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Abstract—Determining depth from a single camera in motion is
a challenging problem that has numerous applications, including
autonomous navigation of an unmanned aerial vehicle (UAV).
Using traditional computer vision techniques such as structure-
from-motion (SfM), a depth estimate can be generated using
two image pairs from the video stream. The choice of image
pairs directly impacts the quality of reconstruction, which is
based largely on the camera extrinsics and image features.
In this article, we discuss frame selection algorithms to select
appropriate image pairs to process for depth estimation. Frames
are stored in a rolling buffer, and several measures are computed
on potential frame pairs based on camera extrinsics. We use a
customized SfM algorithm, EpiDepth, which has been designed
for handling sequences of aerial imagery with embedded GPS
and camera pose metadata. We demonstrate our technique on a
simulated dataset created using Unreal Engine and AirSim.
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I. INTRODUCTION

Mapping a 3D environment with a UAV is a common task that
relies heavily on computer vision techniques. Depending on the
specific application, there may be varying degrees of sensor precision
and autonomy. One challenging case involves the use of a remotely
controlled UAV with reasonably accurate pose information, but only
a single camera. In this situation, 3D information (depth) must be
inferred using structure-from-motion (SfM) on sequential frame pairs,
and the camera poses are independently determined by the remote
operator. The problem then becomes how to select appropriate frames
from the video sequence to perform the best SfM reconstruction. This
problem is separate (but related) to the general task of 3D scene
reconstruction, since we assume that the UAV flight pattern is fixed
or that the frame selection algorithm has no control over it.

The motivation for this work arises from our initial experiments
with reconstructing depth from actual UAV flight recordings, where
camera poses could be derived from GPS/IMU/Magnetometer meta-
data, and any pair of frames could be used as a stereo pair for SfM.
We determined that the relative poses of the frames was one of the
most important factors in determining reconstruction quality. A sim-
ple frame selection strategy was ignoring many potential good pairs,
and often selecting sub-optimal pairs. The frame selection algorithm
could therefore be improved and draw upon known properties of the
epipolar geometry.

To study this problem, we utilize a simulation environment using
Unreal Engine and AirSim [1]. This allows us to generate data in a

controlled setting, where we have access to exact pose information
and ground truth depth. The results of our study can be easily
transferred back to real-world data, since the algorithms depend
only on having access to the camera pose information. The lack
of sensor noise in our simulated dataset provides ideal conditions
for an experiment to study the impact of different methods. Herein,
we generate a synthetic dataset to use for the development of three
different frame selection strategies and quantitatively compare the
results of each.

For each method, we replay the recorded frames and select (in
sequence) frame pairs to use for SfM. Each selected frame pair has
known camera pose parameters and can therefore be used as input to
the EpiDepth algorithm [2] to estimate a dense cloud of 3D points.
An overview is shown in Fig. 1. The images are warped according
to the epipolar geometry of the two camera views, and the amount
of warping can vary depending on the relative poses. Some poses are
known to be more effective at estimating depth (e.g. moving while
looking nadir or strafing), while others tend to be less effective (e.g.
looking straight ahead while moving). Our frame selection strategies
use the pose information of the camera views as the primary method
of ranking and choosing frame pairs.

We present three different frame selection methods: a naı̈ve
approach using a simple strategy, a heuristic-based approach that
computes an expected quality based on the camera extrinsics and
uses a rolling frame buffer, and a data-driven approach that uses the
synthetic dataset to learn which pose configurations work best. The
remainder of this paper discusses the details of this dataset, the frame
selection methods, and our experimental analysis. We conclude with
a discussion on the limitations of this study and present some ideas
for future work.

II. RELATED WORK

The problem of 3D mapping from a UAV has been widely studied
[3], with most techniques using some form of SfM [4]. The mapping
task is often the primary focus, such that equipment and mission
parameters are chosen to optimize the final output after offline pro-
cessing. For instance, high-precision GPS/IMU/magnetometer units
can be used with a regular grid flight pattern to reduce the uncertainty
in camera poses and produce a uniformly sampled 3D map. However,
in some cases real-time operation is required, and the flight trajectory
may be unknown ahead of time. This requires a different approach
that can make the best use of what data is available.

The EpiDepth algorithm [2] is designed to robustly handle the wide
variety of camera poses that can occur in real-time UAV flight and
produce 3D depth estimates from image pairs. Using known camera



Fig. 1. Overview of the frame selection process. A UAV flies through an environment (a), generating a sequence of image frames (b). Our frame selection
algorithm has access to the history of all past frames and must select pairs of frames to use for stereo reconstruction. Each frame pair (c) has known pose
parameters and can be used to generate a 3D point cloud (d).

extrinsic parameters, the algorithm takes two frames and performs
epipolar warping to align the image features such that optimized
block matching can be performed to estimate disparity. The result
is a 3D point cloud that is typically aggregated in a world-space
map, such as the hierarchical voxel method of UFOMap [5]. Note
that EpiDepth does not solve the localization problem addressed by
SLAM, but can still produce high-quality maps with accurate sensors.

III. BACKGROUND

A. Epipolar Warping Effects

The process of rectifying a pair of images into a common image
plane can result in significant warping. The EpiDepth algorithm
uses the extrinsic camera parameters to transform each image such
that all matching epipolar lines appear as horizontal rows in the
warped images. Depending on the relative configuration of the two
cameras, the amount of warping can vary. For example, forward
movement while looking nadir or a sideways strafing motion tends
to result in very little warping from the original images. In contrast,
forward movement while looking straight ahead is very challenging.
Generally, less warping is required if the epipoles are not contained
within the images.

Some examples of epipolar warping effects are shown in Fig. 2.
Here, we see that the first row with Nadir movement results in almost
no warping, although the images have been rotated 90◦. The next
two rows have similar relative poses: a vertical climb and forward
motion, both with the camera pointing downward at 45◦. In both
of these cases, the warping is noticeable, but modest. The last row
shows the dreaded straight ahead movement. Here, the epipoles are
in the center of the images (indicated by the red and blue crosshairs),
and the image warping is significant.

Fig. 2. Epipolar warping effects.

B. Extrinsic Quality Metric

A heuristic method was presented in [6] to represent the expected
amount of warping that would occur by running EpiDepth on any
two camera poses. The method uses only the extrinsic parameters of
the cameras and does not rely on any image content. The metric is
a function of the angles between two look vectors A and B as well
as the baseline vector D. The intent is that in order to score highly
(close to 1), the angle ∠AB should be small, and the angles ∠AD
and ∠BD should be close to 90◦. Look vectors that stray too far
from this ideal score lower, with a minimum score of zero.



Fig. 3. Examples of EpiDepth results on frame pairs with good extrinsic camera parameters.

Fig. 4. Examples of EpiDepth results on frame pairs with bad extrinsic camera parameters.

The effect of this metric is that any potential image pair can be
evaluated quickly to assess if EpiDepth is likely to produce a good
result. The first condition ensures that images are looking in the
same general direction, and the second condition makes sure that
the separation is perpendicular to the camera orientation (not moving
along the camera axis). Although this is a hand-crafted heuristic, it
has been shown to be useful for identifying good image pairs and is
an important part of our frame selection algorithms.

IV. SIMULATED UAV DATASET

For this study, we created a simulated dataset using Unreal Engine
and AirSim in the Mountain Village Environment [7]. The simulated
UAV was programmed to takeoff and climb up to a fixed altitude,
and then move to random waypoints with random look directions
(between nadir and horizontal). This produced a wide variety of
motion examples that covers most of the possible movement patterns
we expect to encounter in practice. We collected about 1000 frames

of data, where each frame includes the RGB color image, the ground
truth depth image, and the pose (position and orientation) of the
camera. By having access to simulated ground truth depth, we can
quantitatively evaluate the quality of the EpiDepth reconstruction.

Any pair of images from our dataset could be used as input to
EpiDepth. However, in order to produce a good result, the images
need to have significant overlap and acceptable camera extrinsics.
Typically, they are also captured very close to one another in time.
Figures 3 and 4 show several examples of image pairs from the
dataset and the corresponding EpiDepth results. In both figures we
show each frame pair as a row with the inputs, outputs, and several
error metrics.

In each row of these figures, Frame 1 and Frame 2 are the input
RGB images that EpiDepth receives. The camera extrinsics are shown
as top, front, and side view diagrams of the two camera positions. The
EM value is the extrinsic metric heuristic computed for this frame
pair, and the BL value is the baseline distance. The positions of the



TABLE I
FRAME SELECTION RESULTS

Total Pairs Completeness RMSE-Log

Naı̈ve 142 0.432± 0.226 0.035± 0.010

Heuristic-Based 592 0.364± 0.190 0.030± 0.138

Data-Driven 453 0.322± 0.249 0.024± 0.027

epipoles are indicated by red and blue crosshairs on the Frame 1 and
Frame 2 images. To show the amount of warping, both warped images
are also shown. The ground truth depth is displayed for each frame
pair, but is not available to EpiDepth and is used only for scoring.
The depth color map is constant for all images, with a maximum
depth of 100 meters. The EpiDepth prediction is shown next to the
ground truth, with undeclared pixels shown as gray. The rightmost
image shows the difference between the prediction and ground truth
on a red-white-blue color map, where white indicates an accurate
prediction, red indicates the prediction was too far, and blue indicates
the prediction was too close.

Several error metrics are computed on the comparison of each
prediction to the ground truth, and these are listed on the left side of
each row. Of these, completeness measures the percentage of declared
pixels in the predicted depth image. The a1, a2, and a3 scores are
the average inlier rates for the prediction, where a1 measures the
percentage of pixels where the predicted depth is within a ratio of
1.25 of the ground truth depth, and a2 and a3 use ratios of 1.252

and 1.253 respectively. The rmse and rmse log scores are the root-
mean-square errors in Euclidean and log space, and the abs rel and
sq rel scores are the mean absolute differences and mean squared
differences of the predicted depths relative to the ground truth.

Figure 3 shows several good cases of frame pairs chosen for
EpiDepth. The top two rows show nadir examples with high EM
scores, and depth predictions that are both complete and accurate.
The bottom two rows show examples looking out toward the horizon,
with lower EM scores and less completeness, but still high accuracy.
Figure 4 shows some cases where EpiDepth does poorly. The first row
shows a case where the UAV is moving forward and the epipoles are
contained within the images. Note that there is no depth prediction
near the epipoles. The second row shows a case where the baseline
distance is too small, resulting in large prediction errors. The third
row shows a case where the baseline is too large for the configured
window size, so corresponding features are missed, which results
in low completeness. Finally, the last row shows a case where the
images do not overlap, yielding no depth prediction at all.

V. FRAME SELECTION METHODS

In this section, we discuss three different methods for selecting
frame pairs to use with EpiDepth. For each method, we assume that
the algorithm is provided a stream of image frames with known
camera poses. As new images arrive, the algorithms must produce
appropriate frame pairs that will be processed by EpiDepth. The
first method uses a simple naı̈ve strategy with no frame buffer.
The second method uses a frame buffer and the extrinsic quality
metric as a heuristic. The third method is a data-driven approach that
uses simulation to build a model of expected performance, and then
uses this model to predict which frames will be best. We use the
aforementioned simulated dataset as a common example to compare
the approaches.

A. Naı̈ve Frame Selection Method

In this first frame selection method, the strategy is to keep a current
candidate frame and attempt to match it with new incoming frames.
The complete algorithm is given in Algorithm 1. The process starts by
initializing the first frame as f0. For each new frame ft, we compute
the baseline distance, d, between it and the candidate frame. If this
value is in the acceptable range between dmin and dmax, we then
proceed to compute the rotational distance, r, between the two camera
poses, defined here as the angular distance between the look vectors.
If r is less than the maximum acceptable value rmax, then the frame
pair (f0, ft) is yielded to EpiDepth for processing, and the algorithm
continues by assigning f0 ← ft. If at any point the distance between
f0 and ft becomes larger than dmax, the old frame f0 is dropped
and replaced with ft.

Algorithm 1 Naı̈ve Frame Selection

1: Define dmin, dmax, and rmax

2: Initialize frame f0
3: for each new frame ft do

4:

5: // Get baseline distance

6: d← DISTANCE(f0, ft)
7:

8: // Check if extrinsics are acceptable

9: if dmin ≤ d ≤ dmax then

10: r ← ROTATION(f0, ft)
11: if r ≤ rmax then

12: yield (f0, ft)
13: f0 ← ft
14: end if

15: end if

16:

17: // Drop old frame

18: if d > dmax then

19: f0 ← ft
20: end if

21:

22: end for

The result of running this method on our simulated dataset is
shown in Fig. 5a. This scatter plot shows a mark for each selected
frame pair, with the horizontal axis showing the original frame index
of the most recent frame, and the vertical axis showing how far back
the selected match was in the sequence. In total, 142 frame pairs were
selected with the majority of the pairs being only one or two frames
apart. The outliers near the start are due to the takeoff sequence,
which is different from the rest of the flight. Overall, the frame pairs
that this method selected were generally good as indicated in Table I,
but the total number of pairs produced was low.

B. Heuristic-Based Frame Selection Method

To improve upon the naı̈ve frame selection method, the next
approach uses the extrinsic quality metric as a heuristic along with a
rolling frame buffer. The complete algorithm is given in Algorithm 2.
Each time a new frame ft arrives, it is added to the buffer, which is
searched in reverse to find an acceptable match. For our experiments,
we use a buffer size of 50 frames. After updating the buffer with the
new frame and removing the oldest frame if the buffer is full, we
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Fig. 5. Frame pairs selected by the naı̈ve method (a), the heuristic-based method (b), and the data-driven method (c) on the simulated dataset. The horizontal
axis shows the frame index (time), and the vertical axis shows the relative offset (back in time) of frames that were matched. Dots indicate frames that were
selected.

begin a loop to check each prior frame ft−i to see if it is good
enough. We first check to make sure that the frames are far enough
apart to produce a good reconstruction. If so, we then continue to
evaluate the extrinsic quality metric for the frame pair. If the quality
q is above the threshold qmin, the frame pair (ft, ft−i) is yielded to
EpiDepth and the search stops. The effect of this is that each frame
is matched with the most recent frame that would be an acceptable
match, as defined by the distance and extrinsic quality metric.

This method results in a total of 592 frame pairs being selected,
which is many more than the naı̈ve approach. The results shown
in Table I show that although the completeness was reduced, the
average RMSE-Log score was improved. The plot in Fig. 5b shows
the selected frame pairs, which now includes pairs that have a much
larger frame index offset. These “rising trails” can be explained by
the slowing motion of the UAV as it approaches each waypoint. As
the distance between successive frames decreases, the algorithm has
to search farther back in the buffer to find an acceptable paring. The
effect is that the same frame may be used multiple times as an anchor
for several frame pairs.

C. Data-Driven Frame Selection Method

The final frame selection method seeks to improve upon both
the naı̈ve and heuristic-based methods by utilizing the ground truth
provided by the simulated data set. Since each frame in the dataset
has a corresponding ground truth depth image, we can evaluate
the accuracy of any possible frame pair and compute several error
metrics. Many of these metrics are described in Section IV. Perhaps
the most relevant for assessing the overall quality of reconstruction
are the completeness scores and the RMSE-Log values. We would
like for completeness to be high, indicating that a large part of the
image receives a depth prediction. We also want the RMSE-Log value

Fig. 6. Scatter plot of the RMSE-Log and completeness scores for all possible
frame pairs in the simulated dataset. The Pareto optimal set is shown in
orange, along with some example images. The weighted score for each point
is indicated by the color mapping, with the highest scoring pairs in bright
yellow and the lowest scoring pairs in dark blue.

to be low, showing that the EpiDepth prediction is a close match to the
ground truth. These two objectives are plotted in Fig. 6, which shows
the completeness and RMSE-Log values for all possible frame pairs.
The Pareto optimal set is highlighted in orange, spanning frame pairs
that have very low error, but also low completeness, to pairs that have
high completeness, but also high error. Between these two extremes
are frame pairs that result in a good balance of completeness and
error. We define a linear weighting of these two features that results



Algorithm 2 Heuristic Frame Selection

1: Define N , dmin, and qmin

2: Initialize rolling frame buffer B

3: for each new frame ft do

4:

5: // Update the frame buffer

6: B.insert(ft)
7:

8: // Find an acceptable frame to pair with ft
9: for i = 1 to N do

10:

11: // Check if far enough apart

12: d← DISTANCE(ft−i, ft)
13: if d < dmin then

14: continue

15: end if

16:

17: // Check if EQ is good enough

18: q ← EXTRINSICQUALITY(ft−i, ft)
19: if q ≥ qmin then

20: yield (f0, ft)
21: else

22: // Stop looking for a pair with ft
23: break

24: end if

25:

26: end for

27:

28: end for

in an overall score, indicated by the color mapping. The best frame
pairs are plotted in bright yellow, and the worst pairs are plotted in
dark blue.

We next train train a neural network to predict the expected
overall score of any given frame pair based on the camera extrinsic
parameters. The input is formatted as the flattened translation vectors
and rotation matrices of the two camera poses. This is fed through
two hidden layers of size 64 and 32 respectively, and a single output
neuron with ReLU activation functions. We train on 80% of the
available data (approximately 50,000 frames) for 1000 epochs and
achieve an MSE loss of 0.4515 on the remaining test set. This
trained network is then used as part of the real-time data-driven frame
selection method.

The overall method for the data-driven approach is given in
Algorithm 3. The process is very similar to the heuristic-based
method, using a fixed-size frame buffer and scanning through the
buffer to try and find a match for each incoming frame. Instead of
using the first acceptable frame, this method finds the frame in the
buffer that produces the best predicted score as evaluated by the
neural network. If this frame meets some minimum threshold and
also satisfies the distance and extrinsic metric requirements, the frame
pair is yielded to EpiDepth. Otherwise no pair is produced for this
incoming frame.

The results of this method on the simulated dataset given in Table I
show that 453 frame pairs were selected, which is fewer than the
heuristic-based approach, but still many more than the naı̈ve method.

Algorithm 3 Data-Driven Frame Selection

1: Define N , dmin, qmin, and pmin

2: Initialize rolling frame buffer B

3: for each new frame ft do

4:

5: // Update the frame buffer

6: B.insert(ft)
7:

8: // Find an acceptable frame to pair with ft
9: fbest ← ∅

10: pbest ← −∞

11: for i = 1 to N do

12:

13: // Check if acceptable distance and EQ

14: d← DISTANCE(ft−i, ft)
15: q ← EXTRINSICQUALITY(ft−i, ft)
16: if d < dmin or q < qmin then

17: continue

18: end if

19:

20: // Predict the quality of the frame pair

21: p← PREDICT(ft−i, ft)
22: if p > pbest and p ≥ pmin then

23: pbest ← p

24: fbest ← ft−i

25: end if

26:

27: end for

28:

29: // Yield the best frame pair if one was found

30: if fbest ̸= ∅ then

31: yield (fbest, ft)
32: end if

33:

34: end for

The average completeness was lower, but the RMSE-Log score was
the best of all the methods. Fig. 5c shows a frame pair selection
pattern similar to the heuristic-based approach, but slightly sparser.
Again, the “rising trail” pattern is caused by the UAV easing into each
waypoint and pausing, causing new frames to match farther back in
the buffer to an anchor frame that was far enough away to satisfy the
minimum distance requirement.

VI. QUALITATIVE 3D ANALYSIS

Ultimately, our goal is to generate accurate and high-quality 3D
reconstructions of an environment. As the UAV moves and generates
a sequence of images, we select the best frames to use for SfM with
EpiDepth. Although each frame pair can be evaluated independently,
some aspects of the problem are only observed after combining
multiple projections into a 3D map. We use UFOMap to aggregate
the 3D point clouds into a common hierarchical voxel space using
a probabilistic observation model. As more subsequent points are
observed within a grid cell, the probability of occupancy increases,
whereas observing free space between the camera and a projected
point decreases the value. The effect is that by utilizing multiple
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Fig. 7. UFOMap reconstructions of the simulated datset using the different frame selection methods. The path of the drone is shown as a yellow line, with
the look vector of each frame drawn in cyan. (a) Ground truth. (b) Naı̈ve method. (c) Heuristic-based method. (d) Data-driven method.

updates to the map, small errors are averaged out, resulting in a
more accurate and complete model.

The UFOMap reconstructions from the different frame selection
methods on the simulated dataset are shown in Fig. 7. Here, we give a
qualitative assessment of the results by comparing each method to the
known ground truth. We observe that the ground truth reconstruction
(Fig. 7a) is the most detailed, showing sharp edges on buildings and
individual trees. The reconstructions from the three frame selection
methods (Fig. 7b, Fig. 7c, and Fig. 7d) are all very good, but with
slightly less definition than the ground truth. It is difficult to find
significant differences between them. Perhaps this is not unexpected,
since the 3D projections all come from the same possible set of
input images and differ only in which projections are added to the
map. Since there is no noise in the simulated camera poses, the
reconstructions are all very accurate, although limited by the image
features that can be detected with frame matching. A quantitative
analysis with additional experiments could reveal more differences
between the approaches.

VII. CONCLUSIONS AND FUTURE WORK

Selecting the best frames to use for SfM is an important part of a
real-time 3D mapping system. The frame selection methods presented
here are suitable for use on a UAV system where pose information is
available, but not necessarily controlled by the algorithm. We believe

that the data-driven and heuristic approaches using a frame buffer
offer better results than the naı̈ve method. These methods generate
more frame pairs, which can help average out any errors in the overall
reconstruction.

Our experiments with this simulated dataset showcased nearly
ideal operating conditions, with very little sensor noise, and very
accurate pose information. In real-world situations, these may become
significant factors that influence the frame selection algorithms.
The random flight pattern exhibited here was used to capture a
broad distribution of all possible poses, but a focused study using
anticipated movement behaviors could be insightful. For instance,
flying in a zig-zag pattern could produce useful stereo pairs while
still moving forward towards a goal.

Future efforts will focus on evaluating these frame selection algo-
rithms on real data and introducing sensor noise into the simulated
dataset. While real datasets can be difficult to score quantitatively
due to the lack of ground truth, simulated datasets can be be
used measure the quality of a 3D reconstruction. We have explored
several metrics for comparing voxel maps [8] and can decompose the
analysis to focus on the reconstruction accuracy of different variables,
such as object type and range [9]. Ultimately, these frame selection
methods are just one part of a larger system that is subject to many
uncertainties, but by improving and understanding each component
in detail, we create a more robust and general system that can handle
a variety of real-world situations.
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