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ABSTRACT

Datasets with accurate ground truth from unmanned aerial vehicles (UAV) are cost and time prohibitive. This is
a problem as most modern machine learning (ML) algorithms are based on supervised learning and require large
and diverse well-annotated datasets. As a result, new creative ideas are needed to drive innovation in robust and
trustworthy artificial intelligence (AI) / ML. Herein, we use the Unreal Engine (UE) to generate simulated visual
spectrum imagery for explosive hazard detection (EHD) with corresponding pixel-level labels, UAV metadata,
and environment metadata. We also have access to a relatively small set of real world EH data with less precise
ground truth – axis aligned bounding box labels – and sparse metadata. In this article, we train a lightweight,
real-time, pixel-level EHD pre-screener for a low-altitude UAV. Specifically, we focus on training with respect
to different combinations of simulated and real data. Encouraging preliminary results are provided relative to
real world EH data. Our findings suggest that while simulated data can be used to augment limited volume and
variety real world data, it could perhaps be sufficient by itself to train an EHD pre-screener.
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1. INTRODUCTION

Obtaining real world datasets from unmanned aerial vehicles (UAVs) with quality ground truth (annotation and
metadata) for training supervised learning-based machine learning (ML) algorithms is time and cost prohibitive.
An enormous amount of effort is required to plan and coordinate a data collect. Each collect requires a skilled
pilot, charged batteries, flight plans, a working UAV, acceptable weather for flying, etc. In addition, each target
emplacement should be well documented with accurate GPS positions and pictures of the surrounding context.
For training supervised learning ML models and for scoring, annotations are required. Accurately labeling images
of EHs frequently requires the assistance of skilled experts who painstakingly draw axis aligned bounding boxes
(AABBs) and assign class labels to objects∗. Furthermore, the global COVID-19 pandemic made coordinating
physically with one another difficult. Meeting in person for data collections, at the moment, requires extra safety
precautions in addition to being subject to delays. Each of these requirements and conditions places a bottleneck
on the volume of quality annotated data available for training and testing.

Herein, we circumvent the real world data bottleneck by using simulated data to train, evaluate, and un-
derstand a ML-based explosive hazard detection (EHD) pre-screener. Specifically, our current article makes the
following two contributions. First, we explore the use of modern game engine tools with perfect pixel-level ground
truth and metadata to train a neural network (NN) based semantic segmentation model for EH pre-screening.
More specifically, we investigate cartoon (TOON) and current generation video game engine quality (GEQ) ren-
dering. These datasets possess different levels of visual information and they provide a rich platform to explore

∗It is rare to get pixel-level annotations for real world aerial datasets. This is largely due to how much effort is involved
and many aerial payloads have high frame rates and image resolutions (thousands of pixels in each dimension).



Table 1: Notations and Acronyms

Acronym Description
ML Machine Learning
AI Artificial Intelligence

GEQ Game Engine Quality Simulated Data
TOON Cartoon Simulated Data

RS Reality Spectrum
EH Explosive Hazard

EHD EH Detection
AMA Altitude Modulated Augmentation

Figure 1: High-level illustration of this article. Simulated data is used to train a per-pixel pre-screener for EHD.
While simulation yields perfect per-pixel ground truth, real data has ambiguous AABB labels. The first objective
of this article is to explore the performance of neural segmentation networks for EHD pre-screening. The second
objective is to explore performance relative to different combinations of perfectly labeled simulation data and
less than ideal human labeled real data.

questions surrounding model generalizability. Second, we explore how to combine perfectly labeled simulation
data with ambiguously labeled real data. The idea is to determine if simulated data can help a machine learn
improved features by discovering how to make better use of ambiguously labeled human data that unfortunately
possess both target and background features.

Figure 1 is a high-level illustration of the proposed article and Table 1 is notation. In Section 2, we summarize
related work. Section 3 details our pre-screener, Section 4 discusses simulated datasets, Section 5 documents
real world datasets, and Section 6 discusses experiments and results.

2. RELATED WORK

2.1 Explosive Hazard Detection

EHD is a real world challenge that is not going away. EHs are not trivial to detect as they vary with respect to
factors like size, shape, composition, material, and context in/across environments and environmental conditions.
The task of detecting EHs is one better suited for a UAV than a precious human being. UAVs are replaceable
and they offer a way to keep humans at a safe standoff distance. They can be equipped with high resolution



cameras observing different portions of the electromagnetic spectrum as well as position sensors (e.g., GPS and
IMU). However, detecting EHs from an aerial platform is not a solved nor trivial problem. For example, imagery
collected by a UAV at an altitude of 30 meters looking straight down (nadir) looks vastly different from a UAV
at a lower altitude looking at a different pitch. The point is, UAV-based EHD has great potential, but it is a
complex technological task that is full of many sub-challenges.

While our current article is focused on UAVs, a number of technologies have been explored to date. An
early and well-known technique is the so-called “metal detector”, which can be used to detect metal buried
in the ground. However, one limitation with this form of detection is that threats that contain low amounts
of metal may go undetected. Increasing the sensitivity of the device does not necessarily counteract this, as
the number of false alarms would likely dramatically increase. To increase the robustness of detection, many
different combinations of sensing methods have and are being explored, such as infrared (IR), ground penetrating
radar (GPR), electromagnetic induction (EMI), and hyperspectral imaging (HSI), to name a few. The two
predominant approaches to date for detecting explosives is vehicle-mounted detectors and hand-held detectors.
While the latter is predominantly used in a downward looking fashion, the prior comes in a multitude of forms,
e.g., forward looking,1 downward looking,2 and even side looking.3 The reader can refer to4 for a recent review
of computational intelligence algorithms in EHD. Herein, we focus on UAVs, which can operate in each of the
above modalities. This method of data collection has the potential to help search areas faster, especially in the
case of a swarm of UAVs, and with behaviors to facilitate dynamically interrogation of regions of interest.

On a final note, it is important to note that the signatures being exploited here derive from line of sign
spatial features, the targets under consideration are surface-deployed, and the solution space being worked is
electro-optical/infrared (EOIR) against line-of-sight EH only.

2.2 Simulation

We are not the first to use game engines to train and evaluate ML/AI techniques. In 2015, Gaidon et al. used
Unity to make a VIRTUAL KITTI (VKITTI) autonomous car non-photorealistic dataset.5 In 2015, Chen et al.6

used The Open Racing Car Simulator (TORCS)7 to train a deep NN (DNN) to drive (again, non-photorealistic
imagery). In 2017, Martinez et al. used the video game Grand Theft Auto to generate high quality rendered
imagery for training, testing, and enhancing DL for self-driving cars.8 In 2018, Martinez et al. proposed
UnrealROX,9 which used UE4 to create realistic looking indoor scenes for robots to interact with objects in
simulation. In 2018, Muller et al. explored Sim4CV10 in UE4 for generic CV research. In 2020, Drouin et al.11

used real ortho-photos to simulate aerial data collections, and in 2021, Nouduri et al.12 generated synthetic views
from a dense 3D point cloud. In Alvey, et al.,13 we proposed UE and AirSim based frameworks and workflows,
with open source code² and training videos³, for accelerating computer vision and unmanned low-altitude aerial
vehicle research. Examples were highlighted for object detection, passive ranging, context-driven fusion,14 and
augmented reality. While Sim4CV is the closest to our current article and previous UE-based work,13 the
content used and imagery produced is not photorealistic, no detailed workflows are outlined, no supplemental
online training is available, and results are simulator-focused vs. real world and simulation cross-validated.

In,15 see Figure 2, we previously put forth a process called altitude modulated augmentation (AMA). AMA
uses UE to render images of objects in different contexts, allowing us to render target EHs in different object
poses, camera relative poses, and solar positions (which impact illumination and shadows). As Figure 2 shows,
the result in a false color RGB image where the red channel is the grayscale (monochromatic) image, green is a
per-pixel map of object locations, and the blue channel is a per-pixel map of shadow locations and values§. These
images, which we refer to as “templates”, are then inserted into real low-altitude aerial data. The object and
shadow layers are used as alpha transparency maps. AMA uses the platform/sensor metadata (drone altitude,
pose, etc.) to decide where and how to insert templates into the real data (see15 for more details). The goal of
AMA is to use simulation to render novel contexts of objects that are not observed in an existing data collection.

²https://github.com/MizzouINDFUL/UEUAVSim
³https://bit.ly/MizzouINDFUL
§If additional per-pixel information needs to be stored, e.g., RGB color, then different UE targets, e.g., custom depth,

custom stencil, render targets, etc., can be used. The reader can learn more by reading about custom UE materials, post
processing effects and materials, and the Movie Render Queue.

https://github.com/MizzouINDFUL/UEUAVSim
https://bit.ly/MizzouINDFUL


Figure 2: Example of UE simulated templates and AMA emplacement in real aerial imagery. Top left is
a simulated false color RGB image (R=grayscale image, G=object pixels, B=shadow pixels) and individual
channels. Top right is simulated objects at different camera poses and sun positions. Bottom left and right is
AMA placing the above simulated templates into real aerial data (EHs highlighted as red AABBs).

AMA can be regarded as a type of data augmentation. As shown in,15 the performance of AMA is notably
higher than what is currently achieved using full image simulated data. This should be expected as AMA aims
to use existing real world data for a specific environment. It is hypothesized that AMA is ideal for scenarios like
training or transferring an AI/ML model to a new operating environment using only a small collection of non-
target background data. This is an attempt to reduce the expense (cost, time, etc.) of acquiring training data
required for a new environment. While useful, AMA has limitations. For example, AMA requires background
(non-target) data from the new environment. Furthermore, AMA only enriches existing data with respect to the
object. It does not help with variables like time of day, environmental differences, emplacement context (e.g.,
occlusion), etc. This is a goal of the current article. We wish to use simulation to increase our volume and variety
of training data with respect to a richer set of environments, environmental conditions, and platform (drone and
camera) contexts. Furthermore, we desire supervised data with complete pixel-level labels.

3. EHD PRE-SCREENER

In this section we discuss our EHD pre-screener. In general, a pre-screener is a process (algorithm, feature, etc.)
that nominates alarms (candidate targets) in data. Ideally, a pre-screener should have near a 100% positive
detection rate (PDR) which sometimes comes at the expense of a relatively high false alarm rate (FAR). Strong
classifiers are usually not considered pre-screeners. Most pre-screeners are relatively lightweight, can be run
efficiently, and ideally result in as high of a PDR as possible; perhaps a rate comparable to that of a human.

Herein, we explore the U-Net16 neural net architecture as an EHD pre-screener. While U-Nets have been
extensively used for image semantic segmentation, they have also become the workhorse for problems like passive
ranging, deep diffractive neural networks and holography, and beyond. We selected U-Nets for the following
reasons. First, they can be used for segmentation at a per-pixel level, something not possible via detection



and localization networks like YOLO17¶. Second, a U-Net can be engineered to model behaviors similar to
attention in humans.19 This is in effect what we are trying to achieve: an algorithm that queues AOIs requiring
further analysis; which is also supported indirectly in networks like YOLO through cost function encouragement
(“objectness”). Third, a U-Net can achieve a fair amount with its limited parameters due to weight sharing and
skip connections. A U-Net can be reduced in number of parameters, then trained and used computationally on
a limited resource embedded device like an NVIDIA Jetson.

While many variants exist, in general the U-Net architecture consists of a downsampling path to extract
features (the “what”), and an upsampling path to identify target class locations in an image (the “where”).
These paths consist of blocks connected by skip connections, allowing for more detailed image construction
across scale from encoder to decoder. The paths are symmetric, meaning that for each encoder convolution that
decreases in resolution, there is a corresponding decoder convolution that increases the resolution, giving the
U-Net its name in the way the visualization of the architecture mirrors the letter “U”.

The U-Net used herein was pulled from an existing codebase for semantic segmentation‖. Our network was
trained on grayscale image datasets where the weights were updated based on a Dice Loss function and a Cosine
Annealing learning rate scheduler. A per-pixel ground truth was provided for each training image, where zero
indicated not a target and one indicated target. The upsampling and downsampling paths of the U-Net both
consisted of five stages, respectively.

4. SIMULATED DATA - DATASET 1 (DS1)

As discussed above, this article is focused on the use of simulated data. The goal is to have the ability to
alter object, environment, and platform/sensor variables that drive ML/AI and the task at hand (e.g., EHD).
While different simulators could have been used, e.g., Unity,20 VANE and ANVEL,21 etc., we focus on UE for
several reasons. It has proven longevity (decades of R&D), wide integration of assets (3D models, textures,
etc.), simplicity of use and excellent online documentation. UE also supports high quality global illumination
and realtime rendering capabilities (see NVIDIA deep learning super sampling (DLSS)). Historically, UE was
created for video games, but it has found uses in film,22 computer graphics,23 architecture,24 and beyond. Most
importantly, high fidelity custom dynamic scenes can be conveniently purchased or produced manually in little
time. It is also easy to mix content, manually or via scripting, to vary or cater to niche applications where
scenarios are costly, hard, or not practical to obtain. UE is also constantly improving and making free content
available, e.g., Quixel megascans 3D scanned real world objects and materials25 and free military 3D objects,26

as well as supporting tools for procedural content generation, e.g., large scale terrain generation with Instant
Terra (UE plugin27) and Houdini for object/geometry, texture, terrain, animation, city generation and beyond
(see UE Houdini plugin28). Furthermore, UE has a rich support for models, materials, effects, and more on
their UE Marketplace,29 including the artistic shaders we used herein (cel shader30 and artistic pen and paper
shader31).

4.1 Generated Data

The reader can refer to our 2022 SPIE article32 for details about our procedural framework and workflow in
UE to generate EH environments and automated data collections. In this section, we briefly summarize our
simulated datasets. DS1 (see Table 2) is made up of three sub-datasets, which are detailed next.

Manually Created UE EHD GEQ Data In 2021, we produced an initial dataset of 720 images in the UE (see
Figure 3) to train object detection and localization algorithms15 and explore XAI.18 This dataset is rasterization
rendering based, versus global illumination or ray traced, and textures and objects are relatively low detail, e.g.,
no high 3D model poly counts or physically-based rendering (PBR) textures (albedo, roughness, normal maps,
specular, etc.). The reader can see in Figure 3 that the result is similar to last generation video games. Details
like bill boarded foliage and simple coloring, illumination, and shadow are present.

¶The reader can refer to14,15,18 for our prior works using simulation for training and characterizing localization and
detection AABB detectors (specifically YOLO) vs. segmentation.

‖Semantic segmentation network library used herein can be found at https://github.com/qubvel/segmentation_

models.pytorch/blob/master/docs/index.rst and https://smp.readthedocs.io/en/latest/

https://github.com/qubvel/segmentation_models.pytorch/blob/master/docs/index.rst
https://github.com/qubvel/segmentation_models.pytorch/blob/master/docs/index.rst
https://smp.readthedocs.io/en/latest/


Table 2: Simulated Dataset 1 (DS1)
Variable Description
Number of Images 8720 (8000 images from 2022 and 720 from 2021 collections)
Environments arid
Foliage rocks, bushes, trees, stumps, grass, flowers, cacti, branches
Background Texture sand, beach, grass, rocky
Clutter vehicles, signs, fences, tires, helicopters, tents, small buildings, crates,

barrels, cones, umbrellas, trashbags, cans of soup
Drone Altitude [20, 40] meters
Drone Pose Nadir with random pitch perturbation ( ±5 ◦), random yaw, no roll

Procedurally Created UE EHD GEQ Data In 2022, we generated new UE EHD GEQ imagery with our
procedural UE algorithm,32 see Figure 4. Improvements to our 2021 imagery are as follows. 3D models were more
detailed (higher geometry count), textures were PBR-based, and global illumination was used. From a quality
standpoint, object shape, texture, color, illuminations, and shadows are much more photo-realistic. A total of
4,000 images were generated from four procedural scenes. Two scenes were captured around solar noon (2,000
images), one was captured in the early morning (1,000 images) and one in the late afternoon (1,000 images).
The reason for these collects was to sample variation with respect to lux and shadows.

Procedurally Created UE EHD TOON Data Figure 5 shows example procedurally generated32 cartoon
(TOON) UE imagery from our 2022 collect. Herein, we consider TOON to be simplified object geometry (thus
shape), overly saturated color, and stylized or simplified texture. Overall, it is abstract in visual appearance.
Our procedurally generated imagery is similar in style to a cartoon like Garfield or whimsical and fairy tale
like the Legend of Zelda. Our intention is to produce imagery that places important features like shape, color,
and contrast center stage. While this information is present in real imagery, it is often overshadowed by higher
frequency texture information. A total of 4,000 images were generated for two solar noon sub-datasets (2,000
images), one early morning sub-dataset (1,000 images), and a late afternoon sub-dataset (1,000 images).

All procedurally generated data was subject to the general guidelines outlined in Table 2. This consisted of
arid and forested locations, common foliage in those environments, related background (aka ground) textures,
and clutter common to those environments and our task at hand. Our three EH objects were pseudo-randomly
placed in a dense respect across our maps. The collection platform (camera on a drone) was pseudo-randomly
varied within operating conditions similar to our real world data collections. Specifically, yaw was randomized,
roll was fixed, and pitch was slightly varied around nadir. Overall, our goal was not to generate simulated
datasets in support of a specific EHD scenario. For example, a data collection in a specific location at a specific
time of day with respect to particular occlusion conditions, materials, etc. Our simulated 2021 and 2022 datasets
are a random collection of data across related environments, flight conditions, and with respect to initial EH
objects of interest. In future work, we will explore restricting the procedural simulation dataset variables to help
train and/or test to answer questions of interest. One main objective of this paper is to see if a wide net of
random aerial EH variable sampling works relative to training a pre-screener.

5. REAL DATA - DATASET 2 (DS2)

Our real dataset consists of images with EHs collected from a low-altitude UAV. This dataset has eight flights,
referred to as runs hereafter. Four of the runs were collected on one day, three a month later, and the remaining
three were collected some months later. Overall, we have an extremely limited amount and variety of labeled
training and test data as we begin to explore aerial-based EHD. To make matters more complicated, the drone
altitude, location, month, time of day, objects, object emplacements, and other variables changed across runs.
This poses great complexity with respect to performing cross validation. Most of these collections are very
different. This is one of the main factors driving our exploration of simulation. It is extremely hard, if not a
bottleneck, to design and collect a wide range of data collections with respect to our combinatorial explosion



Figure 3: Example initial simulated GEQ imagery we produced by hand (not procedural) in 2021 in support of
past object detection, localization, and XAI research.15,18

Figure 4: Example 2022 GEQ data – top is RGB, bottom is corresponding grayscale – produced procedurally32

in support of this article. Compared to our old simulated imagery (see Figure 3), this new data has more realistic
objects, textures, illumination, shadows, and the overall quality is more photo-realistic.



Figure 5: Example procedurally generated 2022 TOON data;32 top is RGB and bottom is grayscale.

of object, environment, and platform/sensor EH variables∗∗. Even if this data is collected, its an even larger
undertaking to label it and provide ground truth. As a result of this real world predicament, we restrict our
analysis herein to the following. We use seven runs for training and one run is left out for testing. This run
(operating condition) was identified in conjunction with our collaborating funding source. The other runs are
primarily of interest with respect to exploring how much we can vary these operating conditions.

Overall, a variety of EH targets exist in our dataset. Figure 7 shows examples of the four EH objects analyzed
herein. Object 1 and Object 4 are mainly driven by shape, which is somewhat unique, and one is a smaller version
of the other. Object 2 is driven by unique shape and Object 3, the most simple, has a very general shape, is not
unique, and can easily be confused with other image content. In this article, we limit the scope of our analysis to
grayscale vs. RGB imagery. That is, at this moment in time we are not considering spectral information. The
resolution of the imagery explored herein is 640 x 512.

6. EXPERIMENTS AND PRELIMINARY RESULTS

This section outlines three experiments. Our objective is to learn from these preliminary results and develop
intuition regarding best practices as we move forward with low-altitude aerial-based EHD. For example, should
we primarily continue to request and wait on additional real world datasets to train our algorithms? Do we need
to continue to refine our simulation before it can be used to train an ML/AI algorithm directly for real world
data? Is our current simulation already sufficient, and if so what is the role of real world data? There are many
intriguing questions in the intersection of these spaces. The point is, we are looking to better understand how
well each of these processes are working individually and what utility is there in combining them.

Experiment 1 (E1): Baseline: Train on Real, Test on Real: The objective of E1 is to establish a baseline.
What can be achieved using our limited variety and volume raw data?

∗∗Example EH variables include the following. Object: type, size, pose, texture, contrast, occlusion, etc. Plat-
form/sensor: camera/drone relative pose, altitude and standoff (number of pixels on target), speed, image resolution,
focal length, spectrum, etc. Environment: season, time of day, region, foliage, clutter, etc.



Figure 6: Example of real EH targets in RGB imagery for an aerial platform at different altitudes.

Experiment 2 (E2): Simulation: Train on Sim, Test on Real: The objective of E2 is to measure how
well a simulated data trained U-Net works on real world test data. Our simulated data has the advantage that
it has a much greater number of looks on target; altitudes, poses, illuminations, shadows, textures, etc. Its
disadvantage is that it is synthetic and it could possess rendering artifacts (false features). Our synthetic data
is a combination of arbitrarily constructed maps and procedurally random maps.

Experiment 3 (E3): Sim+Real: Train on Sim and Real, Test Real: The objective of E3 is to determine
if synthetic data enhanced real data.

Figure 7 shows ROC curve results. Accompanying qualitative imagery – input imagery and U-Net results –
are shown in Figure 8. The user can observe the following trends. The real data U-Net performs the worst. The
second best model is Sim. It is important to note that the Sim U-Net was not fine tuned for our real data, i.e.,
specific site, time of day, textures, etc. Furthermore, our simulated objects are abstract representations of most
of the real targets. They have the general shape and properties, but they are not scanned models nor specific
instances of these objects. In particular, Object 2 was created in Blender using 1 cylinder and 7 rectangular
boxes. Our Sim data also has different properties such as intensities, contrast, platform motion, sensor noise,
etc. Regardless, the Sim U-Net is able to outperform the real data model.

The top performing model is Real+Sim. We do not have a mechanism to evaluate what data-driven features
were learned; something generally associated with the left half of the U-Net. Nor do we have a way of measuring
if these features are simulation image specific features, real data specific features, or features applicable to both.
The next question is the right half of the U-Net. How are these features combined with respect to reasoning
({target, not target}) and producing the final segmentation image? We can only conjecture at this moment
in time, but it appears that improved features were learned and/or the act of having both simulated and real
data was useful with respect to the machine learning how to use these features on both sets of data relative
to predicting and segmenting objects with similar shape and contrast. The Real+Sim model rises quickly and
plateaus at less than 100% PDR due to EH objects at the edge of our imagery (see Object 1 in Figure 7).²²

²²Alarms near the edge an image are often discarded in detection systems as there is not enough information to reliably
detect and discriminate them from clutter.



Figure 7: ROC curves for our four specific EH objects (Object 1 to 4) and all emplaced EH objects relative to
our trained models; real data only trained U-Net, Sim only U-Net, and Real+Sim U-Net. Examples chips are
shown in each ROC and an example Object 1 missed detection is shown. This detection was missed because it
is at the edge of our image. Should it have been labeled and be included in scoring?



Figure 8: Example outputs for train on Sim and test on real world data. The top row is real data and the bottom
row are Sim trained U-Net outputs. Example targets and FAs chips are shown.

Figure 7 also reports a ROC curve relative to scoring against all EH objects present in our data. It can be
a challenge to interpret such a ROC as a good majority of these targets have too few of pixels on target and
some are widely different that our four studied EH objects. We show this ROC because some of our additional
EH objects, beyond Object 1 to Object 4, have similar shape and features. It is therefore interesting to observe
the pre-screeners performance on this harder problem; generalizing to similar EHs. The reader can see that the
system has a relatively low FAR, as the ROC curve climbs quickly, beyond Objects 1 to 4. This suggests that the
combination of real and simulated data is able to enhance our U-Net and help learn more generalizable features
and combination logic.

We do find it interesting, but not alarming, that in the case of all available EH objects the Sim performs
the worst. Based on manual and visual inspection, we believe this can be explained as follows. The Sim data
possesses just the four mentioned objects. At that, it sees them in a range of conditions, but not conditions
(number of pixels on target, occlusion, etc.) consistent with the real data. It is not alarming that a real model
will find a better way to make use of similar collect conditions and a specific environment. In future work we
will explore if this gap can be closed with respect to a closer modeling of the environment, objects, and platform
operating conditions, and/or a closer modeling of specific image statistics like intensities, contrast, etc.

Last, the reader can observe the example U-Net input (top) and output (bottom) images in Figure 8 to get
a visual understanding of how well the network learns to predict our objects and their respective shapes. It
should be noted that all real datasets had the human AABB labels were converted to rectangular pixel ground
truth. However, the final predictions are not drawn by the U-Net as rectangles, which was the case for a U-Net
trained only on real data. Instead, the Real+GEQ model has learned features that help us identify objects and
ultimately more refined localization predictions. Figure 8 also shows the reader typical FAs. The Real+Sim
model has relatively few FAs. However, the real model makes a greater number of mistakes on similar size,
shape, and/or contrast regions, e.g., bushes, wild grass, tires, etc. An advantage of the simulation data is that
it contains a greater number of close confusers.

7. CONCLUSIONS AND FUTURE WORK

In this article, we present preliminary evidence that a U-Net can be trained using simulated data from the Unreal
Engine in the visual spectrum to recognize explosive hazards from a low-altitude aerial drone. Furthermore,
we show that this performance is better than only using available limited volume and variety domain data.
Ultimately, as one might anticipate, the combination of this data led to the best performance. However, it
should be noted that the signatures being exploited here derive from line of sign spatial features, the targets



under consideration are surface-deployed, and the solution space being worked is electro-optical/infrared against
line-of-sight EH only.

We are aware that this article is preliminary and it does not prove that these processes will work reliably
and scale. The article is focused on a niche domain and small scale experimentation. We have also not provided
any quantitative metrics beyond ROC curves to help understand what the U-Net learned. We have also not
demonstrated to what degree TOON versus GEQ data, and what simulated object, environment, and platform
variables are important.

There is a large body of future work ahead of us. Examples include focused experiments to assess: per-
formance in light of non-deterministic U-Net training (what observations are real and not just a result of a
single trained model); trends when/if greater amounts of real data are available (is there a trade off point where
simulated data is of little to no use); to what degree does data sampled from the simulation reality spectrum
impact performance. Furthermore, experiments should be performed to assess performance relative to controlled
variation of underlying domain EH variables: object (e.g., size, pose, etc.), environment (e.g., time of day, oc-
clusion, etc.), platform/sensor (altitude, focal length, etc.). This is something we are working on, but the initial
framework had to be stood up. In Section 6, we also highlighted a number of questions that need more formal
structured analysis. For example, did we learn simulator specific rendering features, real data image features,
and/or combined or refined features. Furthermore, what logic was learned with respect to how to use these
features and is it of benefit to present different visual abstractions of data during AI/ML training? The reader
can also refer to our article on procedural generation of data in UE for a wealth of future work questions focused
on the act of how to generate simulated data for a single dataset or closing the learning loop.32

We also did not make use of synthetically generated objects (aka templates) inserted into real data. In Alvey,
et al.,15 summarized in Section 2.2, we presented AMA. AMA had a much higher performance over real and fully
simulated data relative to the YOLO object detection and localization algorithm. However, the data used in that
article is our limited 720 2021 GEQ images. In future work, we need to assess if its more valuable to continue
template insertion into real data for EHD or if full image simulated data is better. Clearly, AMA is limited
with respect to what background imagery is available, whereas simulation can model different environments,
environmental conditions, and platform contexts. While we anticipate that a combination will lead to the best
performance, what simulated data should we produce?

In summary, we are encouraged by the preliminary results in this work and excited about future directions.
At the time that this research was performed, the lead author was a senior in high school and the second and third
authors were undergraduates in college. The point being, all of the tools and processes presented herein do not
require a decade of education and a Ph.D.. Technology, specifically relatively free or low cost content, rendering
tools, computational resources, and the ability to interface these technologies has the potential to unlock a rich
simulated future. While simulation has been around for a long time, we are perhaps at a convergence point where
it will exponentially flourish. Having possession of the truth and ability to alter things in controlled fashions is
key towards our understanding of how things work and will aid our research into reliable and explainable AI/ML
for domains like aerial-based EHD.
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