
Human-in-the-Loop Extension to Stream Classification for
Labeling of Low Altitude Drone Imagery

Jeffrey Schulza, Andrew Bucka, Derek T. Andersona, James M. Kellera, Grant Scotta, and
Robert H. Luke IIIb

aDepartment of Electrical Engineering and Computer Science, University of Missouri,
Columbia MO, USA

bU.S. Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA

ABSTRACT

In general, there is a severe demand for, and shortage of, large accurately labeled datasets to train supervised
machine learning (ML) algorithms for domains like smart cars and unmanned aerial systems (UAS). This im-
pacts a number of real-world problems from standing up ML on niche domains to ML performance in/across
different environments. Herein, we consider the task of efficiently, meaning requiring the least amount of human
intervention possible, converting large UAS data collections over a shared geospatial area into accurately labeled
training data. Herein, we take a human-in-the-loop (HITL) approach that is based on coupling active learning
and self-supervised learning to efficiently label low altitude UAS imagery for the goal of training ML algorithms
for underlying tasks like detection, localization, and tracking. Specifically, we propose an extension to our stream
classification algorithm StreamSoNG based on human intervention. We also extend StreamSoNG to rely on a
second and initially more mature, but assumed incomplete, ML classifier. Herein, we use the Unreal Engine
to simulate realistic ray-traced low altitude UAS data and facilitate algorithmic performance analysis in a con-
trolled fashion. While our results are preliminary, they suggest that this approach is a good trade off between
not overloading a human operator and circumventing fundamental stream classification algorithm limitations.

Keywords: active learning, self-supervised learning, human-in-the-loop, HITL, drone, unmanned aerial vehicle,
unmanned aerial system, object detection, Unreal Engine, stream classification, StreamSoNG

1. INTRODUCTION

In today’s machine learning (ML) and artificial intelligence (AI) landscape, deep learning (DL) is the reigning
king. Different flavors of DL, like convolutional neural networks (CNNs) and recurrent NNs (RNNs), generally
require large amounts of labeled training data. In the case of a CNN and object detection, many look to data
sets like ImageNet and Coco; which have 14+ million and 300K images respectively. Realistically, labeling data
sets at this scale is a daunting task. In many applications, it is the bottleneck. Modern ML is overly dependent
on supervised learning and its not clear if this ideology scales in our pursuit of next generation AI. Herein,
we explore the idea of having a human help a machine learn and refine concepts. Specifically, we focus on an
extension of self-supervised stream classification using a human-in-the-loop (HITL). The result has the potential
to significantly reduce the time and cost required to label large low altitude aerial data sets and build ML/AI
models on specialized domains that have insufficient labeled training data. Figure 1 illustrates our motivation.

Current DL models cannot predict classes that they are not trained on. For example, if a CNN is trained to
find people and cars, then it will not find aliens or hamburgers. We refer to this hereafter as a “closed world”
model and our desire to detect new classes as the “N + 1” problem (where N is the current number of known
classes). In the research community, these concepts are often called open set recognition (see Ref. 1 for a recent
survey). A number of questions arise as we attempt to add a new class. For example, how does the model see
the new class? Does it incorrectly classify it as one of its known N classes? Can the model say “I don’t know?”

Send correspondence to Jeffrey Schulz
Jeffrey Schulz: E-mail: jtsmbb@mail.missouri.edu



Figure 1: Illustration of our application of interest. Low altitude UAV imagery on niche domains is collected and
subsequently labeled automatically by a stream classification algorithm. However, algorithms are not perfect;
they need help getting started and achieving a desired steady state. A human is in the loop and helps teach
the algorithm. However, the image stream is large and the human does not want to analyze every candidate
image. The goal is to strike a balance of active and self-supervised learning to ultimately reduce the time and
cost associated with labeling large UAV collected data sets. The image shows correct AI/ML detection’s for
known classes (gray boxes), algorithm detection’s for new patterns that the machine does not know but a user
might want labeled (red), algorithm mistakes that need correcting (green), and detection’s that a human catches
but the algorithm misses (purple). Our aim is to create a collaborative human-machine coupling that results in
a small amount of effort to kick start high quality subsequent data labeling.

Furthermore, does the current model even have the potential to detect the new class, e.g., are its features good
enough to detect and discriminate this class? Herein, we explore the case of a human working with a CNN
that has a fixed vocabulary (e.g., pre-trained convolutional weights) in an online fashion. Instead of using the
pre-trained CNN decision making layers, we use stream classification. The machine can now label things it knows
(one of its N classes), it can be extended to new classes (aka N+1), it can be used to identify outliers, and it
can be used to combat “concept drift”. Of course, all of the above is contingent on the pre-trained CNN feature
weights being able to extend to class N+1. In a final step, the newly labeled data can be used offline, if desired,
to learn a new set of weights, achieving a form of self-supervised learning.

For this paper, we focus on a subset of the desired functionality outlined above. Herein, we make the following
specific contributions. This is the first application of StreamSoNG2 on a real streaming computer vision task.
To date, StreamSoNG has been developed using a combination of theory, controlled synthetic data sets (e.g.,
mixtures of Gaussians with noise), and real-world texture image data sets. Second, we extend StreamSoNG to
take into account a HITL. A fundamental limit of algorithms like StreamSoNG are that they must make very
complicated decisions using little information. For example, when has a new pattern emerged? Herein, we take
a first step to couple StreamSoNG with a HITL to improve the N+1 problem. Third, we explore a use case of
automatically labeling low altitude drone imagery. In order to maintain control, we generate aerial imagery from
ray tracing in the Unreal Engine. As the reader will see, the imagery is extremely similar to real aerial data,
providing a wonderful testbed and potential source of training data. Simulation at this level allows us to more
rapidly explore the user interface, find break cases, and develop new algorithms.

In section 2.1, we discuss our implementation of StreamSoNG. In section 2.2, we introduce our user interface
with which the HITL supervision is performed. In section 3, we discuss preliminary experiments and results.
Last, in section 4 we discuss future work. Table 1 shows acronyms and our notation.



Table 1: Acronyms and Notation

HITL Human-In-The-Loop
StreamSoNG Streaming Soft Neural Gas

PKNN Possibilistic KNN
PCM Possibilistic C-Means
GNG Growing Neural Gas

xt Sample at time t
pik kth closest prototype to ith class label
t′ik Typicality of sample x to the kth closest prototype

of the ith class

2. METHODS

2.1 Stream Classification

As mentioned above, our HITL labeling problem can be cast as an instance of stream classification. In Ref. 2, Wu
et al. proposed the Streaming Soft Neural Gas (StreamSoNG) algorithm. StreamSoNG makes the assumption
that data cannot be stored, e.g., a reality for many Big Data applications. For example, consider the case
of imagery streaming at multiple frames per second for hundreds of cameras monitoring traffic in a city 24-
7. Problems such as these break the majority of existing supervised and unsupervised learning algorithms.
StreamSoNG addresses problems like these by combining unsupervised learning and classification into a streaming
algorithm that specializes in extending the knowledge of a system with new data. In short, StreamSoNG first
utilizes growing neural gas (GNG) to initialize prototypes for a training set of data and saves out the prototypes.
Then during data streaming, typicality is computed on new data with possibilistic k-nearest neighbor (PKNN),
separating streaming data as either belonging to an existing class (one of N classes) or as an outlier (with the
potential to be class N+1). The list of outliers are then run through the possibilistic c-means (PCM) algorithm
with an attempt to find new patterns. If patterns are found in the outlier list, they are extracted, added to the
knowledge base of the algorithm as class N+1 (a generic label), and initialized with another GNG to establish
cluster prototypes. The algorithm now has a knowledge base for the N+1 class, and new streaming data can
now get this classification. The algorithmic flow for how we drop our implementation of StreamSoNG into the
system is shown in Figure 2.

To go into more detail, the StreamSoNG algorithm can either assign an incoming streaming data vector as
part of an existing pattern or as an outlier. StreamSoNG utilizes the PKNN algorithm to calculate typicality and
determine classification for incoming data points. During the PKNN step, computing typicality has historically

Figure 2: After training data is provided to initialize the StreamSoNG algorithm, the streaming test data is
streamed into StreamSoNG where clusters and outliers are determined and new classes can emerge. When a new
class is detemined to exist, the user is prompted with a ”New Class” GUI where he/she can select the objects
belonging to the new class. The StreamSoNG algorithm is then updated to reflect those truths.



been contentious, so in this paper we define our typicality equation by,

t′ik(xt,pik) =
1

1 + [max(0, ‖xt − pik‖ − η)]2/(m−1)
, (1)

where if the distance of the sample xt and the nearest k prototypes is within η distance, the typicality is greater
than zero. Any sample outside of η from any prototype is given a typicality of zero. The typicality is leveraged
w.r.t. to the distance with a factor m. In our implementation, estimate a unique η per pattern and choose a m
of 2.0.

If the sample is determined to part of an existing pattern (typicality of greater than 0 to any prototype),
then the system updates prototypes belonging to that class as follows,

pt+1
ik = ptik + α ∗ t′ik(xt) ∗ e−k/λ(xt − ptik), (2)

where ptik is the kth closest prototype to sample xt at time t for the ith pattern label, α is the learning rate
(0.2 in this paper), t′ik(xt) is the typicality of the sample xt to the kth closest prototypes for the ith pattern
label, and λ is the “neighborhood range parameter” which determines the drop off for prototype update. Note,
we exclude the S-function presented in the original paper.

If the sample is determined to be an outlier (typicality of 0 to every prototype), then after a certain minimum
amount of outliers, StreamSoNG tries to automatically identify clusters in the outlier list with PCM clustering.
If any clusters are found, they are added to the patterns in StreamSoNG as a new and separate class. This
algorithm flow is discussed in Figure 3.

In this paper, PCM is initialized to find one cluster and is simplified for StreamSoNG for sequential compu-
tation. As per Wu, et al,2 the algorithm is modified to become Sequential Possibilistic One-Means (SP1M). For
more information on the specific implementations of GNG, PKNN, and SP1M, see Ref. 2.

Figure 3: StreamSoNG flowchart. During initialization, Growing Neural Gas (GNG) networks are trained on
each known data cluster and prototypes are saved. During streaming, data is introduced to the system one chip
at a time. Herein, chips are image space regions of interest (R.O.I.) identified by a change detection algorithm.
Classification is determined by the PKNN algorithm and outliers are clustered via PCM. If a new pattern
appears, the class is initialized with GNG to find prototypes and the pattern is added to the known patterns in
StreamSoNG.



Figure 4: This diagram shows the relationship between the human operator and the self-supervised labeling
algorithm as proposed in this paper. After providing the necessary initialization data, the human operator takes
a back seat and monitors the self-supervised labeler. As the labeler streams data, we propose that it is possible
to interrupt the data stream to correct wrong labels and preempt new class creation.

2.2 User Interface

The purpose of this section is to discuss our considerations for a user interface (UI) prototype. First, we discuss
how the user should be able to interact with our stream classification algorithms. We intend to have clear
divisions of responsibility between the user and algorithmic labeler to improve the ease of use for this potential
implementation. This relationship is shown in Figure 4. After the human operator provides the necessary
initialization data and a source for the streaming data, they can sit back and only intervene at certain, clearly
defined moments. However, our current article is about extending stream classification via a HITL interaction.
Even though we do not focus on optimal user interface design nor human factors, achieving our algorithmic goal
requires us to at least explore a UI prototype. The UI outlined in this section is focused on the idea of extending
StreamSoNG. Figure 5 shows the proposed UI.

Figure 5 consists of the following parts. As data is streaming in, the user can specify a “play rate”. The
UI also has “arrows” for go backward and forward in time. This supports the need to take small steps or to
go back and correct something that the user saw as wrong and it rotated off the UI. Here, we focus on the
aspects related to giving the human operator the ability to understand and make decision on what is happening
on screen as quickly as possible. Things we keep in mind include: not forcing the operator to make decisions
with time constraints, keeping information in consistent locations on screen, and having clear and uncluttered
controls. Again, while this paper is not about UI design, we try to consider at least a few good design principles
in our prototype.

Factors like the above led us away from having a real-time cluttered video feed that requires a high cognitive
investment, e.g., Figure 1. Instead, we run an existing detection and localization algorithm to find candidate
regions of interest (R.O.I.). Specifically, we run YOLOv5.3 Non-open set algorithms like YOLOv5 have the
advantage that their community default models (set of weights) have been trained on many image data sets.
The problem is, these algorithms can be wrong or incomplete when adapted to new domains and applications.
We use an algorithm like YOLOv5 to bootstrap our stream classification. In the long run, we expect the stream



Figure 5: Prototype of the user interface explored herein. See the text for a full description.

classifier to perform the majority of work in our approach. However, using an algorithm like YOLOv5 leaves us
vulnerable. It only knows what it knows. Meaning, people in a new data can look different and we often desire
to find new classes. Therefore, we also rely on change detection for R.O.I. identification. The reader can refer
to the literature for decades of image (2D) and world (3) space methods from mixtures of Gaussians4 to modern
change detection in deep learning.5,6 In this initial paper, we simulate change detection from one flight or day
to the next. We do not consider frame-2-frame change detection, but it could be added. Last, it should be noted
that while we focus on the above two methodologies for finding R.O.I.s for HITL assisted StreamSoNG, other
strategies exist. For example, the modern computer vision literature has a heavy investment in visual attention
modeling7–9 and lower level algorithms like optical flow (e.g., FlowNet10) can be used to find temporal movement
in a video sequence. In summary, our UI is driven by a stream of video R.O.I.s.

Keeping the above in mind, Figure 5 is based on a few simple design ideas. Each class gets its own real estate
in the UI. For example, “Class 1” is people, “Class 2” is cars, and “Class 3” is benches. The goal of the UI
is not to show the internal representation of StreamSoNG, e.g., graphical depictions of the underlying neurons.
Instead, the goal is to show a rotating set of examples that the algorithm feels belong to that class. At any
moment in time a human watching the rotating UI can pause the interface if a chip (R.O.I.) is wrong. Our idea
was its perhaps simpler for a human to watch these categories and stop–to provide feedback–when they notice
mistakes. Thus, the human is sitting over the algorithm letting it do its thing until errors are encountered.
Furthermore, there are R.O.I.s that do not belong to a class that a user cares about. We have a section of the
UI dedicated to this. These are examples on the “watch list” and StreamSoNG. The next sub-sections of this
article go into depth on the a human monitoring the watch list and reacting to StreamSoNG inquiries. Overall,
the UI is simple and its about supporting interactivity with the user.

The point is, Figure 5 is a proof-of-concept. Future work will focus more on the human angle, e.g., ergonomics.



The current UI is a real-time class clustered rotating stream of R.O.I.s and outliers in support of HITL enhanced
StreamSoNG. The next few sections go into greater depth on the UI relative to three use cases.

3. USE CASES

Figure 6: Simulated Modular Neighborhood Pack11 environment on the Unreal Marketplace12 for the Unreal
Engine.13 Example (left) view in the editor and (right) imagery we generated for this paper using a Camera
(Cinematic Actor), pre-scripted flight sequence via a Cinematic Track, and ray tracing offline using the Movie
Render Queue. See Section 3.1 for additional details.

3.1 Simulated Data and Experimental Design

Herein, our primary focus is the extension and exploration of stream classification (StreamSoNG) with respect
to a HITL and an additional classifier. In order to experiment with a wide and controlled range of conditions
to speed up algorithmic prototyping, the Unreal Engine13 is used as a surrogate to a real low altitude drone
equipped with a visual spectrum (aka RGB) camera. We use a combination of free and for purchase content
(3D models, animations, and textures) from the Unreal Marketplace.12 Figure 6 is example imagery that we
generated in Unreal. It is worth noting that Unreal’s ray tracing, which can be approximated in real time using
NVIDIA hardware like the GeForce RTX 3090, provides access to high fidelity rendering capable of mimicking
real cameras. For example, a user has control over features like motion blur, fstop, focal distance, FOV, pixel
resolution, noise, and much more. This provides flexibility in mimicking different systems, making simulated
data more like real-world data. However, if a user desires real time simulation, then the AirSim14 Unreal Editor
plug in can be used, and Ref. 15 outlines a plug in for extended cameras models and effects.

Specifically, we use a Camera (Cinematic Actor), a pre-scripted flight sequence is configured (versus a real-
time autonomous flight in AirSim) as a Cinematic Track and last, imagery is generated offline using the Movie
Render Queue. An advantage of this offline route in the short research term is it gives us greater control, e.g., use
of Deferred Rendering (via Path Tracer), multiple spatial and temporal samples for anti-aliasing, specification
of maximum number of ray bounces, etc. This offline procedure has allowed us to achieve a desired level of
image quality for our experiments. Furthermore, it is our belief that our algorithms and codes can be migrated
without major effort to real data from a drone next. A further advantage of simulation is we know the truth. The
reader can refer to our articles on visual guided autonomy,16 meta data enabled contextual fusion,17 or simulated
augmentation data for explosive hazard detection18 for details about how to use stencil buffers to automatically
generate labeled bounding boxes or per-pixel semantic labels.

Herein, we simulate a neighborhood in Unreal via the Modular Neighborhood Pack11 that includes people,
cars, bicycles, and miscellaneous objects (outlined below). As already discussed, we assume that StreamSoNG
is operating on alarms generated by a region of interest (R.O.I.) algorithm, e.g., change detection between
consecutive flights over the same region, frame-to-frame change detection, etc. As the focus of our current article
is StreamSoNG and not a change detection algorithm, a human curated the R.O.I.’s using the visual object
tagging tool (VoTT).19 A set of simulated streets containing people and cars were held back for StreamSoNG



initialization. Additional streets were held back for testing or stream evaluation. These streets have the following.
First, we consider duplicates of known people and cars in different contexts (locations and poses). Second, we
add objects that belong to these classes that the algorithm has not seen before, e.g., new people and cars. Third,
we add R.O.I. that an algorithm has not seen before but might be interested in, e.g., trash bags, bicycles, toilets,
etc. Last, we add R.O.I.’s that change detection algorithms frequently find that a user likely does not care
about, e.g., algorithm mistakes, nature (bushes, trees), etc. The point is, our curated data set has a mixture of
challenges. The human chipped varying size bounding boxes around each R.O.I., as this is likely the reality for
an imperfect change detection algorithm.

Now that our scene is set up and data is generated, we use the following experimental design. First, we
use an existing deep learning model for feature extraction on R.O.I.’s. Second, we use a method to reduce the
dimensionality of these neural features. R.O.I. features are generated using a modified ResNet50 (no classification
layer) pretrained on the ImageNet dataset. The result is initially of size 2048x(7x7) per sample; 2048 features
with response fields of size 7x7. As we are primarily interested in the degree to which a feature is present or
not, versus where spatially these features exist, max pooling was used per feature map, which results in 2048
features. These features are then reduced to size 128 using an Autoencoder trained on the ImageNet dataset.
Experimentally, we tried different sizes and we determined that 128 was a good balance for our data set. We
did this visually by generating a sorted dissimilarity matrix and we looked at similarity between objects within,
and across classes. For an ideal situation, dark diagonal blocks should appear for each sorted class, indicating
low dissimilarity (aka high similarity) for objects of the same class. Conversely, off diagonal blocks should be
high in value, indicating low similarity (high dissimilarity) between objects in the different classes. In the end,
StreamSoNG operates on our features in this reduced 128 dimensional space. In future work, we will study the
effect of running StreamSoNG in different dimensions and we will explore different transformations than what
is outlined herein. The above was used because it is somewhat common operating practice nowadays; i.e., ML
on neural features with reduced dimensionality.

Last, before we can start streaming data into our interface, we need to initialize StreamSoNG. This initial-
ization includes a training set of features for all “known” classes and their labels. In our case, our held back
training data streets had 30 samples for each known class (cars and people). The interface is now ready for
streaming data. In the following sections, we demonstrate three use cases.

3.2 Use Case 1: StreamSoNG Recommended Emergent Patterns

Use case one is driven by the following need. A user would expect a stream classification algorithm to prompt
them when something new has been detected, i.e., a new class (or sub-class) has been found. We expect that
this is one of the most important problems to handle when developing a truly self-supervised algorithm. Figure
7 shows our HITL desktop interface. When StreamSoNG identifies new patterns in the streaming data, we want
the interface to interrupt the stream and alert the user for input. This is demonstrated in Figure 8. The user is
now responsible for selecting images that are similar to each other–or they can simply accept all recommended
by StreamSoNG–and they must provide a class label. In the case of Figure 8, the user has determined that these
are examples of bushes and they provide a new label (“bush”). However, inner class variation can exist and it
is possible that a newly detected pattern belongs to an existing class, e.g., a new type of car, for which the user
can provide an existing class label. After the user submits their changes, streaming continues but StreamSoNG
now has knowledge of this new class and it can leverage this to increase its classification accuracy.

While effective in many scenarios, this use case can falter in real world deployment. In order for StreamSoNG
to find and recommend a new pattern, StreamSoNG had to determine that a new pattern (cluster) has emerged.
This requires a few factors. Namely, a sufficient number of samples with satisfactory similarity. This is where
stream classification algorithms are at a disadvantage. It is not trivial to answer these question. It is one thing
to address questions like these in controlled settings like compact well separated Gaussian clouds, but how does
it perform on high dimensional neural features where classes are likely multi modal? The next use case was
designed with this shortcoming in mind.



Figure 7: Snapshot of the HITL interface performing stream classification on incoming simulated data. Cars
and humans that StreamSoNG has confidently classified populate in their respective regions. All chips that
StreamSoNG determines are outliers populate in the right column.

Figure 8: When StreamSoNG determines a new pattern is present in the data, it interrupts the streaming data
and presents this dialog box for the user. The user selects similar images, or simply accepts all, and provides
a label for the emergent pattern. Once streaming resumes the system now classifies images using this new
knowledge.



3.3 Use Case 2: Preemptive Identification of a Pattern

Another use case we expect our system to handle is the preemptive identification of a pattern by the human
operator. The idea is as follows. Say the user is monitoring the streaming data and they see an important
pattern of data start to populate in the outliers column. The user should be able to preempt the identification
of this class as they please. Figure 9 highlights this interactive process.

To preempt the identification a new pattern, the user can click any image chip on screen to bring up a dialog
box showing the clicked image and a rank ordered set of similar images to help aid in the process of quickly
identifying imagery for a new pattern. The user can then select the images they think belong in the new pattern
and provide a label. This process can be repeated as much as needed. Similar to the behavior in Use Case 1, the
new pattern is now added to the knowledge of StreamSoNG and then system will now attempt to classify images
accordingly. Note, our underlying implementation includes adding a neural gas neuron for each user identified
selection. While this is likely more neural gas neurons than what StreamSoNG would find for an emergent
pattern, we chose to keep the users resolution of sampling. Alternatively, the reader could select to run growing
neural gas on the user identified samples.

This use case aims to remedy shortcomings in Use Case 1. Namely, StreamSoNG might be too slow to
react. If objects are rare, it might take a lot of time to see enough examples before StreamSoNG is willing to
declare a new emergent pattern. This specifically addresses the number of samples challenge in StreamSoNG.
However, it is also not trivial to determine similarity in high dimensional spaces driven learned neural features.
If StreamSoNG is unable to detect a cluster, but the user has already made this connection, then it make sense
to have StreamSoNG include this preemptive strike, as its a feature of having a HITL.

While the above helps, it still often results in outlier lists containing many instances of known classes. For

Figure 9: If a user chooses to preempt the creation of a new class, or extend an existing one, this dialog box
pops up showing the target image similar imagery. The user then selects chips and they provide a label. In this
figure, the user noticed a class of toilets being thrown away. They clicked on a toilet from the outlier list and
a rank ordered list of similar chips (according to the underlying neural feature space) are presented. The user
picks which chips are toilets, they provide the label, and streaming resumes.



Figure 10: Example of image chips that StreamSoNG determined were outliers but YOLOv5 correctly classified.

example, consider Figure 9. The outlier list has many cars and people still, regardless of the fact that is has classes
supposedly covering those classes. A challenge that StreamSoNG has to face is, its a streaming classification
algorithm and it takes time for it to “come up to speed.” Meaning, in the early stages the user will likely have
to help the algorithm more than desired. In the next setion we address this challenge.

3.4 Use Case 3: Using Another Classifier to BootStrap StreamSoNG

The last use case we discuss is the ability to extend an existing algorithm. As briefly discussed earlier, frameworks
like YOLOv5 have an immense knowledge base already for object detection. In this section, we explore the use
of an algorithm like YOLOv5 to boostrap StreamSoNG. The idea is, an algorithm like YOLOv5 may fail to
work on new domains and its a closed set/world algorithm. However, while StreamSoNG is coming up to speed,
an algorithm like YOLOv5 could be used to reduce our set of R.O.I.’s in an outlier list. We would like for our
StreamSoNG extension to be able to draw from this capability. When images are streamed, they are first run
through YOLOv5 for localization and detection. If a confident classification is achieved and it has a generalized
intersection over union (GIOU) with one of our alarms, then the chip is auto-labeled and fed to our algorithm,
i.e., its respective neural gas class is updated. An additional benefit of this approach is the user can select if they
want all YOLOv5 detection’s to be added to StreamSoNG. That is, chips that are not associated with alarms can
be found and used for learning. While this sounds redundant, i.e., YOLOv5 already knows about these objects,
it allows StreamSoNG to learn from YOLOv5, helping it learn faster. Figure 10 shows an example.

This process of bootstrapping StreamSoNG using another algorithm is not without flaw. Herein, it helped
us reduce our outlier, lessening the users amount of desired interactivity. However, in future work we will need
to address how to modify StreamSoNG to accommodate YOLOv5 mistakes. That is, YOLOv5 is trusted and if
it provides labels that are wrong, then StreamSoNG learns from these examples.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we focused on a HITL extension to a stream classification algorithm, StreamSoNG. In addition
we also explored bootstrapping StreamSoNG using a second classifier. Three common use cases were explored
relative to controlled scenes generated by simulation. Use case one showed that StreamSoNG can recommend
new patterns to a user, use case two allows the user to preemptively declare patterns, and use case three outlined
how to reduce the outlier set using an algorithm like YOLOv5. Overall, while qualitative and preliminary, our



use cases show promise for HITL assisted labeling of low altitude aerial data sets. However, more work is required
in order to achieve high quality labeling on real world streaming data.

In future work, we will address the following. First, we will continue to rely on simulation in the short term.
However, we will integrate our change detection algorithms to remove the human identified R.O.I.’s. Now that a
pipeline for generation, labeling, and next segmentation and alarm generation exists, we will identify performance
metrics to facilitate quantitative scoring. The user interface will also be improved around human factors. At
an algorithmic level, we will explore how to fuse the secondary algorithm (e.g., YOLOv5) with StreamSoNG
classification results. We will also explore how a user can provide feedback to scrub or update mistakes made by
StreamSoNG. In addition, StreamSoNG currently uses the PKNN and possibilsitic clustering. We would like to
explore other ways of updating growing neural gas relative to the desire to generate a membership per sample
and to automatically discover new emergent patterns. Finally there are a number of user defined parameters
in this system that need sensitivity analysis and studying to determine if they can be analytically understood.
Last, while the proposed algorithms can be used in a stream classification setting per run, it would be good to
study these algorithms across runs and environments to see their effects on different environments and under
conditions like concept drift.



REFERENCES

[1] Geng, C., Huang, S. J., and Chen, S., “Recent advances in open set recognition: A survey,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence , 1–1 (2020).

[2] Wu, W., Keller, J. M., Dale, J., and Bezdek, J. C., “Streamsong: A soft streaming classification approach,”
(2020).

[3] Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, tkianai,
yxNONG, Hogan, A., lorenzomammana, AlexWang1900, Chaurasia, A., Diaconu, L., Marc, wang-
haoyang0106, ml5ah, Doug, Durgesh, Ingham, F., Frederik, Guilhen, Colmagro, A., Ye, H., Jacobsolawetz,
Poznanski, J., Fang, J., Kim, J., Doan, K., and , L. Y., “ultralytics/yolov5: v4.0 - nn.SiLU() activations,
Weights & Biases logging, PyTorch Hub integration,” (Jan. 2021).

[4] Stauffer, C. and Grimson, W. E. L., “Adaptive background mixture models for real-time tracking,” in
[Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat.
No PR00149) ], 2, 246–252 Vol. 2 (1999).

[5] Khelifi, L. and Mignotte, M., “Deep learning for change detection in remote sensing images: Comprehensive
review and meta-analysis,” IEEE Access 8, 126385–126400 (2020).

[6] Varghese, A., Gubbi, J., Ramaswamy, A., and Balamuralidhar, P., “Changenet: A deep learning architecture
for visual change detection,” in [Computer Vision – ECCV 2018 Workshops ], Leal-Taixé, L. and Roth, S.,
eds., 129–145, Springer International Publishing, Cham (2019).

[7] Wang, W. and Shen, J., “Deep visual attention prediction,” IEEE Transactions on Image Processing 27(5),
2368–2378 (2018).

[8] Hara, K., Liu, M.-Y., Tuzel, O., and Farahmand, A.-m., “Attentional network for visual object detection,”
(02 2017).

[9] YuanQiang, C., Du, D., Zhang, L., Wen, L., Wang, W., Wu, Y., and Lyu, S., “Guided attention network
for object detection and counting on drones,” in [Proceedings of the 28th ACM International Conference on
Multimedia ], MM ’20, 709–717, Association for Computing Machinery, New York, NY, USA (2020).

[10] Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., v. d. Smagt, P., Cremers, D.,
and Brox, T., “Flownet: Learning optical flow with convolutional networks,” in [2015 IEEE International
Conference on Computer Vision (ICCV) ], 2758–2766 (2015).

[11] “Modular Neighborhood Pack.” https://www.unrealengine.com/marketplace/en-US/product/

modular-neighborhood-pack. (Accessed: 1 March 2021).

[12] “Unreal Marketplace.” https://www.unrealengine.com/marketplace/en-US/store. (Accessed: 1 March
2021).

[13] “Unreal Engine.” https://www.unrealengine.com/. (Accessed: 1 March 2021).

[14] “AirSim.” https://github.com/microsoft/AirSim. (Accessed: 1 March 2021).

[15] Pueyo, P., Cristofalo, E., Montijano, E., and Schwager, M., “Cinemairsim: A camera-realistic robotics
simulator for cinematographic purposes,” (2020).

[16] Buck, A., Deardorff, M., Anderson, D. T., Wilkin, T., Keller, J. M., Scott, G., III, R. H. L., and Camaioni,
R., “Vader: A hardware and simulation platform for visuallyaware drone autonomy research,” in [SPIE ],
(2021).

[17] Deardorff, M., Alvey, B., Anderson, D. T., Keller, J. M., Scott, G., Ho, D., Buck, A., and Yang, C.,
“Metadata enabled contextual sensor fusion for unmannedaerial system-based explosive hazard detection,”
in [SPIE ], (2021).

[18] Alvey, B., Anderson, D. T., Keller, J. M., Buck, A., Scott, G., Ho, D., Yang, C., and Libbey, B., “Improving
explosive hazard detection with simulated and augmented data for an unmanned aerial system,” in [SPIE ],
(2021).

[19] “VoTT.” https://github.com/microsoft/VoTT. (Accessed: 1 March 2021).

https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/
https://github.com/microsoft/AirSim
https://github.com/microsoft/VoTT 

	INTRODUCTION
	Methods
	Stream Classification
	User Interface

	Use Cases
	Simulated Data and Experimental Design
	Use Case 1: StreamSoNG Recommended Emergent Patterns
	Use Case 2: Preemptive Identification of a Pattern
	Use Case 3: Using Another Classifier to BootStrap StreamSoNG

	Conclusions and Future Work

