A Comparison of Relative Position Descriptors for 3D Objects

Andrew R. Buck^a, Derek T. Anderson^a, James M. Keller^a, Robert H. Luke III^b, and Grant Scott^a

^aDepartment of Electrical Engineering and Computer Science, University of Missouri, Columbia MO, USA ^bU.S. Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA

> WCCI FUZZ-IEEE 2022 July 22, 2022

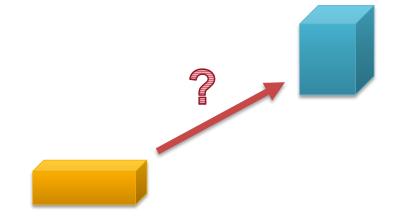
Presented by Andrew Buck

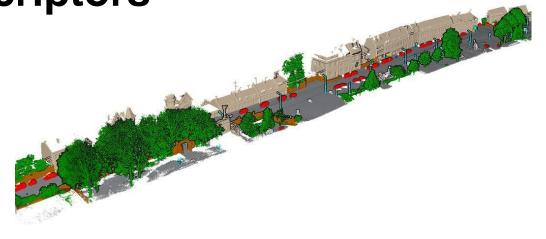
Motivation

- 3D relative position descriptor
- Example NPM3D dataset
- Histogram of forces descriptors
 - 2D projections

Triangular fuzzy number descriptors

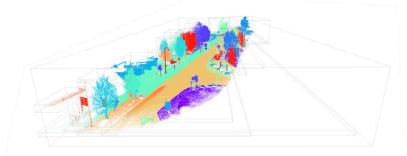
- Single-axis methods
- Axis-aligned bounding boxes
- Comparison and analysis

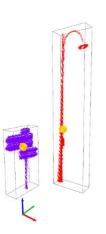




- How to describe the relative position of two objects?
- Specifically interested in large outdoor scenes
 - Generated as 3D point clouds
 - Individual object segmentations

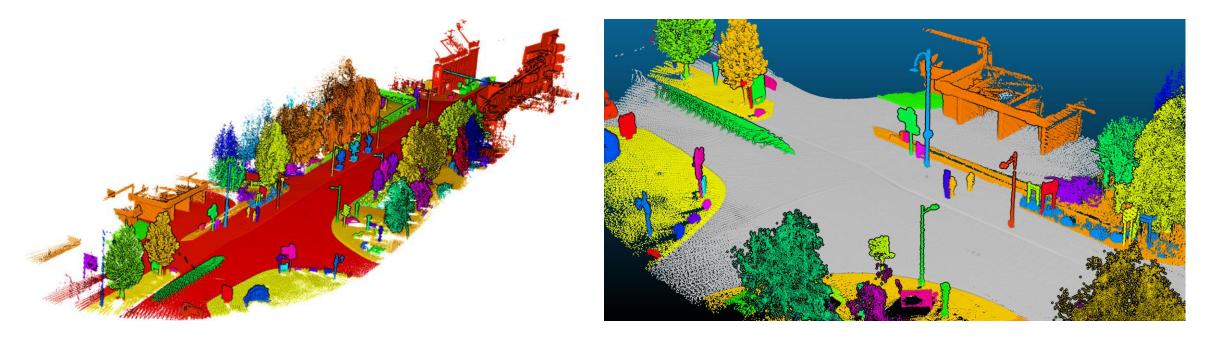
- Axis-aligned bounding boxes (TFN)
- Histogram of forces





• We use the Paris-Lille-3D dataset as an example

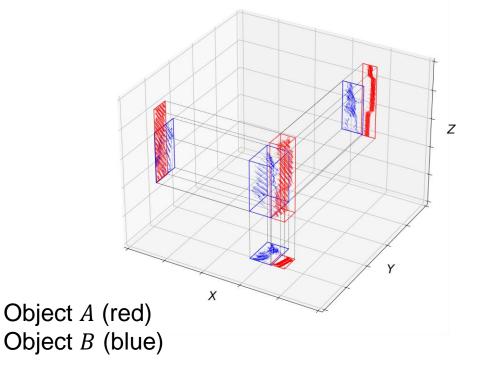
- Outdoor urban scene captured with LiDAR
- Human labeled object instances



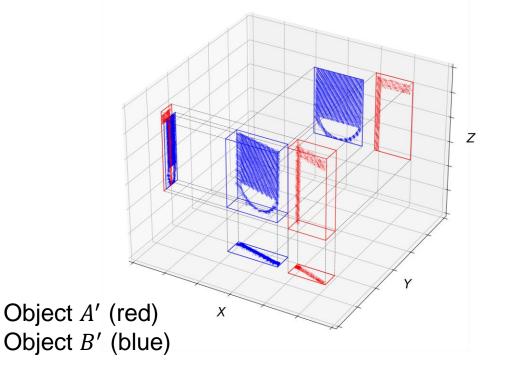
Example Object Pairs

How to describe the relative position of A → B? Is it similar to A' → B'?

Person standing near an information sign

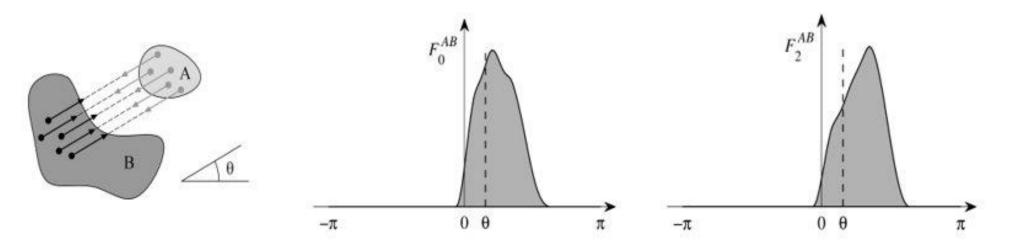


Two other signs in a similar spatial configuration



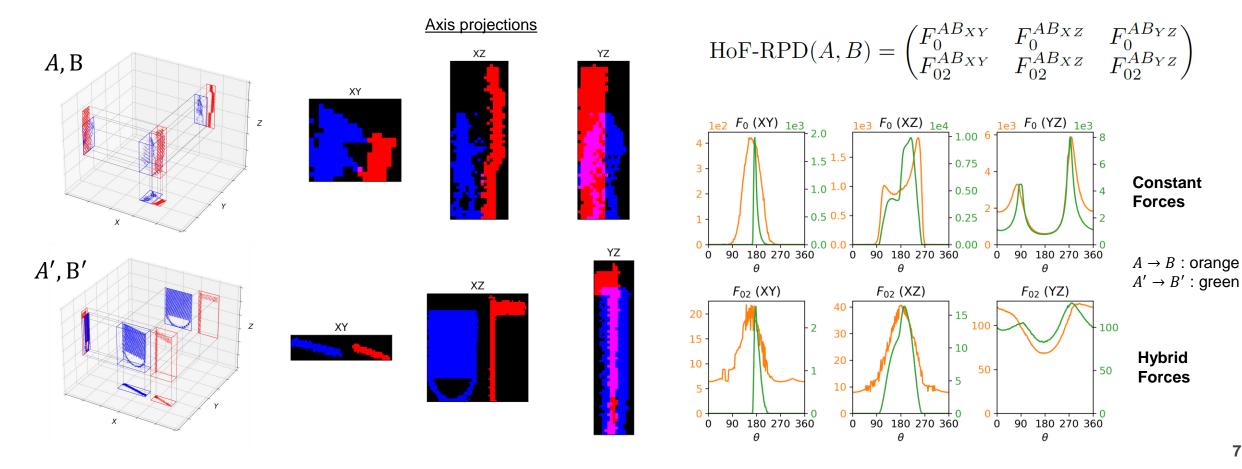
Histograms of Forces (2D)

- A force histogram F^{AB}_r(θ) represents the degree of truth of the statement "A is in direction θ from B."
 Variants:
 - Constant forces (F_0) is independent of distance
 - Gravitational forces (F₂) is independent of scale
 - Hybrid forces (F_{02}) blends F_0 and F_2 and handles overlapping objects



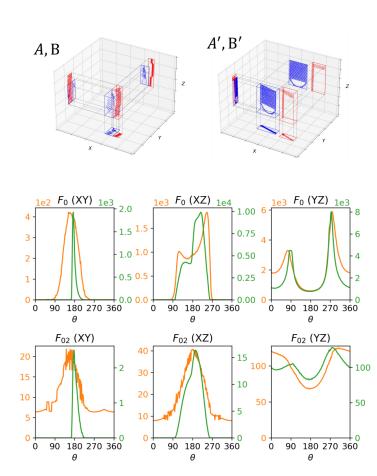
HoF Relative Position Descriptor

The HoF-RPD is comprised of F_0 and F_{02} histograms for each principle-axis 2D projection



 $s_{\mu}^{k}(.$

A measure $S_{HoF}(A, B, A', B')$ evaluates the similarity between the relationship $A \rightarrow B$ and $A' \rightarrow B'$



Histogram similarity
$\mu_T(h_1, h_2) = \frac{\sum_{\theta} \min(h_1(\theta), h_2(\theta))}{\sum_{\theta} \max(h_1(\theta), h_2(\theta))}$
$\mu_P(h_1, h_2) = 1 - \frac{\sum_{\theta} \left h_1(\theta) - h_2(\theta) \right }{\sum_{\theta} \left h_1(\theta) + h_2(\theta) \right }$
$\mu_C(h_1, h_2) = \frac{\sum_{\theta} h_1(\theta) h_2(\theta)}{\sqrt{\sum_{\theta} h_1^2(\theta)} \sqrt{\sum_{\theta} h_2^2(\theta)}}$

$$A, B, A', B') = \frac{\mu(F_0^{AB_k}, F_0^{A'B'_k})}{2} + \frac{\mu(F_{02}^{AB_k}, F_{02}^{A'B'_k})}{2}$$

Projection aggregation

 $S_{\text{HoF},\min,\mu}(A, B, A', B') = \min\left(s_{\mu}^{XY}, s_{\mu}^{XZ}, s_{\mu}^{YZ}\right)$ $S_{\text{HoF},\max,\mu}(A, B, A', B') = \frac{1}{3}\left(s_{\mu}^{XY} + s_{\mu}^{XZ} + s_{\mu}^{YZ}\right)$

TABLE I Force Histogram Similarities

		F_0			F_{02}	
	XY	XZ	YZ	XY	XZ	YZ
μ_T	0.236	0.201	0.722	0.016	0.207	0.868
μ_P	0.381	0.334	0.839	0.031	0.343	0.929
μ_C	0.548	0.859	0.948	0.482	0.899	0.989

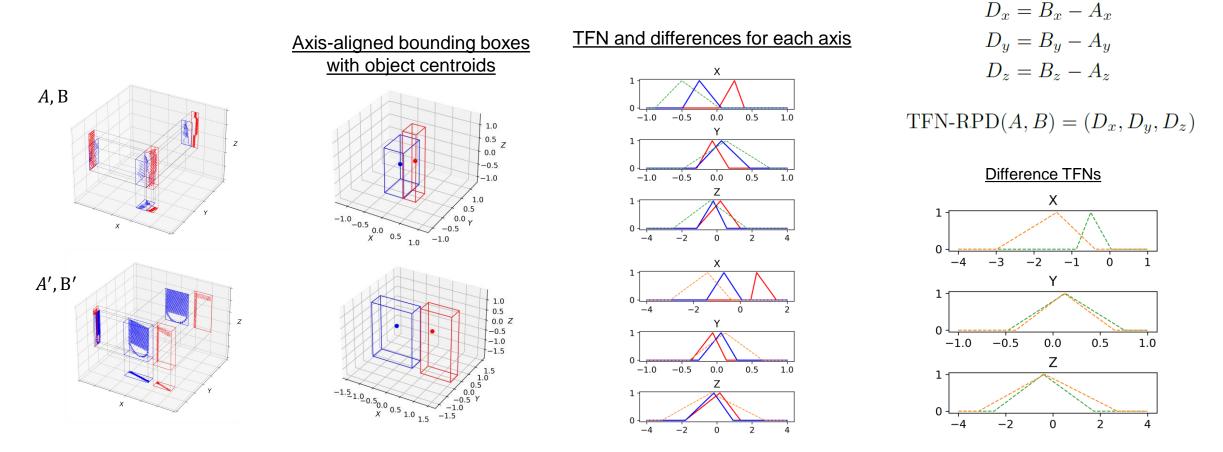
 TABLE II

 Object Pair Similarities Using the HoF-RPD

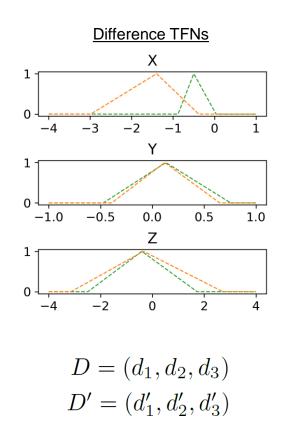
	s^{XY}	s^{XZ}	s^{YZ}	S_{\min}	S_{mean}
μ_T	0.126	0.204	0.795	0.126	0.375
μ_P	0.206	0.204 0.338	0.884	0.206	0.476
μ_C	0.515	0.879	0.795 0.884 0.968	0.515	0.787

6 different HoF similarity methods
(defined here)

The TFN-RPD is based on the triangular fuzzy number difference vector *D* along each axis



The measure S_{TFN-SA} evaluates object pair similarity using single axis triangular fuzzy numbers



Difference TFN similarity $\mu_{\max}(D, D') = \max_{x \in \mathbb{R}} \left\{ \min \left(m_D(x), m_{D'}(x) \right) \right\}$ $\mu_{\rm IoU}(D,D') = \frac{|D \cap D'|}{|D \sqcup D'|}$ $\mu_{\rm PD}(D, D') = \frac{1}{1 + {\rm PD}(D, D')}$ $PD(D, D') = \sum_{i=1}^{3} \frac{|d_i - d'_i|}{d_3 - d_1 + d'_3 - d'_1}$

Aggregation along each axis

$$S_{\text{TFN-SA,min},\mu}(D,D') = \min\left(s_{\mu}^{X}, s_{\mu}^{Y}, s_{\mu}^{Z}\right)$$
$$S_{\text{TFN-SA,mean},\mu}(D,D') = \frac{1}{3}\left(s_{\mu}^{X} + s_{\mu}^{Y} + s_{\mu}^{Z}\right)$$

TABLE III Object Pair Similarities Using the TFN-RPD Single-Axis Methods

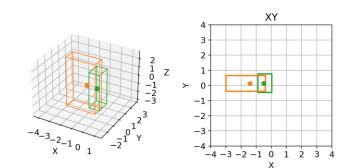
	s^X	s^Y	s^Z	S_{\min}	S_{mean}
$\mu_{ m max}$	0.358	0.990	0.988	0.358	0.778
$\mu_{ m IoU}$	0.053	0.846	0.717	0.053	0.539
$\mu_{ m PD}$	0.507	0.920	0.855	0.507	0.761

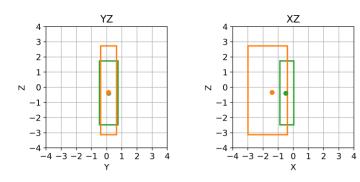
<u>6 different single-axis TFN similarity methods</u> (defined here)

TFN-RPD Bounding Box Similarity

The measure S_{TFN-BB} evaluates object pair similarity using axis-aligned bounding boxes and TFNs

Difference TFNs as bounding boxes and centroids





Difference bounding box similarity

$$u_{\rm IoU}(D,D') = \frac{|D \cap D'|}{|D \cup D'|}$$

$$\mu_{\rm GIoU}(D, D') = \frac{1}{2} \left(\frac{|D \cap D'|}{|D \cup D'|} - \frac{|C \setminus (D \cup D')|}{|C|} + 1 \right)$$

$$\mu_{\rm PD}(D, D') = \frac{1}{1 + \sum_{j \in \{x, y, z\}} {\rm PD}(D_j, D'_j)}$$

Projection aggregation $S_{\text{TFN-BB,min},\mu}(D,D') = \min\left(s_{\mu}^{XY}, s_{\mu}^{XZ}, s_{\mu}^{YZ}\right)$

$$S_{\text{TFN-BB,mean},\mu}(D,D') = \frac{1}{3} \left(s_{\mu}^{XY} + s_{\mu}^{XZ} + s_{\mu}^{YZ} \right)$$

Full 3D similarity

$$S_{\rm TFN-BB,3D,\mu}(D,D') = s_{\mu}^{XYZ}$$

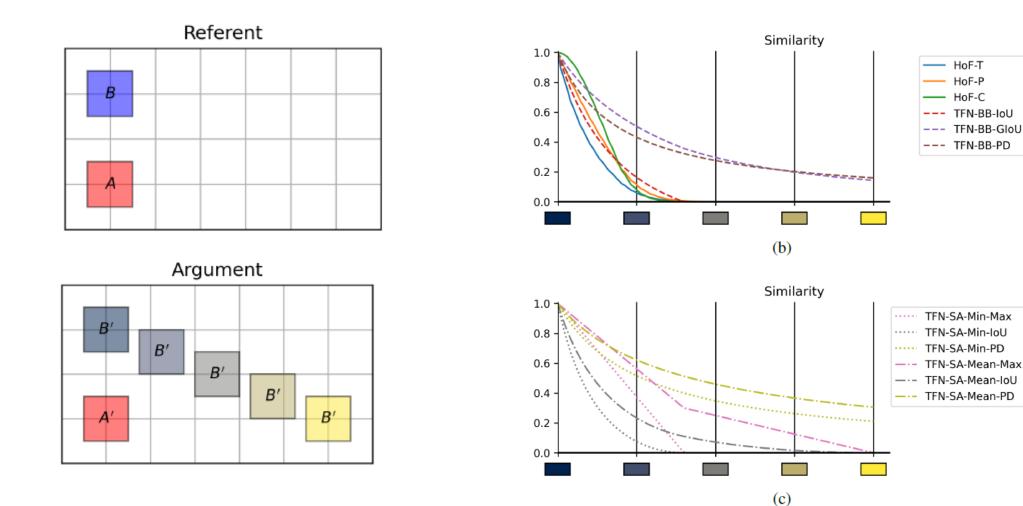
TABLE IV Object Pair Similarities Using the TFN-RPD Bounding Box Methods

	s^{XY}	s^{XZ}	s^{YZ}	S_{\min}	S_{mean}	$S_{3\mathrm{D}}$
$\mu_{\rm IoU}$	0.157	0.123	0.637	0.123	0.306	0.119
$\mu_{ m GIoU}$	0.526	0.542	0.797	0.526	0.622	0.484
$\mu_{ m PD}$	0.486	0.467	0.796	0.467	0.583	0.449

<u>9 different bounding box TFN similarity methods</u> (defined here)

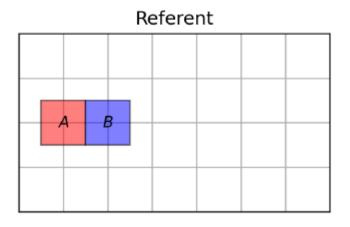
2D Comparison Example 1

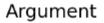
Similarity of $A' \rightarrow B'$ to $A \rightarrow B$ decreases as B' moves down and to the right.



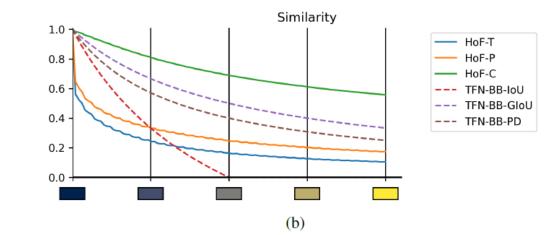
2D Comparison Example 2

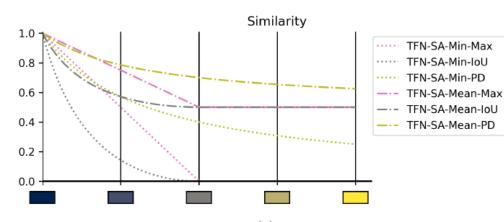
Similarity of $A' \rightarrow B'$ to $A \rightarrow B$ decreases as B' moves farther away.





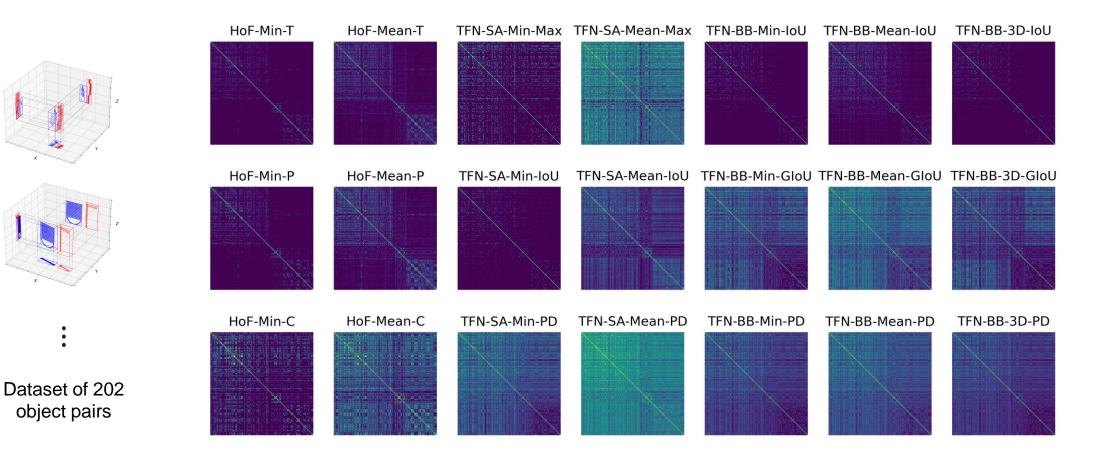
A	<u>, </u>	В'	В′	В′	B'	В′	





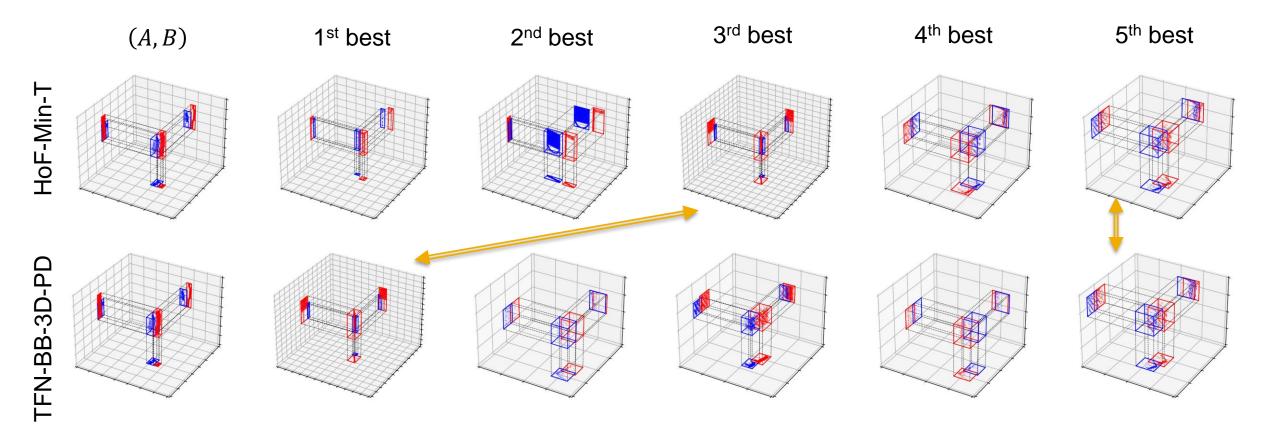
3D Comparison Experiments

We extract 202 object pairs from the NPM3D dataset (no more than 5 meters apart) and evaluate all 21 similarity measures against all combinations.



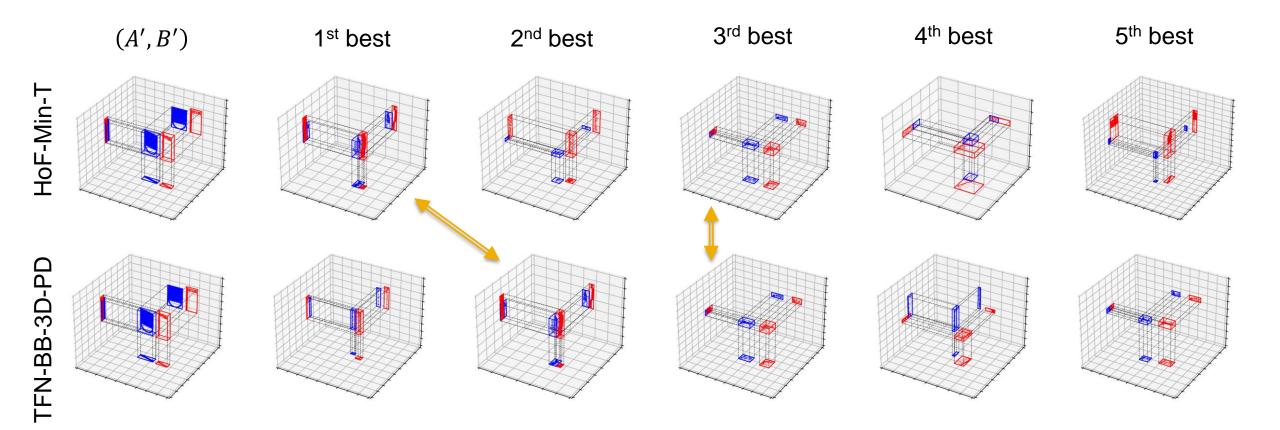
Top matches for pair (A, B)

Comparing the HoF-Min-T and TFN-BB-3D-PD methods on the example object pair (A, B), 2 of the top 5 (non-self) matches were the same.



Top matches for pair (A', B')

Comparing the HoF-Min-T and TFN-BB-3D-PD methods on the example object pair (A', B'), 2 of the top 5 (non-self) matches were the same.



Comparing Similarity Measures

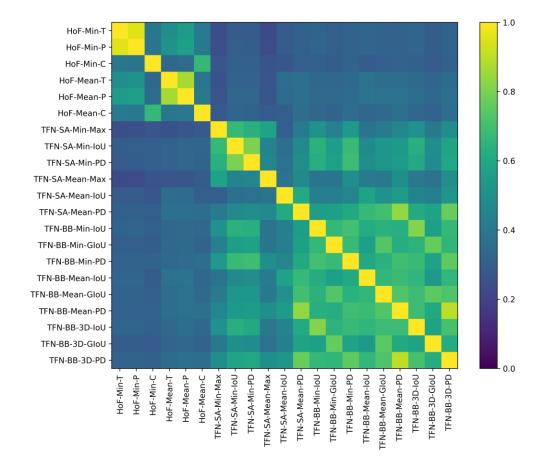
We compare all 21 measures by counting how often they identify the same set of similar object pairs.

For a pair of methods (i, j) and object pair index k,

Let M_{ik} be the set of 5 object pairs that most closely match object pair k according to method i,

Let M_{jk} be the set of 5 object pairs that most closely match object pair k according to method j.

$$s_m(i,j) = \frac{1}{|K|} \sum_{k \in K} \frac{|M_{ik} \cap M_{jk}|}{|M_{ik} \cup M_{jk}|}$$



- There are many ways to represent the spatial relationship between two 3D objects
 - No single best method; Each has strengths and weaknesses
- HoF methods are more descriptive and good for recognizing shape differences between close objects
 - Currently requires rasterization in 2D; Could explore 3D HoF
- TFN methods apply approximations to be fast and are better suited for far apart objects
 - Good when description is mostly direction and distance

Not currently accounting for rotation and scale invariance

• We assume a common frame of reference for both objects