rank and compare various alternatives, with smaller values being 

preferred. The scalarized MO-FLCPP is defined as 

 
minimize 𝑔(𝑨′(𝑝)|𝝀)

subject to 𝑝 ∈ 𝑃(𝑠, 𝑡).
  

The path 𝑝 that minimizes the scalarized value of the normalized aggregated cost vector 

𝑨′(𝑝) is chosen as the preferred solution. The objective weight vector 𝝀 represents the 

relative importance of each objective to the decision-maker, with more important 

objectives receiving higher weights. We consider three different scalarization functions: 

weighted sum, Tchebycheff, and ordered weighted average. 

One of the most common scalarization methods is the weighted sum, which 

maintains a linear relationship between the decision-maker’s preferences and the scalarized 

cost value. This is defined as 

 𝑔ws(𝑿|𝝀) =∑𝜆𝑖𝑋𝑖

𝑚

𝑖=1

, (6.7) 

where the multiplication of a scalar 𝜆 and a triangular fuzzy number Tri(𝑎, 𝑏, 𝑐) is defined 

as Tri(𝜆𝑎, 𝜆𝑏, 𝜆𝑐). If the shape of the Pareto front is convex, then the weighted sum can be 

a good choice because every Pareto optimal solution can be made to have the lowest 

scalarized cost by changing the objective weight vector. However, if the shape of the Pareto 

front is non-convex, then there will always be some Pareto optimal solution that can never 

be chosen. For more details, refer to Section 2.5.5. 

A simple alternative to the weighted sum approach is the Tchebycheff method, which 

can be parameterized with different objective weight vectors to make any Pareto optimal 
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solution have the lowest scalarized cost. The Tchebycheff scalarization function is defined 

as 

 𝑔te(𝑿|𝝀) = max′ 
𝑖=1,…,𝑚

𝜆𝑖𝑋𝑖. (6.8) 

This method evaluates the quality of a solution as the least satisfied weighted objective 

value. A single high cost for one objective can penalize an otherwise good solution. 

The last scalarization approach we consider is based on the ordered weighted average 

operator (OWA) proposed by Yager (Yager 1988). This method requires the definition of 

an additional scalar weight vector 𝜽 = (𝜃1, … , 𝜃𝑚) where 𝜃𝑖 ≥ 0 and ∑ 𝜃𝑖𝑖 = 1 for 

𝑖 = 1, … ,𝑚. Each 𝜃𝑖 represents the weighted contribution of the 𝑖th largest scaled vector 

component. First, the cost vector 𝑿 is scaled by the objective weight vector 𝜆 to give the 

scaled cost vector 𝒀 = (𝑌1, … , 𝑌𝑚), where 𝑌𝑖 = 𝜆𝑖𝑋𝑖 = Tri(𝑎𝑖
𝑌, 𝑏𝑖

𝑌, 𝑐𝑖
𝑌) for 𝑖 = 1, … ,𝑚. 

Next, we independently sort all the 𝑎𝑖
𝑌, 𝑏𝑖

𝑌, and 𝑐𝑖
𝑌 values and define the lists 

(𝑎(1)
𝑌 , … , 𝑎(𝑚)

𝑌 ), (𝑏(1)
𝑌 , … , 𝑏(𝑚)

𝑌 ), and (𝑐(1)
𝑌 , … , 𝑐(𝑚)

𝑌 ), where 𝑎(𝑖)
𝑌 , 𝑏(𝑖)

𝑌 , and 𝑐(𝑖)
𝑌 , are the 𝑖th 

largest values in their respective lists. Once this is done, the OWA scalarization function 

is defined as 

 𝑔OWA(𝑿|𝝀, 𝜽) =∑𝜃𝑖Tri(𝑎(𝑖)
𝑌 , 𝑏(𝑖)

𝑌 , 𝑐(𝑖)
𝑌 )

𝑚

𝑖=1

. (6.9) 

The OWA scalarization method can be made to represent many different functions by 

changing the weight vector 𝜽. For instance, the OWA operator behaves as the weighted 

sum when 𝜃𝑖 =
1

𝑚
 for all 𝑖 = 1,… ,𝑚. (Although the ordering of solutions in this case is 

the same as the weighted sum, the actual values may be different due to the additional 

scaling.) The Tchebycheff method is equivalent to setting 𝜃1 = 1 and 𝜃𝑖 = 0 for all 𝑖 ≠ 1. 
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We can implement a form of bounded rationality (Simon 1955) for the decision-maker by 

defining a weight vector of the form 𝜃𝑖 =
1

𝑞
 for 𝑖 = 1,… , 𝑞 and 𝜃𝑖 = 0 for all 𝑖 > 𝑞. This 

represents the case where the decision-maker does not have the necessary computational 

resources to consider all objectives simultaneously and bases the decision on only the 𝑞 

least satisfied objective values. Typically, 𝜽 is fixed for a given decision-maker, so for 

notational conciseness, we omit the 𝜽 parameter of the OWA scalarization function when 

referring to a general scalarization function. 

We use one of these scalarization functions 𝑔(𝑿|𝝀) to reduce the fuzzy cost vector 𝑿, 

representing a possible solution to the MO-FLCPP, to a single fuzzy value 𝑆(𝑿). To 

compare different solutions, the decision-maker uses the weighted centroid approach 

(Section 2.4.2) to defuzzify each alternative and ranks the resulting crisp values, favoring 

solutions with smaller values. The weighted centroid method allows the decision-maker to 

specify a degree of optimism or pessimism, given as the parameter 𝜉 ∈ [0, 1]. When 𝜉 = 0, 

the decision-maker is extremely optimistic and uses the smallest possible value, whereas 

when 𝜉 = 1, the decision-maker is extremely pessimistic and uses the largest possible 

value. A value of 𝜉 = 0.5 provides a balanced approach using the centroid of the fuzzy 

number. The crisp defuzzified value is computed as 𝐶(𝑆(𝑿)|𝜉) using Equation 2.14. 

6.2.3 Example 

To demonstrate the MO-FLCPP, consider the example graph in Figure 6.3. This 

graph has two features assigned to each edge representing distance and slope. The features 

come from different unrelated domains and are represented as linguistic variables defined 
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by the triangular fuzzy numbers in Figure 6.4. One can imagine that this graph represents 

an environment with a tall hill at vertex 3 and various ways of navigating over or around 

the hill to get from vertex 1 to vertex 5. The multiobjective cost function consists of a 

distance feature and a slope feature, where the decision-maker seeks to find a path with the 

shortest total distance and the smallest maximum slope. In this case, the distance feature is 

aggregated using summation, whereas the slope feature uses maximization. There are five 

unique paths between vertices 1 and 5 in the example graph. The aggregated feature values 

of the paths are given in Table 6.1 and are plotted in Figure 6.5. All paths except the yellow 

path (1-3-4-5) are members of the Pareto optimal set. The yellow path is dominated by 

both the red (1-3-5) and green (1-2-3-5) paths. 

 

 

Figure 6.3  An example fuzzy weighted graph with two features per edge, distance and slope, represented as 

triangular fuzzy numbers given in Figure 6.4. There are five unique paths between the vertices 1 and 5 

colored red, yellow, green, blue, and purple. 
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Table 6.1 Aggregated feature values of the example graph in Figure 6.3 

Path Color Total Distance Max Slope 

1-3-5 Red Tri(1, 3, 10) Tri(0.6, 1, 1) 

1-3-4-5 Yellow Tri(6, 16, 22) Tri(0.6, 1, 1) 

1-2-3-5 Green Tri(5, 14, 21) Tri(0.3, 0.6, 0.9) 

1-2-3-4-5 Blue Tri(10, 27, 33) Tri(0.1, 0.2, 0.4) 

1-2-4-5 Purple Tri(11, 21, 25) Tri(0, 0, 0.3) 

 

 

Figure 6.4  Triangular fuzzy numbers used to represent the distance and slope features for the example graph 

in Figure 6.3. 
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Since there are only five paths to consider, the Pareto optimal set can be determined 

directly and the reference point is evaluated as the nadir vector 𝒛∗ = (33, 1), as these are 

the largest possible values of the aggregated distance and slope features. Figure 6.6 shows 

each of the normalized cost vectors after applying weighted centroid defuzzification to 

each feature. (We typically wait until after scalarizing the cost vectors to apply 

defuzzification, but this example helps show the process.) The black dotted lines show the 

location of the Pareto front for different values of 𝜉. From this we can see that the yellow 

path is always dominated, whereas the blue path (1-2-3-4-5) is dominated by the purple 

path (1-2-4-5) when 𝜉 = 0.5 and 𝜉 = 1. The blue path is only Pareto optimal when the 

decision-maker is very optimistic (i.e. expects the true cost of each path segment to be 

small). 

 

Figure 6.5  Plots of the two-dimensional aggregated fuzzy cost vectors for each path in the example graph 

from Figure 6.3. 
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To demonstrate the scalarization process, consider three different decision-makers that 

must choose a solution for this example problem. The first uses the weighted sum 

scalarization method with 𝝀 = (0.5, 0.5) and 𝜉 = 0.5. Applying 𝑔ws to each of the 

aggregated fuzzy path cost vectors in Table 6.1 gives the fuzzy values shown in Figure 

6.7 (a). The weighted centroid of each path is shown with a circle and a vertical line. The 

decision-maker chooses the path with the smallest defuzzified cost, which is the purple 

path. A different decision-maker using the Tchebycheff method with 𝝀 = (0.25, 0.75) and 

𝜉 = 0 computes the values shown in Figure 6.7 (b). This is one of the few conditions where 

the blue path is evaluated as the lowest cost option. The last decision-maker shown in 

Figure 6.7 (c) uses the OWA scalarization method with 𝝀 = (0.9, 0.1),  𝜽 = (0.7, 0.3) and 

 

Figure 6.6  The aggregated fuzzy cost vectors from Figure 6.5 are normalized using the nadir vector and 

defuzzified using weighted centroid defuzzification. The black dotted lines show the Pareto fronts for 

different values of 𝜉. 
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𝜉 = 1. This represents extreme pessimism with a strong bias towards minimizing the 

distance feature, which results in giving the red path the lowest cost. 

 

6.3 Decomposition of the MO-FLCPP 

In the previous section, we assumed that the candidate paths to be evaluated have 

already been provided or are straightforward to determine, but in larger problems such as 

those generated by the CMM framework, this may not be the case. If a decision-maker can 

express their preferences a priori, then we can scalarize the MO-FLCPP into a single-

objective shortest path problem (SPP) that can be solved directly using Dijkstra’s algorithm 

(Dijkstra 1959). However, this may not find the same ideal solution that would be obtained 

 

(a) 

 

(b) 

 

(c) 

Figure 6.7  Examples of different scalarization methods applied to the aggregated fuzzy cost vectors given 

in Table 6.1. Each method represents a decision-maker with different preferences. The scalarized fuzzy 

numbers shown in the plots are defuzzified (shown as a circle and vertical line) and the decision-maker 

chooses the path with the lowest defuzzified cost. 
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if the same preferences were to be applied to all possible paths using the multiobjective 

approach presented in the previous section. Nevertheless, it can still be useful to decompose 

a multiobjective problem into many simpler single-objective problems that are easier to 

solve. These can be used to construct initial candidate solutions and may be sufficient for 

some applications. 

6.3.1 Edge Normalization 

Each subproblem in the decomposition is defined by a unique objective weight 

vector 𝝀. In addition, the following parameters are required to specify how the edge costs 

of the SPP should be computed: 

• 𝑔: a scalarization function (either 𝑔ws, 𝑔te, or 𝑔OWA); 

• 𝒛∗: a reference point for normalizing the edge features; 

• 𝜸: an aggregation indicator vector; 

• 𝜉: a defuzzification parameter; 

• 𝜽: an OWA weight vector if using 𝑔OWA. 

Except for the reference point 𝒛∗, these parameters are defined by the decision-maker 

a priori. If 𝒛∗ is not clear from the problem context, it will need to be estimated from the 

cost vectors of the graph edges. 

Given a MO-FLCPP defined between two vertices 𝑠 and 𝑡 in a graph 𝐺, the feasible 

region of the decision space is defined as all paths in the set 𝑃(𝑠, 𝑡). The cost vectors 𝑨(𝑝) 

are normalized after aggregating the individual edge costs 𝑭(𝑒) for each edge 𝑒 in a path 

𝑝 ∈ 𝑃(𝑠, 𝑡). However, to decompose the problem as a SPP, each edge must be scalarized 

to a single value before aggregating. Since the nadir vector of the Pareto front is unknown 
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beforehand, we use the maximum values of each objective feature over all edges to define 

𝒛∗. Each value of 𝑧𝑖
∗ is then defined as 

 𝑧𝑖
∗ = max

𝑒∈𝐸(𝐺)
𝑐𝑖𝑒 , (6.10) 

where the value of feature 𝑖 for edge 𝑒 is given as 𝐹𝑖(𝑒) = Tri(𝑎𝑖𝑒, 𝑏𝑖𝑒 , 𝑐𝑖𝑒). The normalized 

edge costs are computed as 𝑭′(𝑒) = (𝐹1
′(𝑒),… , 𝐹𝑚

′ (𝑒)), where 

 𝐹𝑖
′(𝑒) = Tri (

𝑎𝑖𝑒
𝑧𝑖
∗ ,
𝑏𝑖𝑒
𝑧𝑖
∗ ,
𝑐𝑖𝑒
𝑧𝑖
∗) (6.11) 

for each 𝑖 = 1,… ,𝑚. Note that this method can cause summation objectives (𝛾𝑖 = 0) to 

become greater than one when aggregated over an entire path. This is not a great concern 

for the decomposed problem, since length of a path in the SPP just needs to be proportional 

to the aggregated cost of that path in the MO-FLCPP. Still, the difference between the 

value of 𝒛∗ that is found by Equation 6.10 and the value found by Equation 6.5, which was 

based on the objective values in the Pareto front, can change which path is found as the 

optimal solution. For the example problem in Section 6.2.3, 𝒛∗ would be computed as 

(10, 1) using max-edge normalization, as opposed to the nadir vector of (33, 1).  In 

general, the reference point should be defined as the nadir vector of the Pareto front when 

possible and the max-edge normalization should only be used to create initial solutions. 

6.3.2 Exponential Scaling 

When scalarization is performed after the path costs have already been aggregated, the 

scalarization function can ignore which aggregation operator was used for each objective. 

However, the SPP only uses total path length as the objective to minimize. To decompose 

the problem, the edge costs need to be scalarized so that maximization objectives (𝛾𝑖 = 1) 
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can be summed. While there is no perfect encoding that can achieve this, a sufficiently 

good approximation can be found using exponential scaling. 

Consider a crisp single-objective minimax path problem where the goal is to find a 

path 𝑝 that minimizes the maximum value of each edge 𝑒 ∈ 𝑝. The total cost of the path is 

defined as 

 𝐴(𝑝) = max
𝑒∈𝑝

𝐹′(𝑒), (6.12) 

where 𝐹′(𝑒) ∈ [0, 1] is the normalized crisp scalar cost of edge 𝑒. The purpose of 

exponential scaling is to adjust the individual edge costs so that only the largest (maximum) 

values have any significant contribution when the costs are summed over the length of a 

path. Each edge cost 𝑥 is scaled exponentially as 

 ℎ(𝑥) =
exp(− 𝑙𝑜𝑔(𝜀) (𝑥 − 1)) − 𝜀

1 − 𝜀
, (6.13) 

where 𝜀 is a small positive number (≪ 1) that defines the amount of scaling. The effect of 

this scaling is shown in Figure 6.8, where smaller values of 𝑥 are pushed closer to zero and 

larger values are distributed across a wider output range. If the edge costs are fuzzy values, 

then exponential scaling is applied using the extension principle, 

 ℎ(Tri(𝑎, 𝑏, 𝑐)) = Tri(ℎ(𝑎), ℎ(𝑏), ℎ(𝑐)). (6.14) 

The resulting edge costs can then be defuzzified to crisp values using the weighted centroid 

method and a defuzzification parameter 𝜉. A shortest path algorithm (i.e. Dijkstra) will find 

a path that minimizes the sum of all ℎ(𝑥) values, which is an approximation of the minimax 

path. Smaller values of the scaling parameter 𝜀 give better approximations, but care should 
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be taken to avoid numerical underflow. We set 𝜀 = 10−12 in our experiments with the 

CMM framework. 

 

 

When there are multiple objectives, the scalarization function is applied to each edge 

before running a shortest path algorithm. If both summation and maximization aggregation 

operators are used, the objective weight vector 𝝀 needs to be adjusted to account for the 

exponential scaling of the maximized edge costs. Let 𝜂 = ∑ 𝜆𝑖(1 − 𝛾𝑖)
𝑚
𝑖=1  be the fraction 

of the original objective weight vector that represents summation objectives. Instead of 

scaling the cost values associated with these objectives, we scale the objective weights 

 

Figure 6.8  Exponential scaling of a normalized edge cost 𝑥. The resulting ℎ(𝑥) values can be used to find 

an approximate minimax path via summation. 
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using the same function given in Equation 6.13. A new scaled objective weight vector 

𝝀′ = (𝜆1
′ , … , 𝜆𝑚

′ ) is defined where 

 𝜆𝑖
′ =

{
 
 

 
 ℎ(𝜂)𝜆𝑖

𝜂
, 𝛾𝑖 = 0

(1 − ℎ(𝜂))𝜆𝑖
1 − 𝜂

, 𝛾𝑖 = 1 .

 (6.15) 

This effectively redistributes the objective weights so that summation objectives are given 

exponentially smaller weights to compensate for the exponentially smaller maximization 

cost values. 

6.3.3 Pre-scalarized Decomposition 

Once the edge features of a fuzzy weighted graph have been scalarized and 

defuzzified into non-negative crisp values, any shortest path algorithm can be used to find 

an approximate solution to the MO-FLCPP. Algorithm 6.2 gives an overview of the pre-

scalarized decomposition approach for solving the MO-FLCPP as a shortest path problem. 
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The pre-scalarized decomposition method can be used to find solutions to the example 

problem from Section 6.2.3 with various decision-maker preferences. Table 6.2 shows the 

best paths found using this approach and compares them to those found using the post-

aggregation scalarization method over all paths as in Section 6.2. The columns labeled 𝑝D 

indicate which path has the lowest cost after pre-scalarizing each edge. This method uses 

max-edge normalization to compute 𝒛∗ using Equation 6.10. The columns labeled 𝑝M and 

 

Algorithm 6.2 Pre-scalarized Decomposition of the MO-FLCPP 

 

Input: 

• MO-FLCPP 

• 𝑔: a scalarization function (either 𝑔ws, 𝑔te, or 𝑔OWA) 

• 𝝀: an objective weight vector 

• 𝜸: an aggregation indicator vector 

• 𝜉: a defuzzification parameter 

• 𝜽: an OWA weight vector if using 𝑔OWA 

 

Step 1) Get reference point: Compute 𝒛∗ from Equation 6.10 

 

Step 2) Compute edge costs: 

For each edge 𝑒 ∈ 𝐸(𝐺), do 

Step 2.1) Normalize: Get 𝑭′(𝑒) from Equation 6.11. 

Step 2.2) Apply exponential scaling: 

Step 2.2.1) For all 𝑖 where 𝛾𝑖 = 1, set 𝐹𝑖
′(𝑒) = ℎ(𝐹𝑖

′(𝑒)) 

Step 2.2.2) Get 𝝀′ from Equation 6.15. 

Step 2.3) Scalarize: Compute 𝑆(𝑒) = 𝑔(𝑭′(𝑒)|𝝀′). 

Step 2.4) Defuzzify: Set the edge cost as 𝐶(𝑆(𝑒)|𝜉). 

 

Step 3) Find the shortest path: Use Dijkstra’s algorithm to find the shortest path 

𝑝 ∈ 𝑃(𝑠, 𝑡) using the computed edge costs. 

 

Output: A path 𝑝 that approximates the ideal path that minimizes the scalarized 

MO-FLCPP objective function, 𝑔(𝑨′(𝑝)|𝝀). 
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𝑝∗ show the paths that minimize the post-aggregation scalarized cost, where 𝑝M uses max-

edge normalization to compute 𝒛∗ and 𝑝∗ uses the known nadir vector. Comparing 𝑝D with 

𝑝M shows how well exponential scaling applied to each edge can approximate the true cost 

of a path, whereas the difference between 𝑝M and 𝑝∗ shows the effect of choosing the 

appropriate reference point. If we assume that 𝑝∗ represents the ideal path chosen with the 

best possible information (knowledge of the true Pareto front), then it is clear that the pre-

scalarized decomposition approach does not always find the ideal path. We also note that 

the weighted sum scalarization approach only finds the red and purple paths in the ideal 

case (the endpoints of the Pareto front), whereas the Tchebycheff method is able to find 

other non-dominated paths. 
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Table 6.2 Best paths found in the example graph in Figure 6.3 using various methods. 𝑝D is the path found 

using pre-scalarized decomposition. 𝑝M and 𝑝∗ are the best paths found using post-aggregation 

scalarization, where 𝑝M uses max-edge normalization and 𝑝∗ uses the nadir vector to normalize. Paths are 

notated with the first letter of their color. 

   Weighted Sum  Tchebycheff 

𝜉 𝝀   𝑝D 𝑝M 𝑝∗  𝑝D 𝑝M 𝑝∗ 

0 (0, 1)  P P P  P P P 

 (0.25, 0.75)  B P P  B G B 

 (0.5, 0.5)  G R P  G G G 

 (0.75, 0.25)  R R R  R R G 

 (1, 0)  R R R  R R R 

          
0.5 (0, 1)  P P P  P P P 

 (0.25, 0.75)  P P P  P G P 

 (0.5, 0.5)  P R P  P R P 

 (0.75, 0.25)  P R R  P R R 

 (1, 0)  R R R  R R R 

          
1 (0, 1)  P P P  P P P 

 (0.25, 0.75)  P P P  P P P 

 (0.5, 0.5)  P R P  P R P 

 (0.75, 0.25)  P R R  P R R 

 (1, 0)  R R R  R R R 

 

By scalarizing the multidimensional edge costs before aggregating all the costs in a 

path, the edges are evaluated in isolation, independent of their contributions to complete 

paths. If only the summation aggregation method is used and the scalarization function is 

the weighted sum, then the problem is linear and the cost of a full path can be represented 

exactly as the sum of the scalarized edge costs. However, in the non-linear case, some 

approximation is required. While the pre-scalarized decomposition approach can provide 

some initial candidate solution for a given objective weight vector, this solution can often 

be improved by conducting a more thorough search using the MOEA discussed in the next 

section. 
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6.4 MOEA/D for the MO-FLCPP 

Each decomposition of the MO-FLCPP can only find a single solution based on the 

predefined parameters of the scalarization method. To gain a better understanding of the 

tradeoffs between the various objectives, we can search for an approximation of the Pareto 

optimal set of solutions. Multiobjective evolutionary algorithms (MOEAs) are well-suited 

for this task, since they maintain a population of solutions that can approximate the true 

Pareto optimal set. Rather than search for a single optimal solution, MOEAs use diversity 

preserving techniques to keep the population distributed along the Pareto front. In the 

CMM framework, we use decomposition as the primary way of maintaining population 

diversity using the MOEA/D algorithm (Qingfu Zhang and Hui Li 2007). This approach 

uses a set of many different objective weight vectors to create several single-objective 

problems that are optimized simultaneously. 

The MOEA/D algorithm for the MO-FLCPP takes a set of 𝑁 weight vectors 

𝝀1, … , 𝝀𝑁 and uses the pre-scalarized decomposition approach of the previous section to 

construct solutions to each subproblem. Each generation of MOEA/D for the MO-FLCPP 

maintains the following: 

• a population of 𝑁 solution paths 𝑝1, … , 𝑝𝑁, where 𝑝𝑖 ∈ 𝑃(𝑠, 𝑡) is the current 

solution to the 𝑖𝑡ℎ subproblem; 

• the aggregated cost values 𝑨(𝑝1),… , 𝑨(𝑝𝑁) of each path in the population; 

• an external population (𝐸𝑃) that stores the most recent set of nondominated 

solutions; 
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• the reference point 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗ ) defined by Equation 6.5 where 𝐸𝑃 is used as 

the approximation of the Pareto optimal set 𝑃𝑆′. 

An overview of the procedure is given in Algorithm 6.3. 

 

 

 

Algorithm 6.3 MOEA/D for the MO-FLCPP 

 

Input: 

• MO-FLCPP 

• a stopping criterion 

• 𝑁: the number of subproblems considered 

• 𝝀1, … , 𝝀𝑁: 𝑚-dimensional objective weight vectors 

• 𝑇: the size of each weight vector neighborhood 

• 𝑔: a scalarization function (either 𝑔ws, 𝑔te, or 𝑔OWA) 

• 𝜸: an aggregation indicator vector 

• 𝜉: a defuzzification parameter 

• 𝜽: an OWA weight vector if using 𝑔OWA 

Output: 𝐸𝑃 

Step 1) Initialization: 

Step 1.1) Compute the Manhattan distances (L1 norm) between all pairs of objective 

weight vectors and determine each vector’s 𝑇 closest neighbors. For each 𝑖 = 1,… ,𝑁, 

set 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇}, where 𝝀𝑖1 , … , 𝝀𝑖𝑇 are the 𝑇 closest weight vectors to 𝝀𝑖, self-

inclusive. 

Step 1.2) Create the initial population of solutions 𝑝1, … , 𝑝𝑁 using the decomposition 

method presented in Section 6.3. The reference point 𝒛∗ is computed using Equation 6.10 

and each path 𝑝𝑖 for 𝑖 = 1,… ,𝑁 is a solution to the scalarized SPP defined by the weight 

vector 𝝀𝑖. 

Step 1.3) Define the initial external population 𝐸𝑃 as all nondominated paths in 

𝑝1, … , 𝑝𝑁. 

Step 1.4) Update the reference point 𝒛∗ using Equation 6.5 where 𝐸𝑃 is used as the 

approximation of the Pareto optimal set 𝑃𝑆′. 
 

(continued on next page) 
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The first step in MOEA/D is to construct the initial population of solutions. We 

begin by defining a set 𝝀1, … , 𝝀𝑁 of objective weight vectors. For problems with only a 

small number of objectives (𝑚 ≤ 3), it is straightforward to produce a set of evenly spaced 

 

(continued from previous page) 

Step 2) Update: 

For 𝑖 = 1, … , 𝑁, do 

Step 2.1) Crossover: Randomly select two indices 𝑘 and 𝑙 from 𝐵(𝑖). Perform crossover 

on the paths 𝑝𝑘 and 𝑝𝑙 to produce a new path 𝑝′. 

Step 2.2) Mutation: Randomly select a vertex 𝑣 from the path 𝑝′ and replace it with a 

valid substitute vertex 𝑣′. 

Step 2.3) Improve: Remove any loops from path 𝑝′. 

Step 2.4) Evaluate: Compute the aggregated cost 𝑨(𝑝′). 

Step 2.5) Normalize: Use Equation 6.6 to compute 𝑨′(𝑝′) with 𝒛∗. 

Step 2.6) Compare: 

For each neighboring weight index 𝑗 ∈ 𝐵(𝑖), do 

Step 2.6.1) Get the normalized cost vector 𝑨′(𝑝𝑗) using 𝒛∗ 

Step 2.6.2) Scalarize the cost vectors: 

𝑆𝑗(𝑝′) =  𝑔(𝑨′(𝑝′)|𝝀𝑗) and 𝑆𝑗(𝑝𝑗) =  𝑔(𝑨′(𝑝𝑗)|𝝀𝑗) 

Step 2.6.3) Defuzzify: 

 𝑓′ = 𝐶(𝑆𝑗(𝑝′)|𝜉) and 𝑓𝑗 = 𝐶(𝑆𝑗(𝑝𝑗)|𝜉) 

Step 2.6.4) If 𝑓′ ≤ 𝑓𝑗, then 

set 𝑝𝑗 = 𝑝′ and 𝑨(𝑝𝑗) = 𝑨(𝑝′). 

Step 2.7) Update external population: 

Step 2.7.1) Remove all paths from 𝐸𝑃 that 𝑝′ dominates. 

Step 2.7.2) Add 𝑝′ to 𝐸𝑃 if no paths in 𝐸𝑃 dominate 𝑝′. 

Step 2.7.3) Update the reference point 𝒛∗. 

Step 3) Stopping criteria: If the stopping criteria has been satisfied, then stop and output 

𝐸𝑃. Otherwise repeat Step 2. 
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vectors. However, as the number of objectives increases, it becomes increasingly desirable 

to limit the total number of vectors to some value 𝑁. For many-objective problems 

(MaOPs) where 𝑚 > 3, we can uniformly sample 𝑁 weight vectors from the unit simplex 

(Smith and Tromble 2004). It may be desirable to combine this approach with Mitchell’s 

best-candidate sampling algorithm (Mitchell 1991) to ensure that the resulting vectors are 

well-distributed. When using random weight vectors, we often include the weight vectors 

at the corners of the unit simplex (i.e. all 𝜆𝑖 values set to zero except one) to help find the 

extrema points along the Pareto front. Each weight vector defines a different decomposition 

of the MOP as a single-objective problem. 

In the initialization step, we first determine the neighborhood of each weight vector 

using the Manhattan distance metric. While the Euclidean distance can be used if there are 

only a few objectives, the Manhattan distance has better performance in high dimensional 

space (Aggarwal, Hinneburg, and Keim 2001). For each weight vector 𝝀𝑖, we define 𝐵(𝑖) 

as the indices of the 𝑇 closest neighbors, including 𝝀𝑖, so that 𝑖 ∈ 𝐵(𝑖). 

The initial population is constructed by decomposing the MO-FLCPP into 𝑁 

subproblems corresponding to the 𝑁 weight vectors and solving each scalarized SPP. The 

initial external population is determined from the nondominated paths and the reference 

point is updated to reflect the range of the Pareto front. 

In each update step, we cycle over each weight vector index 𝑖 and construct a new 

child solution 𝑝′ from two of the neighbors in 𝐵(𝑖). Crossover on two paths 𝑝𝑘 and 𝑝𝑙 can 

be implemented by first selecting a vertex 𝑣 that is common to both paths and is neither 

the starting vertex 𝑠 nor the ending vertex 𝑡. If no such vertex exists, 𝑝′ is set to either 𝑝𝑘 
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or 𝑝𝑙 randomly. Otherwise, 𝑝′ is defined as (𝑠, 𝑝1
𝑘, 𝑣, 𝑝2

𝑙 , 𝑡) where 𝑝1
𝑘 is the first part of 𝑝𝑘 

from 𝑠 to 𝑣 and 𝑝2
𝑙  is the second part of 𝑝𝑙 from 𝑣 to 𝑡. Mutation can be applied to paths 

with at least one vertex 𝑣 ∉ {𝑠, 𝑡}. We select one of these vertices randomly and define the 

previous vertex as 𝑣−1 and the following vertex as 𝑣+1. We then identify all vertices 𝑣′ 

that could replace 𝑣 for which there exists an edge (𝑣−1, 𝑣
′) and (𝑣′, 𝑣+1). We pick one of 

these vertices randomly and set 𝑣 = 𝑣′ (It may be the same vertex.) Figure 6.9 shows an 

example of path crossover and mutation. 

 

 

 (a) (b) (c) 

Figure 6.9  Example of crossover and mutation on paths. (a) There are two paths between vertices 1 and 11, 

𝑝𝑘 (red) and 𝑝𝑙 (blue). (b) Crossover between 𝑝𝑘 and 𝑝𝑙 occurs at vertex 6 and results in a new path 𝑝′ 

(yellow). (c) Mutation on 𝑝′ changes vertex 4 to vertex 3.  
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After constructing a child path using crossover and mutation, we remove any loops 

in the path and compute the normalized cost 𝑨′(𝑝′) using the current value of 𝒛∗. This cost 

vector is compared with the current best normalized solution cost 𝑨′(𝑝𝑗) for each 

neighboring solution 𝑗 ∈ 𝐵(𝑖). If the scalarized and defuzzified value of the new path is 

less than that of the current best path for index 𝑗 when using weight vector 𝝀𝑗, then the new 

path is a better solution than the current one for index 𝑗. We replace any neighboring 

solutions that are outperformed with the new path 𝑝′. 

Once the new path has been compared with all neighboring solutions, we update 

the external population. Any paths in 𝐸𝑃 that are dominated by 𝑝′ are removed, and if no 

path in 𝐸𝑃 dominates 𝑝′, it is added to the set. 

Finally, after generating new solutions for each weight vector, we check to see if 

the stopping criteria has been met. If a maximum number of iterations has been reached or 

there is no clear improvement, then the algorithm stops and 𝐸𝑃 is returned. The decision-

maker can evaluate the quality of 𝐸𝑃 directly, or choose the solution that minimizes some 

predefined preferred scalarization method. 

6.5 Experiments 

To evaluate the MOEA/D algorithm for the MO-FLCPP, we create several different 

test scenarios using the CMM framework. First, we consider problems with only two 

objectives since they are easier to interpret and visualize. We consider different region 

clustering approaches and scalarization methods, finding a set of Pareto optimal solutions 

for each configuration in a binary terrain environment. We then investigate both summation 

and maximization elevation features in a hilly environment, and show a pair of examples 
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using the terrain transition features. Finally, we show some of the challenges of assessing 

the results of problems with many objectives. We conclude these experiments with a series 

of tests designed to show improvement by the MOEA/D algorithm over the pre-scalarized 

decomposition approach. 

6.5.1 Two Objective Shortest Paths in Binary Terrain Environments 

The first scenario we consider is a two objective shortest path problem in a flat 

environment with two terrain types. The two features to minimize are the terrain distance 

features 𝑓𝑡(1) and 𝑓𝑡(2). Both features are aggregated over the solution paths using 

summation. Figure 6.10 shows the solutions found by MOEA/D using Algorithm 6.3 with 

the weighted sum scalarization method. A different region clustering method is used in 

each of the three subfigures. For each problem instance, 20 initial reference weight vectors 

are uniformly sampled, including the “one-hot” vectors (1, 0) and (0, 1). The algorithm 

proceeds for 100 iterations before returning the external population containing the Pareto 

optimal solutions.  
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Subfigure (a) shows the results found when no region clustering is used. (This can 

be obtained by setting opt.lrMethod = “all” in Algorithm 5.2.) Since the environment is 

fully observable in this case, there is no uncertainty and the solution costs are crisp values. 

The weighted sum scalarization method finds the extrema Pareto optimal solutions that 

minimize each of the objectives. The red path stays in the forest and the blue path stays in 

the meadow terrain as much as possible. In this scenario, there is no solution that only stays 

in one terrain type, so each solution travels some amount through both terrain types. As 

discussed in Section 6.1, the edge costs are modified by a very small random value (on the 

   

   
 (a) (b) (c) 

Figure 6.10  Shortest paths found by the MOEA/D algorithm for the MO-FLCPP in a binary terrain 

environment using the weighted sum scalarization method to minimize 𝑓𝑡(1) and 𝑓𝑡(2). (a) No region 

partitioning. (b) Region cluster size = 3. (c) Region cluster size = 10. 
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order of 10-14) to mitigate the selection bias problem and select a single path out of the 

many equivalent cost solutions. 

Subfigure (b) shows the results found using a region clustering size of 3, set with 

opt.regionSize in Algorithm 5.3. There are several nondominated paths that are found, 

drawn with colors ranging from red to blue. As with the previous subfigure, paths that favor 

the forest terrain are drawn in red and paths that favor the meadow are drawn in blue, with 

several compromise paths drawn in purple. Paths are drawn through the environment 

between the centers of each region, so there may be some regions that appear to be crossed 

that are not actually part of the path. The fuzzy cost of each solution in the objective space 

is shown in a plot below the environment figure. The triangular fuzzy numbers of the two 

cost values form a box, with the minimum value marked as a circle, the maximum value 

marked as a square, and the peak (mean value) marked as a triangle. Recall that only one 

of these points needs to be nondominated among the same type of points (min, mean, or 

max) for the entire solution to be considered nondominated. These objective space plots 

are analogous to a top-down view of the example in Figure 6.5. 

Subfigure (c) shows the results found when the region cluster size is set to 10. This 

results in larger regions and an overall smaller search space. Only three nondominated 

solutions are found, but they provide a reasonable summary of the paths found using the 

smaller region size. Note that we use these examples only to demonstrate the differences 

between the various path planning options. To follow one of these paths, the agent would 

need to define a preference weight vector and select the path that minimizes the scalarized 

cost. A local region would also need to be defined. In subfigures (b) and (c), it is not clear 
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in which direction the agent should move to follow one of the paths. Using a local region 

ensures that the next immediate step in the path is one that the agent can actually take. 

Figure 6.11 shows the same scenario setup solved using Algorithm 6.3 with the 

Tchebycheff scalarization method. As expected from the discussion in Section 2.5.5, this 

method returns many more solutions along the Pareto front. In subfigure (a), all the paths 

have the same total crisp length since there is no region partitioning, and nearly every 

possible combination of forest and meadow terrain is represented. Subfigures (b) and (c) 

have additional paths compared to Figure 6.10, but they generally follow the same route. 

Most differences arise from moving between the two terrain types at different locations. 

 

   

   
 (a) (b) (c) 

Figure 6.11  Shortest paths found by the MOEA/D algorithm for the MO-FLCPP in a binary terrain 

environment using the Tchebycheff scalarization method to minimize 𝑓𝑡(1) and 𝑓𝑡(2). (a) No region 

partitioning. (b) Region cluster size = 3. (c) Region cluster size = 10. 
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As a balance between the weighted sum (WS) and Tchebycheff (TE) scalarization 

methods, we consider the same problem scenario using an ordered weighted average 

(OWA) operator. In the two objective case, the weighted sum and Tchebycheff methods 

are equivalent to OWA weight vectors of 𝜽𝑊𝑆 = (0.5, 0.5) and 𝜽𝑇𝐸 = (1, 0) respectively. 

We consider a hybrid of these two weight vectors and set 𝜽 = (0.67, 0.33), giving twice 

as much weight to the least satisfied objective as the most satisfied one. Figure 6.12 shows 

the resulting paths found using Algorithm 6.3. The number of solutions for the first two 

configurations is greater than the WS method, but less than the TE method, and the 

solutions for the last configuration is the same as the WS method. This shows that the OWA 

scalarization method does act as a hybrid operator with this parameterization and finds a 

balance of solutions between those found by the weighted sum and Tchebycheff methods. 



258 

 

6.5.2 Two Objective Least-Cost Paths Using Elevation 

The second scenario we consider is a two objective least-cost path problem in a 

hilly environment with only one terrain type. The two features to minimize are the total 

distance 𝑓𝑑 and the maximum absolute value of the elevation change 𝑓ℎ_max. Figure 6.13 

shows the solutions found in an example environment by MOEA/D using Algorithm 6.3 

with the OWA scalarization method with 𝜽 = (0.67, 0.33). The red path shows a route 

that minimizes the maximum slope in the shortest distance possible. The blue path shows 

   

   
 (a) (b) (c) 

Figure 6.12  Shortest paths found by the MOEA/D algorithm for the MO-FLCPP in a binary terrain 

environment using the ordered weighted average (OWA) scalarization method with weight vector 

𝜽 = (0.67, 0.33) to minimize 𝑓𝑡(1) and 𝑓𝑡(2). (a) No region partitioning. (b) Region cluster size = 3. (c) 

Region cluster size = 10. 
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a route that prioritizes a gentle slope over distance and contains switchbacks to minimize 

the elevation change. The purple path shows a route that is a compromise between these 

two extremes. 

 

Figure 6.14 shows a scenario with the same objectives, but with multiple goal 

locations. The agent is placed at a middle elevation and the goals are placed at minimum 

and maximum extrema locations. This can be implemented in the CMM framework as a 

TSP-type problem in which the agent only needs to collect one resource. In subfigure (a), 

each of the four resources are selected by different paths, with bluer paths favoring slope 

over distance and redder paths favoring distance over slope. Subfigure (b) shows the same 

scenario with a region size of 3. The solutions are similar to those found without region 

clustering, but the path costs in objective space show much greater uncertainty with lots of 

   

 (a) (b) 

Figure 6.13  Least-cost paths found by the MOEA/D algorithm for the MO-FLCPP in a hilly environment 

using the ordered weighted average (OWA) scalarization method with weight vector 𝜽 = (0.67, 0.33) to 

minimize 𝑓𝑑 and 𝑓ℎ_max. (a) Pareto optimal paths found from the starting agent location to the goal. (b) 

Solution costs plotted in objective space. 
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overlap between the minimum and maximum values of each Pareto optimal solution. 

Subfigure (c) uses a region size of 10, which simplifies the resulting region graph and 

results in a summary of fewer solutions. However, the difference between solutions is less 

clear as the amount of uncertainty has increased. 

 

In Figure 6.15, we consider an example that minimizes different pairs of elevation 

features. In subfigure (a), the maximum uphill and downhill elevation features are used. 

There are a total of four Pareto optimal solutions found by MOEA/D for this example. The 

red paths prioritize minimizing the uphill slope and find routes that mainly go downhill, 

   

   
 (a) (b) (c) 

Figure 6.14  Least-cost paths to the nearest goal found by the MOEA/D algorithm for the MO-FLCPP in a 

hilly environment using the ordered weighted average (OWA) scalarization method with weight vector 

𝜽 = (0.67, 0.33) to minimize 𝑓𝑑 and 𝑓ℎ_max. (a) No region partitioning. (b) Region cluster size = 3. (c) 

Region cluster size = 10. 
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whereas the blue paths prioritize minimizing the downhill slope and find routes that mainly 

go uphill. In subfigure (b), the total uphill and downhill elevation features are used. Here, 

any path that has the same starting and ending point and goes either entirely uphill or 

downhill will have the same feature value. Because of this, it is possible to have many 

unique paths that all evaluate to the same point in objective space. We keep only one 

representative path from any set of paths with the same feature value. This is accomplished 

by rounding feature values to a very fine grid (on the order of 10-12) when computing 

dominance to avoid small errors in numerical precision. The result is that only two Pareto 

optimal paths are found for this example when using the uphill and downhill summation 

elevation features, one going up and the other down. In subfigure (c), we use the maximum 

and total absolute elevation difference features. This results in solutions that either 

minimize the slope or the total elevation change. The red path in this example shows a 

longer downhill route with a gentle slope, and the blue and purple paths show shorter uphill 

routes that have steeper slopes. Some of the routes are found using several different 

elevation feature objectives, suggesting that an agent does not need to use all of these 

features simultaneously. 
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6.5.3 Shortest Paths Using Terrain Transition Features 

The terrain transition features offer a way for the agent to indicate additional 

specific preferences for finding paths through multiple types of terrain. Using these features 

quickly increases the number of objectives and can make it difficult to visualize the entire 

Pareto optimal set of solutions. To demonstrate the effect of both the symmetric and 

directional terrain transition features, Figure 6.16 shows two example scenarios that are 

solved using specific agent preferences. The preferences are encoded by the objective 

   

   
 (a) (b) (c) 

Figure 6.15  Least-cost paths to the nearest goal found by the MOEA/D algorithm for the MO-FLCPP in a 

hilly environment with no region clustering using the ordered weighted average (OWA) scalarization method 

with weight vector 𝜽 = (0.67, 0.33). (a) Minimizing features 𝑓ℎ↑_max and 𝑓ℎ↓_max. (b) Minimizing features 

𝑓ℎ↑_sum and 𝑓ℎ↓_sum. (c) Minimizing features 𝑓ℎ_max and 𝑓ℎ_sum. 



263 

weight vector 𝝀, which we arrange as a matrix 𝝀𝐓, where 𝝀𝑖𝑗
𝐓  is the weight of the terrain 

transition feature from terrain type 𝑖 to terrain type 𝑗. A greater weight indicates a higher 

cost when using this type of transition. 

 

In subfigure (a), a shortest path problem in a binary terrain environment is solved 

by three different agents. The blue agent uses an objective weight matrix of [
0.1 0.6
0.6 0.3

], 

indicating a low cost of 0.1 for staying in the meadow and a slightly higher cost of 0.3 for 

staying in the forest. The cost of the transition between the two types is symmetric and has 

a higher cost value of 0.6. (Note that only the upper triangular part of the matrix is used 

and these three costs sum to one.) The resulting path chosen by the blue agent stays in the 

   
 (a) (b) 

Figure 6.16  Shortest paths found using terrain transition features. (a) Three agents solve this problem using 

symmetric terrain transition features. The blue agent prefers the meadow, the red agent prefers the forest, and 

the yellow agent prefers the transitions between the two terrain types. (b) Two agents solve this problem 

using directional terrain transition features. The red agent prefers the transitions from meadow to water and 

from water to forest, whereas the blue agent prefers the transitions from forest to water and from water to 

meadow. 
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meadow as much as possible and avoids the forest. The red agent uses a reverse weight 

matrix of [
0.3 0.6
0.6 0.1

], which favors the forest over the meadow. Both agents use the fewest 

number of transitions between terrain types as possible. The yellow agent uses an objective 

weight matrix of [
0.4 0.2
0.2 0.4

], which gives a lower cost to transitioning between terrain types 

than staying in one type of terrain. The path chosen by the yellow agent stays on the border 

between terrain types as much as possible while still choosing one of the shortest paths. 

To demonstrate the effect of the directional terrain transition features, at least three 

terrain types are required. Subfigure (b) shows a shortest path problem in a trinary terrain 

environment solved by two different agents using the directional terrain transition features. 

The blue agent uses an objective weight matrix of [
1 2 9
9 1 2
2 9 1

] 36⁄ , where all nine features 

are used. This matrix gives a low cost to staying in the same type of terrain, but different 

higher costs for terrain transitions. A high cost is given to transitions from type 1 to 3 

(meadow to water), type 2 to 1 (forest to meadow), and type 3 to 2 (water to forest). The 

resulting path chosen by the blue agent never uses these terrain transition types. The red 

agent uses a reversed objective weight matrix of [
1 9 2
2 1 9
9 2 1

] 36⁄ . This agent uses only the 

above terrain transition types. These features give even greater control over the types of 

paths produced and offer a way to explore problems with many objectives. 
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6.5.4 Many-Objective Least-Cost Paths 

When there are many objectives to optimize, the number of Pareto optimal solutions 

can grow very large. This is especially true when region clustering is used to add 

uncertainty to the feature values. We consider two additional types of environments, 

designed to provide a high number of features for many-objective problems. Figure 6.17 

shows two example least-cost path problems in environments that combine multiple terrain 

types and elevation. 

 

Subfigure (a) shows a hilly binary terrain environment that is solved by an agent 

using three symmetric terrain transition features and the maximum absolute elevation 

difference feature using the weighted sum scalarization method. Using 40 uniformly 

sampled reference weight vectors for the MOEA/D algorithm, including the one-hot 

   
 (a) (b) 

Figure 6.17  Pareto optimal least-cost paths found by the MOEA/D algorithm for the MO-FLCPP in many-

objective environments. Solutions are colored based on objective weight similarity. (a) A hilly binary terrain 

environment. (b) A full world environment with five terrain types and elevation. 
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vectors, a total of 71 Pareto optimal paths were found. These are shown in different colors 

based on objective weight similarity. To compute the colors, the objective values are 

projected into two dimensions using PCA and assigned hue and saturation values based on 

the 2D coordinates. In this example, red paths favor the forest terrain and green paths favor 

the meadow. A spectrum of other solutions shows the variety of different agent preferences 

that can lead to unique paths. 

Subfigure (b) shows a full world environment with five terrain types and elevation. 

In this example, the agent uses 15 symmetric terrain transition features and the maximum 

absolute elevation difference feature for a total of 16 objectives. The weighted sum 

scalarization method is used for the MOEA/D algorithm with 160 reference weight vectors 

(10 times the number of objectives), including the one-hot vectors. A total of 176 Pareto 

optimal paths were found for this problem, spanning all different agent preferences. The 

solutions are colored based on similarity, although it can be difficult to distinguish what 

exactly each path is optimizing based on color alone. Here, the red paths seem to prefer 

paths through open meadow, and blue paths prefer forest and water. The pink paths in the 

upper left show some switchbacks that indicate a preference for gentle slopes. Although 

any one agent can specify a particular set of objective weight preferences and choose one 

of these solutions, the quality of the entire solution set is difficult to quantify. The next 

section discusses a set of experiments to measure the effectiveness of the MOEA/D 

algorithm for the MO-FLCPP in various configurations. 
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6.5.5 Comparing MOEA/D to Pre-scalarized Decomposition 

The MOEA/D algorithm for the MO-FLCPP presented in Algorithm 6.3 uses an 

iterative evolutionary procedure to find Pareto optimal solutions over the entire set of 

possible decision-maker preferences. For a specific set of preferences, the pre-scalarized 

decomposition method presented in Algorithm 6.2 can be used to quickly find a single 

solution that may be satisfactory in some cases. In this section, we evaluate many different 

problem scenarios to determine how much of an improvement in solution quality the 

MOEA/D approach offers over the pre-scalarized decomposition method. 

We chose 10 problem configurations to evaluate, which are summarized in Table 

6.3. Each problem configuration represents an environment type and a specified feature 

set. Figure 6.18 shows the five different environment types used in these experiments. The 

first type (a) is a flat binary terrain environment used to study problems with two objectives. 

The next type (b) is a hilly environment with a single type of terrain used to study elevation 

features. The third type (c) is a flat trinary terrain environment used to study the directional 

terrain transition features. The fourth type (d) is a hilly binary terrain environment that 

combines the terrain type and elevation features. The last type (e) is a full world 

environment that has five terrain types and elevation, which is used to study problems with 

many objectives. 
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The environment type of each problem is listed in the second column of Table 6.3. 

The third column lists the total number of objectives used, and the fourth and fifth columns 

indicate how many of these are summation objectives and how many are maximization 

objectives. The sixth column lists how many reference vectors (𝑁) are used in the 

MOEA/D algorithm. This is set to be 10 times the total number of objectives for each 

problem. The last column gives the features that are used for each problem type. 

     
 (a) (b) (c) (d) (e) 

Figure 6.18  Environment types used to evaluate the MOEA/D algorithm for the MO-FLCPP. (a) Flat binary 

terrain. (b) Hilly uniform terrain. (c) Flat trinary terrain. (d) Hilly binary terrain. (e) Full world environment. 
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Table 6.3 Summary of problem types used to compare MOEA/D to pre-scalarized decomposition 

Prob. # 

Env. 

Type 

Total # 

of Obj. 

# of Sum 

Obj. 

# of Max 

Obj. N Features 

1 a 2 2 0 20 𝑓𝑡(1), 𝑓𝑡(2) 

2 b 2 1 1 20 
𝑓𝑑, 

𝑓ℎ_max  

3 b 2 0 2 20 𝑓ℎ↑_max, 𝑓ℎ↓_max 

4 b 3 3 0 30 
𝑓𝑑, 

𝑓ℎ↑_sum, 𝑓ℎ↓_sum 

5 d 3 2 1 30 
𝑓𝑡(1), 𝑓𝑡(2), 

𝑓ℎ_max  

6 e 6 5 1 60 
𝑓𝑡(𝑖) ∀ 𝑖 ∈ {1, … , 5}, 

𝑓ℎ_max  

7 c 6 6 0 60 𝑓𝑡{𝑖,𝑗} ∀ 𝑖, 𝑗 ∈ {1, … , 3} 𝑠. 𝑡. 𝑖 ≤ 𝑗 

8 e 15 15 0 150 𝑓𝑡{𝑖,𝑗} ∀ 𝑖, 𝑗 ∈ {1, … , 5} 𝑠. 𝑡. 𝑖 ≤ 𝑗  

9 e 17 15 2 170 
𝑓𝑡{𝑖,𝑗} ∀ 𝑖, 𝑗 ∈ {1, … , 5} 𝑠. 𝑡. 𝑖 ≤ 𝑗, 

𝑓ℎ↑_max, 𝑓ℎ↓_max 

10 e 29 26 3 290 

𝑓𝑡〈𝑖,𝑗〉 ∀ 𝑖, 𝑗 ∈ {1, … , 5}, 

𝑓ℎ↑_max, 𝑓ℎ↓_max, 

𝑓ℎ↑_sum, 𝑓ℎ↓_sum 

 

The first three problem types are two objective problems. Problem 1 uses the terrain 

type features in binary terrain as two summation objectives. Problems 2 and 3 use the hilly 

uniform terrain environment to investigate maximization objectives. Problem 2 uses one 

summation objective, 𝑓𝑑, and one maximization objective, 𝑓ℎ_max. Problem 3 uses the two 

directional elevation features 𝑓ℎ↑_max and 𝑓ℎ↓_max as maximization objectives. Problems 4 

and 5 use different combinations of the distance, terrain type, and elevation features to 

investigate three objective problems. Problems 6 and 7 consider problems with six 

objectives in either the trinary terrain for full world environments. Problems 8-10 use 



270 

terrain transition and directional elevation features to study problems with many objectives 

in full world environments. 

For each problem configuration, we generate 30 environments of the specified type 

with an agent and a single resource in opposite corners. Each environment is used to define 

a MO-FLCPP using either no region clustering, or a cluster size of 3 or 10. These problems 

are then evaluated by nine different sets of decision-maker parameters. We consider 

defuzzification values of 0, 0.5, and 1. For scalarization, we consider the weighted sum 

(WS), Tchebycheff (TE), and ordered weighted average (OWA) methods. The OWA 

method acts as a hybrid between the WS and TE methods, and we define the OWA weights 

as 

 𝜽 = (
1

𝐻𝑚
,
1

2𝐻𝑚
, … ,

1

𝑚𝐻𝑚
), (6.16) 

where 𝐻𝑚 = ∑ 1 𝑘⁄𝑚
𝑘=1  is the 𝑚-th harmonic number and 𝑚 is the total number of 

objectives. This gives a harmonic sequence that assigns greater weight to the first (largest) 

terms and is roughly equivalent to a decision-maker that prioritizes only a few objectives. 

Next, we randomly sample a set of 𝑁 weight vectors for each problem, where 

𝑁 = 10𝑚. These include the one-hot weight vectors where all values are zero except one. 

For each weight vector, apply the pre-scalarized decomposition method in Algorithm 6.2 

to create an initial candidate solution. This solution is scored using the max-edge reference 

point where 𝒛∗ is defined by Equation 6.10. 

The 𝑁 solutions are then used as the initial population for MOEA/D in Algorithm 

6.3. We use a neighborhood size of 𝑇 = 5 for each weight vector and run the algorithm for 

100 iterations. The resulting 𝐸𝑃 contains a set of Pareto optimal solutions and lets us 
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compute a new reference point where 𝒛∗ is defined by Equation 6.5 using the nadir vector. 

Each of the original weight vectors 𝝀𝑗 where 𝑗 = 1,… ,𝑁 is then used to find two solutions 

to the MO-FLCPP: 

1) The path 𝑝∗ ∈ 𝐸𝑃 that minimizes 𝑔(𝑨′(𝑝∗)|𝝀𝑗) using the nadir vector reference 

point 𝒛∗. 

2) The path 𝑝𝑃𝑆𝐷 ∈ 𝑃(𝑠, 𝑡) found using pre-scalarized decomposition and the 

same reference point 𝒛∗. 

The scalarized values of the two paths are defined as 𝑆∗ and 𝑆𝑃𝑆𝐷 respectively, and since 

both solutions use the same value for 𝒛∗, the values can be compared directly. We measure 

the percent improvement of the MOEA/D algorithm over the pre-scalarized approach as 

 𝑃𝐼 = (
𝑆𝑃𝑆𝐷 − 𝑆∗

𝑆𝑃𝑆𝐷
) ∗ 100. (6.17) 

Table 6.4 shows the average PI values of each MO-FLCPP configuration, for each 

decision-maker, averaged over all weight vectors from the 30 problem instances of all 10 

problem types when using a region clustering size of 3. The first column gives the problem 

number and the second and third columns give the number of summation and maximization 

objectives respectively. The fourth and fifth columns list the average number of nodes and 

edges over the 30 graphs created for each problem type. The results show an overall 

improvement in the scalarization scores of the MOEA/D algorithm over the pre-scalarized 

decomposition method. In general, we note the largest improvement for problems that 

contain at least one maximization objective. The Tchebycheff scalarization method also 

tends to show the greatest improvement compared to the weighted sum. The OWA method 
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usually scores somewhere between the other two approaches, reflecting its role as a hybrid 

operator. 

Table 6.4 Average percent improvement of MOEA/D over pre-scalarization (region cluster size = 3) 

Prob. 

# 

# of 

Sum 

Obj. 

# of 

Max 

Obj. 

Avg. 

Nodes 

Avg. 

Edges 

  𝜉 = 0  𝜉 = 0.5  𝜉 = 1 

  WS OWA TE  WS OWA TE  WS OWA TE 

1 2 0 103 507   0.00 1.39 8.49  0.00 1.67 9.30  0.00 1.78 9.94 

2 1 1 66 318   5.35 7.10 13.12  5.27 5.08 5.44  5.57 5.75 7.02 

3 0 2 64 300   12.43 12.01 12.94  5.71 5.87 6.55  0.93 0.79 1.17 

4 3 0 65 311   -0.02 0.83 5.03  0.00 0.14 0.67  0.00 0.09 0.56 

5 2 1 92 447   9.64 13.73 20.53  7.93 7.08 8.51  9.80 8.55 9.27 

6 5 1 93 454   17.02 21.75 30.27  5.32 5.93 11.00  5.46 5.17 9.91 

7 6 0 109 545   -0.47 2.32 8.87  -0.15 2.39 9.82  -0.15 3.06 12.35 

8 15 0 93 454   -0.08 1.64 8.02  -0.03 1.53 8.00  -0.04 2.02 11.73 

9 15 2 91 445   26.31 31.75 42.06  7.14 9.14 16.35  4.36 5.38 12.22 

10 26 3 93 450   15.68 21.66 29.27  6.34 8.01 13.46  4.55 5.85 11.46 

 

We can conclude that problems that have many nonlinearities, either from the 

aggregation method or the scalarization function, benefit the most from performing a 

search with the MOEA/D algorithm. In contrast, when the problem contains only 

summation objectives, or the weighted sum is used to scalarized, there is less reason to use 

MOEA/D. If both are true, then the problem is entirely linear and the pre-scalarized 

decomposition method can find the ideal solution directly. In this case, the MOEA/D 

algorithm can perform worse if the reference point changes from the initial solutions and 

the ideal path is never encountered through the crossover and mutation operators. This is 

the primary cause for the negative improvement scores in the table. One way this effect 

could be ameliorated is by re-running the initialization procedure each time the reference 

point changes to migrate the population toward solutions that are evaluated better with the 

new reference point. 
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Table 6.5 shows the average PI values when using no region clustering and Table 

6.6 shows the values when using a region cluster size of 10. The outcomes are mostly the 

same as the results using a region cluster size of 3 with a few notable exceptions. With no 

region clustering, all graphs are the same size and there is no uncertainty in these fully-

observable problems, so all feature values are crisp. The results are therefore the same for 

each value of the defuzzification parameter 𝜉. Problems 3 and 4 have very low 

improvement scores across all scalarization methods. This would suggest that the pre-

scalarized approach produces very good results using crisp distance and elevation features 

when all objectives use either summation or maximization aggregation. Problems 7 and 8 

show both worse scores for the WS method and better scores for the OWA and TE methods 

than when using a region cluster size of 3. These problems use only the terrain transition 

features with summation aggregation, which suggests that the MOEA/D method is most 

effective for problems with nonlinear operators. The improvement is more noticeable in 

problems with less uncertainty, which is confirmed by the corresponding rows in Table 6.6 

that show less difference between scalarization methods when using a region cluster size 

of 10. This effect is observed throughout Table 6.6, where the improvement scores for each 

scalarization method tend to be more similar than in the other two tables. We also note a 

few instances in the later problems of Table 6.6 where the OWA method shows less 

improvement than the other two approaches, rather than behaving as a hybrid operator that 

gives a result somewhere in-between. The additional parameters of the OWA method, the 

added complexity of the many-objective problems, and the increased uncertainty from a 

larger region size could render the MOEA/D search less effective than the pre-scalarized 

approach in these instances. 
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Table 6.5 Average percent improvement of MOEA/D over pre-scalarization (no region clustering) 

Prob. 

# 

# of 

Sum 

Obj. 

# of 

Max 

Obj. 

Avg. 

Nodes 

Avg. 

Edges 

  𝜉 = 0  𝜉 = 0.5  𝜉 = 1 

  WS OWA TE  WS OWA TE  WS OWA TE 

1 2 0 784 3024   0.00 1.69 12.00  0.00 1.69 12.00  0.00 1.69 12.00 

2 1 1 784 3024   9.62 11.53 14.37  9.62 11.53 14.37  9.62 11.53 14.37 

3 0 2 784 3024   0.01 0.00 0.00  0.01 0.00 0.00  0.01 0.00 0.00 

4 3 0 784 3024   0.00 0.10 0.36  0.00 0.10 0.36  0.00 0.10 0.36 

5 2 1 784 3024   6.44 5.50 10.21  6.44 5.50 10.21  6.44 5.50 10.21 

6 5 1 784 3024   5.00 7.67 18.25  5.00 7.67 18.25  5.00 7.67 18.25 

7 6 0 784 3024   -1.49 4.97 19.53  -1.49 4.97 19.53  -1.49 4.97 19.53 

8 15 0 784 3024   -2.18 4.00 17.49  -2.18 4.00 17.49  -2.18 4.00 17.49 

9 15 2 784 3024   1.57 7.74 22.34  1.57 7.74 22.34  1.57 7.74 22.34 

10 26 3 784 3024   2.31 7.68 19.35  2.31 7.68 19.35  2.31 7.68 19.35 

 

Table 6.6 Average percent improvement of MOEA/D over pre-scalarization (region cluster size = 10) 

Prob. 

# 

# of 

Sum 

Obj. 

# of 

Max 

Obj. 

Avg. 

Nodes 

Avg. 

Edges 

  𝜉 = 0  𝜉 = 0.5  𝜉 = 1 

  WS OWA TE  WS OWA TE  WS OWA TE 

1 2 0 35 139   0.00 0.85 4.81  0.00 0.99 5.90  0.00 0.97 6.48 

2 1 1 12 40   8.79 9.57 14.71  6.16 6.19 6.38  9.34 9.08 9.46 

3 0 2 12 40   1.69 1.13 2.27  0.66 0.76 1.27  0.12 0.37 1.18 

4 3 0 11 38   0.00 0.16 0.71  0.00 0.00 0.09  0.00 0.01 0.08 

5 2 1 34 129   8.99 13.08 20.73  11.20 9.24 9.92  9.38 9.45 11.74 

6 5 1 35 146   17.12 20.55 26.42  15.41 12.94 13.23  17.12 14.73 14.02 

7 6 0 44 191   -0.12 1.61 6.12  -0.01 2.02 8.01  -0.01 2.43 9.56 

8 15 0 35 146   -0.01 1.10 5.04  -0.01 0.80 4.69  -0.01 1.11 7.47 

9 15 2 32 126   12.99 12.49 16.51  6.64 7.42 9.26  3.77 4.08 5.41 

10 26 3 35 144   18.52 20.34 24.47  10.94 7.18 8.11  8.41 5.43 8.85 

 

6.6 A Greedy Algorithm for the CMM Framework 

A problem in the CMM framework can be expressed as a resource gathering task. 

The agent begins with a list of demanded resources and begins to move through the 

environment in pursuit of these goals. In this chapter, we have considered fully observable 

least-cost path problems. To solve one of these problems in the CMM framework, the agent 

starts with only one resource in its list of demands. The agent then uses one of the methods 
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presented in this chapter to plan a least-cost route to one of the resource locations. The set 

of options can be evaluated in terms of the quality of the Pareto optimal set, but to solve 

the problem, the agent must pick one of these path options and physically move to the goal 

location. In fully observable problems with no region clustering the region graph does not 

change as the agent moves, so there may be no need to iteratively step through the 

simulation server. However, in partially observable environments or those using region 

clustering, the region graph can change, so a new plan needs to be developed after each 

step. 

Algorithm 6.4 shows a greedy algorithm for the CMM framework that can be used 

to solve generic resource gathering problems. The algorithm is greedy in the sense that it 

always moves toward the closest objective without any additional planning. Steps 1 and 2 

of the algorithm take the current mental map data structure ℳ and use the latest observation 

from the simulation server 𝒪 to recompute the region graph ℳ.𝐺𝑅. In Step 3, any observed 

resources that are still in demand are set as target locations, and if no visible resources are 

in demand, all unobserved regions are used instead. Step 4 uses either the pre-scalarized 

decomposition method from Algorithm 6.2 or the MOEA/D method from Algorithm 6.3 

to find a solution path 𝑝 that minimizes the cost to one of the target locations determined 

in Step 3. In problems where computation time is a factor, it may be desirable to use the 

pre-scalarized approach, rather than the more exhaustive MOEA/D search. Finally, in Step 

5, the path 𝑝 is saved to ℳ as the current plan and the first step in the plan is returned to 

the simulation server as the agent’s action. This algorithm is called any time the region 

graph changes, either from observing new areas of the environment or when the agent 

moves and the regions are reclustered. 
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The greedy algorithm can be used to solve any generic problem in the CMM 

framework. To demonstrate, we show an overview of the steps taken by an agent solving 

a travelling purchaser problem (TPP) in a simulated world environment. The environment 

is a 3030 grid constructed with five region types using the method outlined in Section 

3.5.3. Each region type is assigned a unique type of resource, and these resources are 

 

Algorithm 6.4 A Greedy Algorithm for the CMM Framework 

 

Input: 

• ℳ: a mental map data structure 

• 𝒪: the most recent observation of the environment 

• opt: region clustering options 

 

Step 1) Update the mental map: Use Algorithm 4.4 to integrate the most recent 

observation 𝒪 into the mental map ℳ. 

 

Step 2) Update the region graph: Use Algorithm 5.16 to update the region graph ℳ.𝐺𝑅 

using the options defined in opt. 

 

Step 3) Determine the target locations: 

If there are visible resources that are still in demand, 

Set each of these resources as a target location. 

Otherwise, 

Set all unobserved regions as target locations. 

 

Step 4) Solve the MO-FLCPP: Using the target locations from Step 3 and the current 

agent location, use either the pre-scalarized decomposition method from Algorithm 6.2 or 

the MOEA/D method from Algorithm 6.3 to find a solution path 𝑝. 

 

Step 5) Choose an action: Save the path 𝑝 to the mental map ℳ as the current plan and 

set the next action as the first step in the plan. 

 

Output: A movement action 
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distributed randomly throughout the environment. The agent’s list of demands requires it 

to collect one of each type of resource. The environment is only partially observable, so to 

discover and collect all the necessary resources, the agent will need to explore the 

environment. We define six objectives for the agent to minimize, the same as Problem 6 

from Table 6.3: five terrain type features and the maximum absolute value of the elevation 

change. The feature weights are defined in Table 6.7. The agent uses the OWA 

scalarization method with harmonic weights defined by Equation 6.16 and a 

defuzzification value of 𝜉 = 0.5. Figures 6.19-6.22 show the simulation output for the 

greedy agent using four different region clustering methods.  

Table 6.7 Feature weights for the example greedy agent 

 𝑓𝑡(1) 

meadow 

𝑓𝑡(2) 

forest 

𝑓𝑡(3) 

water 

𝑓𝑡(4) 

rock 

𝑓𝑡(5) 

snow 

𝑓ℎ_max 

slope 

Unnormalized 1 5 10 3 8 2 

Normalized 0.0345 0.1724 0.3448 0.1034 0.2759 0.0690 

 

Figure 6.19 shows the path traveled by the agent using the greedy algorithm with 

no region clustering. The last image shows the winding route that the agent took, searching 

nearly the entire environment before discovering the final two resources on top of the hill. 

The agent makes several sweeps through the forest region since observability is limited to 

only the adjacent grid cells in the forest, taking a total of 233 simulation steps. The final 

scalarized path cost is given in Table 6.8 as 0.1611 when normalized with the other three 

approaches. 
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Figure 6.20 shows the solution path when using a local region size of 3, an observed 

cluster size of 5, and an unobserved cluster size of 20. Because of the way the environment 

is dynamically partitioned as the agent moves, the agent takes a different route than when 

using no region clustering, occasionally taking less direct paths. The solution takes 125 

simulation steps and has a scalarized cost of 0.1854. 

Figure 6.21 shows the path followed by an agent using the same region clustering 

parameters as above, but while keeping a memory of the local region. This approach grows 

the size of the graph as the environment is explored and can provide more efficient planning 

through previously explored terrain. The solution takes 96 simulation steps and has a 

scalarized cost of 0.1666. 

Lastly, Figure 6.22 shows the path of an agent that only uses region clustering for 

the unobserved regions (cluster size = 20). This is accomplished by setting the local region 

size to infinity, allowing all observed areas to be represented with no imprecision. The 

solution of this agent is the most efficient, taking 78 simulation steps with a scalarized cost 

of 0.1341. 
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Table 6.8 Solution costs of the example greedy agent 

 

Simulation 

Steps 

Normalized 

and 

Scalarized 

Cost 

Aggregated Feature Costs 

Region Clustering 

Type 

𝑓𝑡(1) 

meadow 

𝑓𝑡(2) 

forest 

𝑓𝑡(3) 

water 

𝑓𝑡(4) 

rock 

𝑓𝑡(5) 

snow 

𝑓ℎ_max 

slope 

No region 

clustering 
233 0.1611 88.5 124 13 4 3.5 0.1385 

Small local region 

with no memory 
125 0.1854 70.5 27 19 5 3.5 0.1200 

Small local region 

with memory 
96 0.1666 71.5 1 8.5 6 9 0.1200 

Region clustering 

only if unobserved 
78 0.1341 52.5 6 6.5 6 7 0.1200 
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 (a) (b) (c) 

   
 (d) (e) (f) 

   
 (g) (h) (i) 

Figure 6.19  An agent solving a TPP in the CMM framework with no region clustering. (a) The agent plans 

a route to the nearest observed resource in the open meadow. (b) The remaining resource types have not yet 

been observed, so the agent plans a route to the nearest unobserved region. (c) After exploring part of the 

unobserved region, two new resources are discovered. The agent plans a route to the closest one in a forest. 

(d) The agent plans a route to the resource in the water. (e) The agent continues to explore the unobserved 

region at the top of the map. (f) The agent decides to begin exploring the unobserved region at the bottom of 

the map. (g) After wandering through the forest at the bottom of the map, the agent finally discovers one of 

the remaining needed resources at the top of the hill. (h) The agent collects the final resources and ends the 

problem. (i) Final path traveled by the agent. 
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 (a) (b) (c) 

   
 (d) (e) (f) 

   
 (g) (h) (i) 

Figure 6.20  An agent solving a TPP in the CMM framework using a small local region with no memory and 

region clustering in all areas. (a) The agent plans a route to the nearest observed resource in the open meadow. 

(b) The remaining resource types have not yet been observed, so the agent plans a route to the nearest 

unobserved region. (c) En route to the unobserved region, the agent discovers the forest resource and plans 

a new route. (d) After collecting the forest resource, the agent plans a route to the newly discovered water 

resource. (e) The agent decides to explore the unobserved region at the top of the map. (f) After exploring 

this area, the agent plans a route to the unobserved region on top of the hill. (g) The agent discovers the snow 

resource and plans a new route. (h) The agent discovers and collects the rock resource on the way to the snow 

resource, finishing the problem. (i) Final path traveled by the agent. 
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 (a) (b) (c) 

   
 (d) (e) (f) 

   
 (g) (h) (i) 

Figure 6.21  An agent solving a TPP in the CMM framework using a small local region with memory and 

region clustering in all areas. (a) The agent plans a route to the nearest observed resource in the open meadow. 

(b) After collecting the meadow resource, the agent plans a route to the unobserved area on top of the hill. 

(c) The agent discovers the snow and rock resources and plans a new route to collect them. (d) The agent 

plans a route to the large unobserved region in the top center of the map. (e) The agent discovers the water 

resource and plans a route to collect it. (f) On the way, the agent discovers the forest resource and plans a 

new route. (g) After collecting the forest resource, the agent plans a route to the final water resource. (h) The 

agent wanders along the shore, trying to find the least-cost path to the last resource. (i) Final path traveled by 

the agent. 
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 (a) (b) (c) 

   
 (d) (e) (f) 

   
 (g) (h) (i) 

Figure 6.22  An agent solving a TPP in the CMM framework using region clustering only for unobserved 

regions and no region clustering elsewhere. (a) The agent plans a route to the nearest observed resource in 

the open meadow. (b) After collecting the meadow resource, the agent plans a route to the unobserved area 

on top of the hill. (c) On the way, the agent discovers the rock resource and decides to turn around to collect 

it. (d) After collecting both the rock and snow resources, the agent plans a route to the large unobserved 

region in the top center of the map. (e) The agent discovers the water resource and plans a route to collect it. 

(f) On the way, the agent discovers the forest resource and plans a detour to retrieve it first. (g) After 

collecting the forest resource, the agent plans a route to the last water resource. (h) The agent travels along 

the shore and travels directly to the final resource, ending the problem. (i) Final path traveled by the agent.  
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In this example scenario, the effect of region clustering seems to offer the greatest 

benefit when applied only to the unobserved regions. However, it is difficult to make 

general claims as to the effect of various region clustering approaches. In some 

environments, applying region clustering to observed regions can degrade performance, as 

the agent must continually recluster these areas and may end up taking less direct routes. 

If no memory is used for the local region, the agent can get stuck in a cycle moving back 

and forth between two grid cells as the regions are reclustered. This can still occur in some 

instances when using local region memory, but it is less common. Increasing the size of 

the local region can also help to avoid oscillatory behavior. Ultimately, the individual 

differences in each environment can make any one region clustering method perform better 

than another. 

Perhaps the best reason to use region clustering is to reduce the size of the planning 

search space. The greedy algorithm does not utilize this property to its full potential, but 

more advanced planning algorithms may benefit greatly from this. For example, the 

approach used in (Buck and Keller 2016) for solving the partially observable traveling 

salesman problem used a Monte Carlo sampling method to construct a distribution of 

possible target locations. By reducing the number of possible locations and adopting a 

fuzzy methodology, it may be possible to improve upon this approach and allow for the 

development of long-term agent strategies. This is a possible topic for future work with the 

CMM framework and will be discussed further in the next and final chapter. 
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6.7 Summary 

This chapter defined the multiobjective least-cost path problem (MO-FLCPP) and 

presented a greedy agent strategy for solving generic problems in the CMM framework. 

We first showed the issues regarding selection bias in grid world domains and proposed to 

overcome these issues by adding a small amount of random noise to the graph edge 

weights. The MO-FLCPP was introduced with an example that demonstrated how to 

determine the set of Pareto optimal solutions using different aggregation and scalarization 

methods. We showed that a decision-making agent could choose different solution paths 

depending on its preferences and that the choice of which path to take depends largely on 

the objective weights and scalarization method used. 

We then described an approach to pre-scalarize the feature values in a fuzzy 

weighted graph, accounting for both summation and maximization aggregation methods 

so that a solution path could be found using a standard implementation of Dijkstra's 

algorithm. This approach can be used to quickly find a solution using a specific set of 

objective weights. The solution can often be improved, however, by applying an 

evolutionary search procedure using MOEA/D. This method returns an approximation of 

the entire Pareto optimal set of solutions. Selecting a path from this set will often yield an 

improvement in the scalarized cost and provides additional context, allowing for better 

normalization to judge how well a solution compares with other possible options. 

We concluded the chapter with several example problems to demonstrate how 

different feature sets, scalarization functions, and region clustering approaches can impact 

the solution quality. We considered several two objective scenarios with binary terrain and 

elevation features, and then investigated problems with many objectives. A series of 
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experiments on several different problem types showed that the MOEA/D search often 

produces a better result, particularly when the problem includes many nonlinearities. We 

ended with a description of a greedy agent algorithm that can be used to solve any type of 

resource collecting problem in the CMM framework, such as the shortest path problem, 

traveling salesman problem, and traveling purchaser problem. An example demonstrated 

how different configurations of the local region can affect the performance of the agent. 

Some of the methods presented in this chapter can be extended to perform long-term 

planning, which can improve the solution quality when visiting multiple locations in 

sequence. Such extensions are beyond the scope of this current work and are discussed 

briefly in the last chapter. 
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7 CONCLUSION 

The CMM framework has great potential for use in many applications. This final 

chapter summarizes the contributions of the CMM framework and presents several 

possibilities for future work. 

7.1 Summary of the CMM Framework 

In this work, we introduced the CMM framework as a simulation environment for 

studying multiobjective pathfinding problems with partial observability. These problems 

allow decision-making agents to demonstrate purposeful behavior in pursuit of a goal. The 

scenarios are interpretable and can be adapted for use in other problem domains of interest 

where it is beneficial to have a highly customizable, controllable, and repeatable test 

environment. Beyond developing sequential decision-making models, the CMM 

framework can also be used to generate synthetic trajectories that can be used for behavior 

modeling and anticipatory analysis. 

The models in the CMM framework embrace uncertainty using the machinery and 

logic of fuzzy sets. Procedurally generated grid world environments are represented using 

fuzzy weighted graphs where vertices represent spatial regions and edges indicate the cost 

of moving between adjacent regions. Movement costs are represented as fuzzy numbers to 

capture the uncertainty of the minimum, maximum, and expected feature values of each 

edge. We employ various graph search techniques and approximations to compute the edge 

weights of the region graph. In fully observable environments with no region clustering, 

the features are crisp values. However, edges that are only partially observable or represent 
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movement between large regions are weighted with fuzzy feature values. This allows the 

agent to express some degree of optimism or pessimism when choosing an action.  

Multiple objectives are managed by defining a relative weight for each objective 

and a scalarization function to reduce the problem to a single objective. We consider the 

weighted sum, Tchebycheff, and OWA methods for scalarization. The OWA approach can 

be implemented as a hybrid operator that represents a form of bounded rationality in which 

the agent can only consider a few objectives at once. Feature values along a path are 

aggregated using either summation or maximization, and an approximate scalarized path 

cost for mixed aggregation methods can be computed using exponential scaling. A 

multiobjective evolutionary algorithm with decomposition (MOEA/D) is used to find a 

Pareto optimal set of nondominated paths. 

We showed several examples that demonstrate how the CMM framework can be 

used to solve multiobjective fuzzy least-cost path problems (MO-FLCPPs) in grid world 

environments. The choice of features, region clustering parameters, and scalarization 

method can greatly impact the solutions that are found. An experiment with many 

randomly generated test instances across several problem types found that in general, the 

MOEA/D search method can improve the quality of the solutions found over a pre-

scalarized approach. The amount of improvement is most apparent for problems with many 

nonlinearities coming from either the aggregation method or scalarization function. We 

finished with a demonstration of a greedy algorithm that can be used to solve generic 

resource collecting problems. It was shown that the path followed by the greedy agent is 

very sensitive to the interpretation of the environment formed by different region clustering 

methods. 
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7.2 Future Work 

The full potential of the CMM framework extends far beyond the material 

discussed in this work. Our initial goal was to create a simulation environment that could 

be used to study models of sequential multiobjective decision-making behavior in partially 

observable environments for anticipatory analysis. To achieve this, we required an 

environment in which an agent could demonstrate purposeful behavior while solving some 

problem that could be recognized by an analyst. In particular, the pathfinding problem was 

of considerable interest due to the nature of representing spatial uncertainty. The traveling 

salesman problem and its more generic variant, the traveling purchaser problem, provided 

highly configurable scenarios for the agent to solve. 

Although reasoning about ideal models of environment representation and agent 

knowledge yielded many promising ideas, an important goal of this work was to produce 

a working computational framework that could facilitate many diverse experiments. This 

required some design compromises to build a functional model. The CMM framework is 

implemented in the Matlab programming language, which was chosen for its prototyping 

efficiency and ease of visualization. Several optimizations helped to improve the runtime 

performance, but certain assumptions were made for the sake of simplifying the 

architectural requirements. Perhaps chiefly among these was the restriction to grid world 

domains. Many of the methods in the CMM framework—such as procedural environment 

generation, feature computation, and region clustering—assume a discrete grid structure. 

Although these ideas could be adapted for continuous domains, it would not be a 

straightforward exercise. One issue that arises with continuous domains is the increased 

size of the search space when planning actions. This could be mitigated to some degree by 
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sampling a traversal graph and using a continuous form of region clustering. The spatial 

relationships between regions could be represented as fuzzy attributes, giving greater 

flexibility in the representation of the environment and allowing for uncertainty in the 

location of each graph vertex. Such an approach would likely require significant changes 

to the framework, but could make it easier to apply the models to real-world data. 

The greedy agent strategy presented in this work is a straightforward solution to a 

complex problem. A greedy approach can often create an acceptable solution to a problem 

such as the TSP, but rarely an optimal one. To create more intelligent agents, an algorithm 

such as ant colony optimization (ACO) can be used to plan the optimal sequence in which 

goal locations should be visited. A fully connected planning graph would be defined over 

all resources and the agent location. Simulated “ants” would stochastically solve the 

problem and deposit pheromones on promising edges of the planning graph, attracting 

future ants and eventually the agent itself. This approach could be used in a multiobjective 

framework by combining ACO with MOEA/D (Ke, Zhang, and Battiti 2013). 

In partially observable environments, the planning graph would need to include 

unobserved regions if there is a possibility that the region contains a needed resource. 

Depending on the region clustering method used, this could result in a very large graph. 

An alternate approach is to sample potential resource locations in the environment and 

build a distribution of the best paths to each sampled location. These paths can be used to 

construct a value map of how beneficial it would be for the agent to move toward a given 

area. This is the approach used by the Myopic Monte Carlo (MMC) agent policy in (Buck 

and Keller 2016). Figure 7.1 shows an example of a partially observable traveling salesman 
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problem (PO-TSP) solved by a greedy agent policy such as the one given in Algorithm 6.4. 

The same problem is solved by an MMC agent policy in Figure 7.2. 

 

     
 (a) (b) (c) (d) 

Figure 7.1  Some selected moments from the greedy policy’s solution for the PO-TSP with symbols enlarged 

for clarity. (a) The initial mental map shows only what is visible from the agent’s starting location (red circle), 

which includes two waypoints (blue crosses). The closest of these is chosen as the target objective (green 

square). Grey areas indicate unknown areas of the environment and dots signify the possibility of a waypoint. 

(b) The first five waypoints are acquired greedily and the sixth target is chosen as a waypoint that was 

discovered along the route, but requires the agent to backtrack. (c) Nine targets are acquired by always 

moving toward the nearest unvisited waypoint if one is visible, or the nearest unexplored area otherwise. (d) 

The final target is hidden behind a corner that was not fully explored on the first pass and is not discovered 

until the entire environment has been explored. 
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Although the MMC policy is an improvement over the greedy approach, it still does 

not develop a complete plan to collect all waypoints as with ACO in fully observable 

environments. To adapt ACO for partially observable environments, we can treat each ant 

as a solution to the problem in an environment sampled from the distribution of all possible 

environments based on the current state of the mental map. This is effectively the 

approached used by Monte Carlo Tree Search (MCTS) (Browne et al. 2012) adapted for 

partially observable domains (Silver and Veness 2010). MCTS has been very effective at 

     
 (a) (b) (c) (d) 

     
 (e) (f) (g) (h) 

Figure 7.2  Some selected moments from the MMC policy’s solution to the same PO-TSP environment used 

in Figure 7.1. The top row (a-d) shows the pheromone map, which aggregates the shortest paths from the 

agent to sampled waypoints. The bottom row (e-h) shows the value map, which defines a gradient that the 

agent follows. Symbols are enlarged for clarity. The initial observation (e) is identical to Figure 7.1a, but 

instead of picking a target location, 1000 waypoint locations are sampled and the shortest paths back to the 

agent are aggregated in a persistent pheromone map (a). Performing value iteration on the unobserved regions 

of (a) gives the gradient map (e) that the agent follows. (b) and (f) show the maps after reaching four 

waypoints as the MMC agent recognizes the possibility of a waypoint in the top-right and discovers the 

waypoint that was missed by the greedy agent. (c) and (g) show the maps after visiting eight waypoints when 

the agent could proceed to the high value area in the left, but instead follows the local gradient toward the 

top and discovers the ninth waypoint. The final maps are shown in (d) and (h) where most of the pheromone 

has evaporated except for a single trail and only a single peak is left in the gradient map. 



293 

learning agent policies for problems modeled as Markov decision processes (MDPs) and 

partially observable MDPs (POMDPs). A multiobjective version of MCTS was used to 

solve the multiobjective physical traveling salesman problem (Perez et al. 2015), which 

was based on a competition to design a controller for an agent solving the single objective 

physical traveling salesman problem (Perez, Rohlfshagen, and Lucas 2012). MCTS 

methods could be very effective at solving problems in the CMM framework, which is 

well-suited for evaluating different agent strategies in a competition setting. 

Lastly, we mention that the CMM framework can be used to develop advanced 

visualization techniques for many-objective problems with fuzzy parameters. Solutions to 

pathfinding problems are easy to understand and interpret in isolation, but it can be difficult 

to convey the tradeoffs between many different Pareto optimal solutions. The visualization 

approach in (He and Yen 2016) can be used to show high-dimensional Pareto fronts, and 

the fuzzy rose diagrams introduced in (Buck and Keller 2014) can show fuzzy weighted 

graphs and the expected costs of multiple route options. These methods and others could 

help analysts better understand the results of multiobjective pathfinding algorithms. 

In closing, there are many potential avenues of research involving the CMM 

framework that could be further explored. From designing long-term agent strategies using 

MOEA/D-ACO and MCTS, to using the simulator to generate synthetic trajectories for use 

in anticipatory analysis applications, there are many possible use cases. Ultimately, the 

tools and methods presented in this work should prove to be valuable resources in the 

understanding of sequential multicriteria decision-making problems with uncertainty. 
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