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Abstract—Depth estimation from imagery is a cru-

cial component of numerous real-time systems, such as

unmanned aerial vehicles. Traditional approaches, like

structure from motion (SfM), rely on stereo cameras

or sequential images from a single moving camera to

infer depth. However, these methods often yield sparse

or incomplete depth maps. Moreover, their accuracy is

contingent on factors like baseline and platform motion.

Recent advancements leveraging deep neural networks

have exhibited remarkable outcomes in predicting dense

depth from a single image. Nonetheless, the reliability

of these black box models is a concern, and the depth

approximations they provide often require refinement. In

this study, we delve into the merits and drawbacks of each

approach, exploring the potential synergies that could arise

from their combination. The initial approach, serving as

our baseline, relies solely on sparse SfM depth estimates. In

contrast, the second method employs spatial interpolation

to fill in missing SfM depths. These methodologies are then

contrasted with the performance of two deep nets—one

trained on simulated data and the other on real data. The

validation of all four approaches is conducted against a

gold standard generated using the Unreal Engine.

Keywords— structure from motion, monocular depth esti-

mation, single image depth estimation, fusion

I. INTRODUCTION

In this research endeavor, our overarching objective is to

achieve real-time 3D reconstruction of an environment with

minimal errors and maximal completeness. We operate under

the assumption of having access to a live feed of color

imagery and reliable extrinsic information. However, a critical

challenge lies in performing accurate depth estimation using

only these inputs. Existing literature, coupled with insights

from our prior work, presents a plethora of solutions to this

predicament. Yet, none of these individual solutions has proven

sufficient for our specific application. Typically, these methods

fall into one of two categories: Structure from Motion (SfM)

or Single-Image Depth Estimation (SIDE). In this context, we

propose and investigate the integration of post-processing and

fusion techniques to leverage the strengths inherent in both

SfM and SIDE approaches.

II. RELATED WORK

There exists a massive body of related work in the area

of three dimensional reconstruction from imagery, with many

overlapping fuzzy boundaries. Readers can find a compre-

hensive recent overview of Structure from Motion (SfM) and

Multi-View Stereo (MVS) in [1], delve into deep learning for

SfM [2], or explore Simultaneous Localization and Mapping

(SLAM) in [3]. Most relevant to this article, early investiga-

tions into Single Image Depth Estimation (SIDE) [4] focused

on tasks like semantic segmentation and they distinguished

between indoor and outdoor environments. In SIDE’s evo-

lution, its scope was expanded to include elements like log

space, spatial coordinates, global context, considerations of

relative vs absolute depth, and more. The latest and most

impressive generation includes deep neural networks, which

includes but is not limited to unsupervised depth and ego-

motion learning from video [5], Monodepth [6], Monodepth2

[7], DPT [8, 9], and unsupervised monocular depth learning

from unknown cameras [10]. Notably, these algorithms operate

without access to ground truth depth, because of real data, and

as a result they rely on self-supervised learning via video and

motion exploitation. Most of these networks adopt some form

of a pose and depth architecture, using self-supervised learning

from video data to predict the pose of consecutive images. This

pose estimation is then employed to train a network, mapping

a single input image to depth. During evaluation, the pose



net is typically bypassed, and images are directly mapped to

depth. Arguably, these contemporary network-based estimators

may not strictly adhere to the traditional definition of SIDE.

Last, in a departure from the popular self-supervised paradigm,

our recent work, coined simulation driven passive ranging

(SimPR) [11], leveraged simulation (SIM) to enable accurate

evaluation and SIM has the advantage that it obviates the

need for self-supervised learning. As a result, if SIM is a

close enough photorealistic match, then SIDE models can be

bootstrapped or directly learned. The next two subsections

detail the traditional and SIDE approaches explored herein.

A. Hand Crafted SfM via EpiDepth

Numerous small Unmanned Aerial Vehicles (UAVs) come

equipped with a monocular image sensor and GPS/IMU/-

magnetometer, providing color imagery and camera extrinsics.

This data can be leveraged by an SfM algorithm to estimate

depth and ultimately three dimensional scenes. Our EpiDepth

algorithm, Camaioni et al., [12] takes a continuous stream of

images as input and it generates dense, per-pixel depth esti-

mates. EpiDepth is unique in the respect that it is designed for

real-time operation on embedded hardware, offering adjustable

parameters for scale and quality optimization. For the sake of

this article, let It be an image at time step t. Epidepth is

a function, E(It, It+k), which produces a depth image Dt,

such that di,j ∈ ℜ+ is the depth associated with pixel (i, j) in

a real-world system (e.g., lat/lon coordinates). The only other

information required for this article is EpiDepth’s ability to es-

timate an uncertainty value per-pixel. In [13], we showed how

to calculate such a “confidence” value, Ui,j ∈ [0, 1]; where 0
means do not trust pixel (i, j) and 1 is fully trust. Figure 1

is an example of EpiDepth, which results in an unoccupied,

free, and occupied three dimensional map (UFOMap) when

multiple depth images are fused [14], or a fuzzy voxel space

if Ui,j is utilized [13].

B. Deep Neural Network-Based SIDE

In our previous work [11], we (Buck et al.) introduced

SIM passive ranging (SimPR) for two main purposes. Firstly,

SimPR was designed to generate precise ground truth for depth

assessment. In [15], we (Akers et al.) explored various voxel

space metrics to understand, evaluate, and compare different

3D estimation algorithms. Additionally, in [11], we utilized

SimPR for in-depth performance analysis, allowing filtering

based on user-defined factors like range intervals, per-pixel

object labels, image features (e.g., mixed pixel edges), and

camera specifics like field of view.

The second advantage of employing SimPR is to acquire

photorealistic imagery with associated metadata and truth

across diverse environments and contexts for training a SIDE

algorithm. This is challenging, if not impossible, to achieve

densely and at scale in the real world. However, our later

work [16] revealed that while SIM truth extraction surpasses

real-world capabilities, it is not flawless. Specifically, in the

realm of computer vision, defining a pixel becomes a nuanced

challenge. For a detailed exploration of trust extraction and AI

bias mitigation, readers can refer to [16]. In this context, we

refer to SIM as a “gold-standard” versus absolute truth

Figure 3 summarizes the use of SimPR in the current article.

Specifically, we crafted a SIM environment where an agent,

represented by a low-altitude drone, navigates randomly in

a scene. At each moment, an image, its ground truth, and

metadata is extracted. Subsequently, SimPR computes a depth

estimate, which is compared to the extracted golden standard.

Our assessment involves per-pixel error, which is used to

iteratively update our network weights.

In this initial investigation, SimPR ran continuously for

multiple days with the primary aim of constructing an ex-

ceptionally accurate model in a single map. Our deliberate

strategy involved overtraining our SIDE network, pushing it

to its upper performance limit. We chose this approach strate-

gically, especially considering our subsequent comparisons

with SimPR findings versus DPT. DPT, a model trained on

millions of real images with questionably acquired supervised

depth, is anticipated to perform suboptimally compared to

our overtrained SimPR. This expectation stems from DPT’s

limited exposure to aerial contexts and its training data, which

was predominantly at relatively close range compared to our

longer-range SIM environment. For the sake of completeness,

we also included an undertrained variant of SimPR that had

only been exposed to a building-free variant of the sim

environment under different weather and flight conditions. We

employed Unreal Engine 4.27, used Microsoft’s AirSim plugin

[17], and used the Mountain Grassland Environment [18],

which is available on the UE Marketplace (see Figure 2).

III. METHODOLOGIES

The subsequent section delineates our initial foray into

various approaches for integrating a SIDE network with a

meticulously crafted SfM algorithm. In Method 1 (M1), de-

tailed in subsection III-A, we contemplate the concept of

discovering a linear affine transformation to register the output

of a SIDE network based on a select set of dependable SfM

anchor points. Conversely, in M2, covered in subsection III-B,

we entertain the opposing notion of not fusing but rather filling

in the gaps within our SfM algorithm.

A. Method 1: Linear Fit

Our initial attempt to integrate a deep neural net depth map

with a SfM estimate involves assuming a linear relationship



Fig. 1. EpiDepth algorithm applied to real world micro drone data: (Upper left) current input, (upper center) synthetically rendered drone

position in voxel space (via UFOMap), (upper right) drone’s current position in flight path, (lower left) epipolar space, (lower center)

unwarped image pairs, and (lower right) complete 3D voxel space (via UFOMap).

between the output of EpiDepth and the DNN depth net. No-

tably, EpiDepth benefits from already existing in an absolute

coordinate space, while our depth net offers advantages in

terms of completeness and sharper local structure. Operating

under the assumption of a linear relationship, we propose

scaling the relative output of the depth net to align with

the absolute output of EpiDepth. However, it’s essential to

acknowledge that EpiDepth is susceptible to errant outliers,

especially with sub-optimal frame selection [19]. To address

this, we leverage methods for computing per-pixel confidence

within EpiDepth [13], allowing us to filter EpiDepth results

based on this confidence before selecting minimum/maximum

points for scaling.

The plots in the bottom-left corner of Figure 5 illustrate

this process, with green points representing all pixels with

both EpiDepth and DNN depth values. The blue line denotes

the chosen linear fit. It’s noteworthy that the two plots cor-

respond to different DNNs (DPT and SimPR), and the linear

transformation identified for DPT exhibits a negative slope,

while the one found for SimPR is positive.

B. Method 2: SfM Interpolation

Our second approach involves applying a spatial interpola-

tion operation to the output of EpiDepth. Initially, we utilized

the widely known iterative closest point (ICP) algorithm for

this purpose. However, we encountered significant drawbacks,

such as its sluggish performance even with moderately sized

images and the undesirable tendency to extrapolate and fill the

entire image rather than focusing on interpolation within the

voids present in EpiDepth’s output.

Consequently, we opted for the Natural Neighbor Interpo-

lation algorithm. This method constructs a triangulated mesh

with all known points as vertices and subsequently computes

a weighted average for each intermediate pixel based on its

proximity to the vertices forming the triangle containing it.

Given the scarcity and inconsistency of academic literature

discussing this algorithm, we have provided the implementa-

tion details in Figure 4.

It’s important to note that this approach does not qualify

as a fusion technique since it doesn’t depend on the output

of the depth net in any way. Nevertheless, it represents

an intriguing and practical method that significantly aligns

with the motivation behind this investigation. Its principal

purpose lies in enhancing the completeness of EpiDepth’s

results without incurring a substantial increase in error, a

demonstration of which will be presented in the subsequent

results section of this paper. While we employ this method

in isolation within this context, its utility suggests that it may

prove valuable, or perhaps even indispensable, as a precursor



Fig. 2. The (left) Mountain Grassland Environment used and (right) extracted SIM gold-standard (“truth”) in UFOMap at 1m resolution.

Fig. 3. Visualizing our SimPR framework: the simulator, leveraging Unreal Engine, generates data, metadata, and ground truth fed into our

SIDE algorithm. Following prediction, the error between our estimate and the ground truth is computed. SimPR operates in a continuous

online learning mode, gathering data for ongoing training of our depth prediction network.

for more sophisticated fusion algorithms that necessitate high

completeness in their inputs.

IV. EXAMPLES

During our testing phase, we conducted a simulated flight

within the Mountain Village Environment [18], featuring a

45-degree slant look angle and a moderate altitude suitable for

micro UAV operations. This configuration was chosen to estab-

lish favorable operating conditions for both EpiDepth, which

performs optimally with nadir (or 0-degree) flights, and off-

the-shelf deep nets like DPT. Given the self-driving-focused

training data of DPT, we anticipated superior performance

with a 90-degree look angle, making the 45-degree slant a

reasonable compromise.

During the simulated flight, we extracted a video stream

containing both color imagery and ground-truth depth. The

color imagery underwent processing through the EpiDepth



import cv2

import numpy as np

import scipy

def interpolate natural neighbor(image):

x, y = np.where(image > 0)

values = image[image > 0]

triangulation = scipy.spatial.Delaunay(np.column stack((x, y)))

interpolator = scipy.interpolate.CloughTocher2DInterpolator(

triangulation , values

)

x grid, y grid = np.meshgrid(

np.arange(image.shape[0]), np.arange(image.shape[1])

)

interpolated image = interpolator(x grid, y grid)

interpolated image = interpolated image.T

interpolated image[np.isnan(interpolated image)] = −1.0

return interpolated image

Fig. 4. Our Python 3.8.10 implementation of the Natural Neighbor sparse interpolation algorithm using NumPy, SciPy, and (optionally)

OpenCV. The input image is a 2D NumPy array, which is the representation of an image used by OpenCV. Note that OpenCV is not strictly

necessary to load or display the image, as many other popular libraries (ex. Matplotlib) accept the same format.

pipeline, incorporating a frame selection algorithm that trans-

formed the video stream into pseudo-stereo pairs. The aggre-

gation of these pairs yielded an EpiDepth result comprising

3D points. This result was then projected back into the

camera space of the first image to generate a 2D depth map.

Concurrently, we applied the same first image to the SIDE

algorithms (DPT and SimPR) to obtain alternative depth maps

in the same camera space.

These “raw” results are then fed into the linear fit and

spatial interpolation approaches discussed above to yield seven

candidate results, not including the ground truth. All of these

candidates are then evaluated using a suite of metrics. While

we have used 3D metrics in our prior work [15], we chose

to limit the scope of this investigation to 2D given the

lack of accumulation over time and the native 2D output of

SIDE. The metrics we chose are completeness (percentage

of pixels for which an estimate was produced), root-mean-

square error (RMSE)

√

1
n

∑n

i=1(gti − predi)2, RMSE of

logs

√

1
n

∑n

i=1(ln(gti)− ln(predi))2, mean-relative-square

error 1
n

∑n

i=1
(gti−predi)

2

gti
, and mean-relative-absolute error

1
n

∑n

i=1
abs(gti−predi)

gti
. These “relative” errors are intended to

reduce the penalty for errors in distant scenery, as they are

inherently more difficult to predict with the same precision as

nearer objects. This process produces a verbose set of results

for every frame pair in the dataset, which would be impossible

to showcase here. As such, we instead present two prototypical

examples: one where EpiDepth is performing well, and another

where EpiDepth is performing poorly.

Our initial results, depicted in Figure 5 (refer to the caption

for detailed information on each plot), showcase an optimal

frame pair selection for EpiDepth. This selection yields over

80% completeness and competitive performance across all

error metrics. The application of natural-neighbor interpolation

to EpiDepth significantly enhances completeness, accompa-

nied by a negligible increase in error. The resubstituted/overfit

variant of SimPR demonstrates top-notch performance across

all metrics. However, the more realistic depth nets—SimPR

(non-resubstituted) and linearly-fit DPT—display unsatisfac-

tory results, with RMSE scores ranging between 40 and 60

meters. While a linear fit is essential to enable the use of DPT

(as evidenced by its negative slope and exaggerated scale), this

adjustment exacerbates the performance of SimPR.

It’s noteworthy that despite these objectively poor results

for SIDE, the visual outcomes exhibit robust segmentation per-

formance, presenting qualitatively strong results when lacking

the context of ground-truth. The non-resubstituted SimPR’s

notable shortcomings are observed in areas with buildings, as



Fig. 5. An example of each method being applied to a well-selected image pair from the Mountain Village Environment [18] using UE4

+ AirSim. The two frames are shown on the left (note that only the top image is used for the SIDE methods). The methods in the first

and second row are identical, with the only distinction being that the first row uses per-image color scaling while the second row uses a

common color scale across all images. From left-to-right: Ground-Truth/Gold-Standard Depth extracted from AirSim, EpiDepth, EpiDepth

with Natural Neighbor Interpolation, SimPR (Resubstituted), SimPR (Not Resubstituted), and DPT (Linear Fit to EpiDepth). The third row

shows the linear fits used for DPT and for SimPR (Resubstituted), then a suite of methods evaluating each method with respect to the ground

truth. The metrics present each method in the same order as the images above, but with the addition of Linear Fits to EpiDepth for SimPR

(Resubstituted) and SimPR (Not Resubstituted). These results were visually indistinguishable from the raw data (assuming a positive slope,

the color scaling used for visualization is itself a linear fit), and thus their images were omitted for the sake of brevity.

Fig. 6. Same methods and metrics as Figure 5, except for a poor frame pair selection causing an incomplete and inaccurate EpiDepth result.



it was not originally trained on such structures. Conversely,

DPT excels at identifying buildings but struggles with the

recognition of distant trees and topography, likely stemming

from its limited training data in rural or aerial contexts.

Consequently, a promising avenue for future research involves

retraining these off-the-shelf networks with more diverse and

contextually appropriate training data for this application.

In our subsequent example, depicted in Figure 6, we illus-

trate an alternative scenario where inadequate frame selection

results in severely compromised EpiDepth performance. The

EpiDepth result, quite fittingly, resembles a coffin and show-

cases dismal completeness, falling well below 10%. Although

natural-neighbor interpolation offers a marginal improvement,

the only effective solution in this case is the resubstitut-

ed/overfit variant of SimPR, with the non-resubstituted variant

of SimPR trailing at a considerable distance. Similar to the

previous example, SimPR excels at identifying trees, while

DPT excels at recognizing buildings, but the reverse is not

true. Despite EpiDepth’s dismal performance in this instance,

it exhibits a notable advantage over SIDE approaches: its

failures are relatively straightforward to identify and explain,

facilitating rapid diagnosis and improvement.

For instance, consider the second case illustrated in Figure

6, where there is a noticeable and abrupt change in camera

pitch between the two frames. EpiDepth’s frame selection

pipeline should have recognized and rejected this pair as a

match, a relatively straightforward filter to manually imple-

ment. In both Figure 5 and 6, peculiar ”blotches” appear over

areas with buildings, and the best assumption we can make is

that this is a consequence of insufficient training data. While

the EpiDepth failure could have been automatically identi-

fied in real-time due to its low completeness score (coupled

with camera extrinsics [19] and other internal metrics within

EpiDepth beyond the scope of this research), the failures in

SimPR are undetectable without manual review or ground-

truth. Consequently, even with the potential for enhanced Deep

Neural Network (DNN) results in the future, we maintain that

a fusion of these approaches will be essential to attain reliable

outcomes in the field for an autonomous system.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In summary, though SfM and deep neural network ap-

proaches show promise for real-time 3D reconstruction depth

estimation, existing off-the-shelf deep neural networks fall

short of the accuracy required for standalone use. While post-

processing and fusion techniques present compelling and po-

tentially necessary strategies for addressing these limitations,

their practical implementation hinges on the improvement of

inputs to achieve higher quality and quantifiable uncertainty.

In Method 1, we endeavored to execute an uncertainty-

sensitive scaling to align the outputs of deep nets with the

global space of EpiDepth. Although this approach succeeded

in making certain deep nets, like DPT, applicable for 3D

reconstruction, it fell short of producing results with the

requisite precision for practical utilization.

Method 2, on the other hand, was a strong success, increas-

ing completeness with a measurable but tolerable increase in

error. However, while this method may be useful for future

fusion techniques where a dense baseline is necessary, it

currently only takes into account the results of EpiDepth. This

is an important step towards our goal of dense, real-time, high-

fidelity 3D reconstruction, but it falls well short of our goal

of using fusion to mitigate the shortcomings of any individual

approach, EpiDepth very much included.

B. Future Work

This work represents an early stage, laying the foundation

for numerous potential avenues in future research. These

possibilities include the exploration of more sophisticated

fusion techniques, the development of data-driven conditional

fusion and model switching strategies, the application of

transfer learning specifically tailored for aerial domains, and

the design of novel deep network architectures capable of

more effectively harnessing the available information in this

context (such as trusted extrinsics, a reasonably reliable prior

estimate, and a stream of pseudo-stereo pairs in lieu of

single images). In the pursuit of these approaches, we aim to

expand our metrics suite to encompass a measure of resiliency

against simulated data degradation, encompassing factors like

imprecise/binned/noisy extrinsics, image compression, rolling

shutter effects, and more.
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