
Capturing Uncertainty in Monocular Depth

Estimation: Towards Fuzzy Voxel Maps

Andrew R. Buck∗, Derek T. Anderson∗, Raub Camaioni†, Jack Akers∗,

Robert H. Luke III†, and James M. Keller∗

∗Electrical Engineering and Computer Science (EECS) Department, University of Missouri, Columbia, MO, USA
†US Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA

Email: {buckar, andersondt, kellerj, jdapm8}@missouri.edu, {robert.h.luke2.civ, raub.j.camaioni.civ}@army.mil

Abstract—Monocular depth estimation methods using struc-
ture from motion (SfM) have become increasingly capable
of reconstructing 3D representations from a sequence of 2D
images. In the context of unmanned aerial vehicles (UAVs),
these techniques can be used to create an occupancy map of
an environment, which is useful for planning and navigation.
OctoMap and a recent improvement, UFOMap, are commonly
used hierarchical representations that represent the value of a
voxel cell as the probability of being occupied. Although this
captures some uncertainty in the map and allows for dynamic
updates, it does not fully utilize the known characteristics of
the sensor and SfM algorithm, and it can lead to unnecessarily
noisy results. In this paper, we propose an approach to assign a
weight to each point in a point cloud update based on camera
extrinsics and SfM confidence. The weighted points are then
added to the voxel map in a way that more closely resembles a
degree of confidence rather than a probability. In this way, we
take the first steps toward designing a fuzzy voxel map that is
more robust in noisy situations and captures useful uncertainty
to help with UAV applications. We demonstrate our approach on
simulated scenarios using Unreal Engine and AirSim.

Index Terms—fuzzy voxel map, structure from motion, monoc-
ular depth estimation

I. INTRODUCTION

The representation of a 3D environment is an important

problem for many applications. In mobile robotics, a common

representation is a probabilistic occupancy grid. This approach

has been adopted and standardized by a large portion of the

community, with easy to stand up approaches such as OctoMap

[1] and UFOMap [2] capturing a significant amount of interest.

These solutions adopt a Bayesian view of the world, assuming

that observations come from range sensors in the form of

point clouds, and that updates to the map are done in a

probabilistic respect. Although these methods have proven to

be very successful, they do not capture all types of uncertainty

that may be present.

One type of uncertainty that is not typically modeled with

existing methods is the imprecision of range (depth) that

grows at farther distances. This is particularly important for

sensors that have to estimate depth without measuring it

explicitly, such as when using structure from motion (SfM)

techniques from a single camera. These algorithms can often

produce a self-assessment of confidence when generating new

predictions. This confidence is rarely utilized, however, which

can lead to errors in the reconstructed map.

In this article, we demonstrate a technique to incorporate

sensor confidence into existing voxel occupancy map software

packages such as UFOMap. We use a monocular depth estima-

tion algorithm called EpiDepth [3], which is optimized for the

conditions found when operating a small, single-camera UAV.

The expected quality of the depth predictions is dependent on

the relative camera poses, and the sensitivity of the method

can be determined by modifying the algorithm parameters.

This results in a per-pixel confidence value that can be used

to weight the observations as they are added to the map.

The basic approach of assigning weights to the point cloud

measurements is only a partial solution to what we envision

as a complete fuzzy voxel map implementation. By using

UFOMap as the mapping framework, we are restricted in how

new points are added to the map. Each new point updates

a single voxel as occupied, and free space is determined

by extending a ray from the camera focal point. Ideally, a

fuzzy voxel map could update multiple voxels with each point

update (i.e. using a frustum rather than a ray), expanding the

spatial uncertainty and decreasing the confidence for points

farther from the camera. The meaning of the value stored

for each pixel might also have different interpretations, such

as set membership rather than probability of occupancy. For

the current work, we only modify the point weights and do

not model spatial uncertainty, saving this extension for future

work.

The remainder of the article is as follows: Sections II

and III describe the related work, including EpiDepth and

UFOMap. Section IV describes our method for computing

confidence and inserting points into the map. We demonstrate

the approach with selected experiments in Section V and give

our conclusions in Section VI.

II. CLOSELY RELATED WORK

The current article has related work in the following areas.

While we focus on a 3D mapping algorithm called EpiDepth

[3], related state-of-the-art methods include multi-view stereo

(MVS) and structure from motion (SfM) [4], simultaneous

localization and mapping (SLAM) [5]–[7], etc.), deep learning

(DL) for single image depth estimation (SIDE) [8]–[10]),

and DL-based optical flow [11]. While we present specific

ways to extract measures of uncertainty from EpiDepth, this

philosophy can be extended and tailored to other algorithms.



Next, a world model can be organized in many ways. For

example, most mapping algorithms yield 3D point clouds in a

local camera coordinate system. Methods like SfM and SLAM

combine observations across looks (images or image pairs)

to produce a relative, or when external position information

is present, global 3D point cloud. Frequently, such data is

quantized into a more efficient discrete data structure like an

octree. In areas like robotics, many simplify the world further

into an occupancy grid map (OGM). In an OGM, each discrete

unit typically has a number (e.g., probability) that is ultimately

used to determine its state, e.g., unknown, free, or occupied

(UFO). In recent years, more advanced UFO probabilistic

structures such as OctoMap [1] and UFOMap [2] have been

proposed for ground robotics and drones. In [12], O’Meadhra

et al. introduced a compressed, generative, and more efficient

variable resolution structure based on probabilistic occupancy

mapping via Gaussian mixture models for autonomous cave

surveying [13] and reactive collision avoidance [14].

In [15], Oriolo et al. introduced the most directly related

work to our current article. Specifically, they proposed a con-

cept called a fuzzy map that is simply an OGM derived from

an ultrasonic range sensor. At each time step, they calculate a

membership degree with respect to empty and occupied based

on range, angular position, and errors originating from multi-

reflections. Next, a simple aggregation operation based on t-

norms and t-conorms is presented, which is used to update

the map. Last, a simple scheme based on A* is put forth for

path planning on this fuzzy map. In our final conclusions, we

highlight and compare key differences between our article an

Oriolo-style fuzzy map.

III. DIRECTLY RELATED WORK

A. EpiDepth

Many small UAVs are equipped with a monocular image

sensor and a GPS/IMU/magnetometer module that provide

a color image and camera extrinsics. This is sufficient for

SfM techniques to estimate 3D depth. The EpiDepth algorithm

[3] takes a stream of world-aligned image frames as input

and produces (for acceptable image pairs) a dense, per-pixel

depth estimation. EpiDepth can run in real-time on embedded

hardware with parameters to adjust the scale and quality.

Frames are selected sequentially based solely on their

relative camera extrinsics. In order to be considered, a pair

of frames must have a temporal and spatial displacement

within a defined range, and also be oriented in the same

general direction. From a valid frame pair, the color images

are warped and aligned so that optimized block matching

techniques can be applied to produce disparity and depth

images. By perturbing the pixel disparity estimations of the

algorithm, multiple depth maps are produced. An estimate of

error sensitivity and uncertainty can be computed from the

difference in resulting depth maps. The camera-space pixels

are then projected into a 3D point cloud and mapped into

world coordinates from the known camera extrinsics. In this

study, we do not perform any refinement of the camera position

(i.e. using SLAM methods), and rely on the accuracy of the

UAV position and orientation sensors to place the points into

a common world-space coordinate frame.

B. UFOMap

A voxel grid is a commonly used way to represent occupied

and free space for robotics applications. However, a naive

implementation is too inefficient to use in practice. OctoMap

[1] is a hierarchical solution based on octrees that stores the

probability of occupancy for each voxel. UFOMap [2] is a

more recent improvement of OctoMap that explicitly stores

unknown space and can be extended to export dense maps

with a uniform voxel size for additional analysis.

In both methods, point cloud observations are added to the

map incrementally, using the camera location to determine

free space. For each pixel in an image, a ray is cast from

the camera’s focal point through the pixel and ending at a

distance corresponding to the estimated depth of that pixel.

The voxel corresponding to the endpoint of the ray is updated

as an occupied voxel and all other voxels intersected along the

ray are updated as free space.

Voxel occupancy probabilities are stored in a log-odds

format, such that an “occupied” observation is equivalent to

adding some fixed amount, locc, to the voxel value, and a

“free” observation is equivalent to subtracting a fixed amount,

lfree. This provides an efficient representation that allows for

fast updates, and the values can be clamped to prevent satu-

ration and maintain responsiveness to dynamic environments.

Notably, these methods use a Bayesian approach for mod-

eling sensor uncertainty in the form of the update values locc
and lfree. These correspond to probabilities pocc and pfree
such that

l = log

(

p

1− p

)

(1)

and

p =
1

1 + exp(−l)
. (2)

However, spatial uncertainty is not explicitly modeled. Along

a given ray, only a single voxel is marked as occupied, and

only voxels intersecting the ray are marked as free. In reality,

as the distance from the sensor grows, so does the uncertainty.

A model that accounts for this might use a frustum rather than

a ray to determine which voxels to update.

IV. METHOD

A. Extrinsic Quality Metric

One of the greatest factors in determining the expected

quality of an EpiDepth prediction is the relative poses of the

two cameras. In order to achieve a good reconstruction, the two

cameras must be looking in generally the same direction with

a baseline perpendicular to the viewing direction. Consider

the examples in Fig. 1, which show several different camera

configurations (limited to a 2D plane for visualization). In

each, the vectors A and B represent the look directions of

the two cameras, which are separated by a baseline D. Our

extrinsic quality metric seeks to capture the intuitive quality

of these examples.



(a) (b) (c) (d)

Fig. 1. Extrinsic quality examples. (a) Excellent: Frames are separated
perpendicular to the look direction and aligned. (b) Good: Frames are
separated and mostly aligned. (c) Poor: Frames are aligned, but separated
in the look direction. (d) Bad: Frames are not aligned.

We use the following two heuristics when creating an

extrinsic quality metric.

• The angle ∠AB should be small.

• Angles ∠AD and ∠BD should be close to 90◦.

These are not exhaustive, and additional factors could be

included for specific use cases (i.e. favor nadir or slanted look

angles instead of those level with the horizon), but these two

heuristics serve to demonstrate the effectiveness of utilizing a

metric based on camera extrinsics.

To capture the first heuristic, we use the cosine similarity

between A and B, clipped to only positive values,

SAB = cos(∠AB) =
A ·B

∥A∥∥B∥
, (3)

HAB = max(SAB , 0). (4)

To capture the second heuristic, we again use cosine similarity,

SAD = cos(∠AD) =
A ·D

∥A∥∥D∥
, (5)

SBD = cos(∠BD) =
B ·D

∥B∥∥D∥
. (6)

However, we would like the measure to be less sensitive to

small changes when the look vector and baseline are close

to perpendicular (e.g. Fig. 1b). Because the cosine function

has maximum slope at 90◦, we flip and shift the values so

that the resulting measure is close to 1 when the vectors are

perpendicular and stays relatively high until the vectors are

nearly parallel.

RAD =
√

1− S2
AD (7)

RBD =
√

1− S2
BD (8)

The combined metric uses the minimum of these three

values to give the overall extrinsic quality.

QABD = min(HAB , RAD, RBD) (9)

This metric will be used in conjunction with the per-pixel con-

fidence values to assign weights to the updates in UFOMap.

Fig. 2 shows several examples of our extrinsic quality metric

on simulated image frames. The first two rows demonstrate

Fig. 2. Extrinsic quality examples. The left column gives the extrinsic quality
metric as computed by our method. The next three columns give a top, front
and side view of the two camera poses in 3D. The last two columns show the
corresponding image frames. A red and blue line is plotted on each image to
indicate the location of the epipole.

ideal conditions: moving forward while looking nadir and per-

forming a strafe maneuver while looking slightly downward.

The next two rows show common scenarios at a slant angle,

moving up or forward, with a slightly reduced score. The

bottom two rows are poor conditions, moving directly into

or out of the camera frame, while looking forward or down.

B. EpiDepth Prediction Confidence

For each selected frame pair, EpiDepth generates a predicted

depth image, P0. Adjusting the pixel disparity estimations of

the algorithm gives two additional depth predictions, P− and

P+. The three predictions indicate the uncertainty in depth at

different locations in the image. Due to the way these images

are generated, not every pixel will be assigned a depth value

in all three images. When a pixel p does have a value in one or

more depth images, we assume that P−(p) ≤ P0(p) ≤ P+(p).
Fig. 3 shows an example image frame and the corresponding

ground truth depth alongside the three EpiDepth predictions.

Pixels with no predicted depth are shown in gray.

In the standard EpiDepth approach, only the P0 image is

used to project 3D points, with no indication of the prediction

confidence. A comparison of this image with the ground

truth depth DGT can be seen in Fig. 4a. This image shows

the difference as a blue-white-red color map, with accurate

predictions shown in white and under/over predictions shown

in red/blue respectively using a log scale. An image that is

mostly white indicates a qualitatively accurate depth prediction

by EpiDepth.

The additional prediction images P− and P+ show the

sensitivity of the EpiDepth algorithm to different parameter

settings. The absolute difference between these images is a

measure of confidence in the predicted depth value. Smaller



Fig. 3. EpiDepth predictions for an example frame pair. Three predictions
are made: P

−
, P0, and P+. These give a measure of sensitivity and can be

compared to the ground truth depth, DGT .

(a) (b) (c)

Fig. 4. EpiDepth analysis images. (a) Difference between predicted depth,
P0, and the ground truth depth, DGT . (b) Calculated confidence image, C.
(c) Overlap image showing each EpiDepth prediction P+, P0, and P

−
on a

different color channel.

differences indicate greater confidence and larger differences

indicate lower confidence. We design a per-pixel confidence

measure based on this difference and scale to the (arbitrary)

range [0, 100]. The scores for all pixels in the image are then

multiplied by the extrinsic quality metric, QABD, to generate

the confidence image,

C(p) = max

(

100− a ·
(

P+(p)− P−(p)
)

, 0

)

·QABD. (10)

We use a value of a = 5 in our experiments. An example

of the confidence image is shown in Fig. 4b. Only pixels with

a value in all three depth prediction images are assigned a

confidence, since P− and P+ are needed for the calculation,

and P0 is the actual depth that will be projected (for consis-

tency with the standard approach). The overlap between these

prediction images can be seen in Fig. 4c, where each one has

been assigned a different color channel.

C. Voxel Map Updates

In the standard EpiDepth approach, each selected frame

pair produces a single depth image that is inserted once into

UFOMap using the known camera pose. For each pixel p in

P0, a ray is projected from the camera’s focal point through

p for a distance given by P0(p). The value of the voxel at

the endpoint of the ray is incremented by locc and all voxels

that the the ray intersects are decremented by lfree. Because

these values are stored in log-odds notation, this updates the

probability that each of these voxels represents occupied space.

The default version of UFOMap assumes that locc and

lfree are constants, which are applied to all inserted points

equally. An updated version of UFOMap could allow these

to be different for each inserted point, but we instead use a

workaround for the current study. By partitioning the points

in an update based on confidence, we can insert the same

points multiple times, which has the same effect as scaling locc
and lfree, albeit with some inefficiencies. We refer to this as

version of the algorithm as UFOMapα because the confidence

thresholds can be understood as α-cuts.

To achieve the desired result of updating the map with

individual α-cuts, we define the number of unique confidence

thresholds as Nt. An insertion of the same point Nt times

into UFOMapα should be equivalent to a single insertion

into the standard UFOMap. Therefore, locc = Nt · l
α
occ and

lfree = Nt · l
α
free, where lαocc and lαfree are the constant update

values used for UFOMapα.

Since the updates are performed in the log-odds space,

the corresponding probabilities (needed by UFOMap) can be

calculated as

p =
1

1 + exp
(

− 1

Nt

log( l
1−l

)
) . (11)

For our experiments, we use Nt = 10. The default update

probabilities of pocc = 0.7 and pfree = 0.4, which correspond

to log-odds values of locc = 0.847 and lfree = −0.405, are

then adjusted for the fuzzy approach to be pαocc = 0.521 and

pαfree = 0.490.

V. EXPERIMENTS

Our vision for a complete fuzzy voxel map solution will

require significant modifications to the tools that are currently

available. In the meantime, we demonstrate the viability of our

ideas on some example scenarios using the aforementioned

fuzzy methods described above. These experiments are per-

formed on an outdoor scene modeled in Unreal Engine using

the AirSim plugin [16]. We use lightly modified versions of

EpiDepth [3] and UFOMap [2] to support our analysis. The

components are connected via ROS and can support both real-

time operation and offline playback.

A. Wall Reconstruction

To demonstrate the advantage of using a fuzzy voxel map

that is confidence-aware, we examine a wall reconstruction

scenario in detail. For this experiment, a large wall was placed

in the environment to provide a fixed reference object at a

known distance. We first perform a strafe maneuver, moving

from right to left along the wall, which gives a very good

initial reconstruction. We then move backwards while looking

at the wall with a pitch angle that is nearly level with the

horizon. This results in a poor depth estimation by EpiDepth,

as would be expected from the extrinsic configuration.

Some analysis images from these two movements are shown

in Fig. 5. The first two rows are from the initial strafe

maneuver and we observe that the predicted depth P0 closely

matches the ground truth depth DGT , particularly on the wall

where the difference image shows mostly white. The bottom

two rows are from when the camera is looking at the wall



Fig. 5. Fuzzy wall scenario evaluation images. The first two rows are from the initial strafe maneuver, which results in a very good initial reconstruction.
The bottom two rows are from the receding away movement, which results in a poor depth estimation due to the camera extrinsics and increasing distance
from the wall. Each row shows a pair of image frames and the resulting depth prediction from EpiDepth. From left to right, the images show the camera
extrinsics and quality metric, the two image frames, the difference between the predicted depth and the ground truth, the ground truth, the three EpiDepth
predictions, the confidence image, and the overlap between the predictions.

Fig. 6. Top-down views of the voxel maps after six initial high-quality
observations moving sideways along a wall. Both the standard and fuzzy
versions closely match the ground truth with very good initial reconstructions.
The left column shows only the voxels marked as occupied, and the right
column also shows the voxels marked as free space in green.

while moving away. Because the epipole is contained within

the image, the extrinsic quality measure is much lower than

during the sideways movement. The depth prediction is also

much less accurate, both over and underestimating the depth.

The confidence images from the first movement show very

high confidence on the wall, whereas the confidence is much

lower in images from the second movement.

When we insert the observations into UFOMap, the advan-

tage of using the fuzzy UFOMapα becomes clear. We start by

inserting six EpiDepth observations from the initial pass into

Fig. 7. Top-down views of the voxel maps after six additional observations
with low confidence, moving backwards (down) away from the wall. The left
column shows only occupied voxels, and the right column shows free space
in green. Here, the standard method incorrectly marks voxels in the unknown
region behind the wall, whereas the fuzzy method is able to more accurately
capture the ground truth.

the map using both the fuzzy and standard methods. Fig. 6

shows top down views of the resulting voxel maps. For both

methods, the initial reconstruction matches the ground truth

very closely. Next, we update the map with six additional

observations from the backwards movement. These new obser-

vations are much less confident than the first six, and the fuzzy

method’s ability to handle this uncertainty results in a more

accurate reconstruction. Fig. 7 shows top down views of the



Fig. 8. Additional 3D views of the wall reconstruction scenario after the low-
confidence update. The left column shows the front side of the wall (occupied
voxels only), and the right column shows the unobserved (uncertain) back side
of the wall with observed free space shown in green. Significant holes can be
observed in the back side using the standard method.

voxel maps after the update. We see that the standard method

has eroded away parts of the wall as some points are projected

behind the existing structure. As these points are added, the

free space updates along the rays that intersect the wall reduce

the probability of occupancy for these voxels. This results in

some holes and spurious occupied voxels that are added in

what should be unknown space behind the wall. The fuzzy

method has significantly fewer reconstruction errors, mainly

because the low confidence of the observations resulted in

fewer actual updates to the map. Some additional 3D views

of the voxel maps after the second set of observations are

shown in Fig. 8. These views show how noisy the standard

method can be, and how the fuzzy method is able to create

cleaner reconstructions by not committing observations with

low confidence.

As an aside, we note that the map produced as ground truth

also contains some reconstruction errors, particularly on the

edges of objects with large differences in depth. This is an

artifact of using a simulated depth image, where a pixel might

represent multiple objects at different depths in the scene.

The rendering algorithm may choose to average these depths

or apply some additional processing that is not suitable for

generating accurate reconstructions. This is an issue we intend

to address in a future article, but for now it may be better to

refer to this reference as the “gold standard” vs ground truth.

(a)

(b)

(c)

Fig. 9. Voxel maps constructed by the random movement scenario. (a) Ground
truth. (b) Standard UFOMap approach. (c) Fuzzy UFOMapα approach.

B. Random Movement

Our second experiment demonstrates how UFOMapα com-

pares to the standard approach in a real-time setting using

random movements. In this scenario, the drone is commanded

to fly continuously to random waypoints within a fixed region,

each time with a different random pose. After over an hour of

flying and more than 700 EpiDepth frame pairs selected, the

resulting voxel maps can be compared.

Fig. 9 shows the voxel maps constructed by the standard

and fuzzy methods, as well as the ground truth map (gold

standard) observed during the experiment. The map produced

by the standard approach is clearly much noisier than the one

produced by UFOMapα. Many voxels have been added in the



Fig. 10. Example frame pairs and evaluation images from the random movement scenario. Each row shows a pair of image frames and the resulting depth
prediction from EpiDepth. From left to right, the images show the camera extrinsics and quality metric, the two image frames, the difference between the
predicted depth and the ground truth, the ground truth, the three EpiDepth predictions, the confidence image, and the overlap between the predictions.

sky, where the EpiDepth algorithm failed to detect and clip out

the invalid regions. The map produced by UFOMapα is much

cleaner, although it lacks many of the fine details present in the

ground truth. These details are also missing from the standard

UFOMap reconstruction, indicating that some improvements

could still be made to the depth prediction algorithm.

Some example frame pairs selected by EpiDepth from this

scenario are shown in Fig. 10. We see a variety of pose config-

urations that lead to different extrinsic quality scores. Frame

pairs with low extrinsic scores result in lower confidence

images and less weight applied to the map update. Frame pairs

with higher extrinsic scores are added to the map with more

confidence and weight. We notice that the prediction accuracy

when compared to ground truth is generally good for broad

terrain features, but not necessarily small details. Accuracy

also decreases at farther distances and occasionally around

the edge of the image. Many of these features such as trees

and buildings are not currently detected properly by EpiDepth,

which limits how well they can be reconstructed in the voxel

map. These are known limitations of EpiDepth which can be

improved with better image quality and parameter selection.

This is part of the motivation to be able to better utilize the

confidence of the depth predictions when building the voxel

map.

VI. CONCLUSIONS AND FUTURE WORK

The standard version of UFOMap and most voxel-based 3D

mapping solutions do not fully capture the variable uncertainty

that may be present when adding new sensor measurements.

Small UAVs with image sensors can provide real-time depth

estimates with SfM techniques such as EpiDepth, but these

methods are fundamentally different than range based ap-

proaches like LiDAR that measure depth directly. The known

algorithmic limitations of SfM lead to depth prediction con-

fidences that are lost with the standard approach. Our fuzzy

method, UFOMapα, is able to use a measure of prediction

confidence to build cleaner and more accurate 3D maps.

The ideas presented in this article are intended to highlight

the importance of capturing all types of uncertainty present

when building 3D voxel maps of an environment. These

maps ultimately represent some notion of the occupancy of

a region of space (voxel). In a Bayesian setting, this might

be in the form of a belief or probability that a voxel is

occupied. A fuzzy interpretation might use separate maps

to represent membership in the sets for occupied and free

space as in [15]. In both cases, space is represented in a way

that handles uncertainty and the unknown, but by not being

limited to probabilities, additional logic and reasoning can be

applied to build more useful maps. For instance, by using the

agreement or contrast between the occupied and free sets, one

can compute a measure of ambiguity or indeterminacy. This

can lead to a more formal definition of which voxels are safe

or unsafe to visit.

In future work, we intend to develop and make publicly

available a complete fuzzy voxel mapping solution that extends

the method presented in the present article. The fixed confi-

dence thresholds of our approach can be made continuous, and

the update procedure can be optimized. The region of space

that is updated with some confidence of occupancy for each

point can be made to extend beyond a single voxel, using a

frustum that captures spatial uncertainty as well as confidence.

We will also be investigating quantitative evaluation metrics to

score and compare the different methods. These improvements

will bring us closer to realizing a practical implementation of

a full fuzzy voxel map.
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