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ABSTRACT

In this article, we explore the role and usefulness of parts-based spatial concept learning about complex scenes.
Specifically, we consider the process of teaching a spatially attributed graph how to utilize parts-detectors and
relative positions as attributes in order to learn concepts and to produce human oriented explanations. First, we
endow the graph with parts detectors and relative positions to determine the possible range of attributes that
will limit the types of concepts that are learned. Next, we enable the graph to learn concepts in the context
of recognizing structured objects in imagery and the spatial relations between these objects. As the graph is
learning concepts, we allow human operators to give feedback on attribute knowledge, creating a system that
can augment expert knowledge for any similar task. Effectively, we show how to perform online concept learning
of a spatially attributed graph. This route was chosen due to the vast representational capabilities of attributed
graphs, and the low-data requirement of online learning. Finally, we explore how well this method lends itself
to human augmentation, leveraging human expertise to perform otherwise difficult tasks for a machine. Our
experiments shed light on the usefulness of spatially attributed graphs utilizing online concept learning, and
shows the way forward for more explainable image reasoning machines.
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1. INTRODUCTION

In the last decade, we have seen an exponential rise in research and funding of machines that can perform visual
object detection exceptionally well. However, this advancement, primarily in regards to standard measures of
performance like F1, has originated from techniques that function as correlation machines, rather than concept
learners. While a success no doubt, these so-called black box machines arguably generate more problems than
solutions. One major problem is the explainability and accountability of these machines, which generate no
natural explanations and don’t promise similar outcomes under similar circumstances. Explainable AI (XAI)
attempts to rectify this in one way by developing novel techniques to perform concept learning rather than
correlation learning. In essence, concept learning is the search for attributes that are used to distinguish exemplars
from non-exemplars of a certain category. This is inherently explainable due to the ability to point to the
attributes that did or did not lead to a decision made by the machine. Furthermore, the inclusion of a human
in the loop provides oversight and faster machine learning from the interaction of the human and machine.
While broad in scope, there are many application areas that can benefit from concept learning based on human
interaction and XAI, including computer vision, geospatial sensing, pattern recognition, object detection, natural
language processing, and more. In the context of this paper, we are less focused on specific application, and
more focused on the dialogue that is created between human and machine when using explainable AI techniques.
An explainable AI machine can naturally generate explanations for decisions, a human in the loop can evaluate
these explanations and decisions and provide feedback, and the machine accepts the feedback to improve concept
definitions, leading to better explanations and performance.



Figure 1: A humorous XKCD comic showing some of the problems with correlation machine learning techniques
and their inherent lack of explainability. From xkcd.com/1838/.

The contributions of this article are as follows. First, we discuss the high-level benefits and drawbacks of
concept learning based on human interaction and explainable AI, along with discussing some potential application
areas. Second, we describe the low-level methods and techniques of our machine, and the spatially attributed
graph that combines these techniques into one learner. Third, we illustrate the explanation-feedback loop of
concept learning with the human in the loop, highlighting the knowledge that the machine is using, the generated
explanations, how humans can provide feedback, and the improvements for both human and machine that this
technique provides. Finally, we provide an example of what concept learning of a spatially attributed graph with
human interaction would look like on a synthetic concept example, and show how this method would benefit a
scenario where a difficult false positive is encountered.

The remainder of this article is organized as follows. In Section 2, we discuss the high level overview of the
method, and some specific applications. Section 3 discusses concept learning, spatially attributed graphs, human
interaction, parts detectors, and spatial relations. Section 4 discusses the overall method and how the specific
methods are combined. Section 5 provides an example of the method, followed by a summary and future work.

2. BIG PICTURE

Computational solutions to problems do not always make intuitive sense to humans, especially when the pile
of equations used to solve the problem gets larger and larger (see Figure 1). Machines solve tasks using the
mathematical techniques we endow them with. When the techniques aren’t interpretable, there is little hope
for creating an explanation. Fuzzy uncertainty is an effective way of dealing with many of the problems that
come up in machine learning. Unfortunately, many methods cannot adequately handle processes with fuzzy
uncertainty, which leads to worse decisions and explanations. However, when interpretable math techniques are
used, explanations naturally exist, and because of this a human can interpret what the machine is doing, and
provide feedback.1 Interpretable explanations require that a human can view the computation the machine is
performing and understand exactly what is going on. This type of explanation allows the human to both trust



Figure 2: The big picture of where we want to go with machine learning – explainable human-machine interaction.
The human gives the machine a problem to solve, the machine provides an explainable solution, it’s wrong, but
since the explanation is interpretable, the human is able to provide feedback, and the machine corrects its concept
model. Admittedly, not as humorous.

what the machine is doing and easily understand where and why the machine makes mistakes. Furthermore,
actionable explanations allow the human to provide feedback to the machine by correcting the mistakes made by
the machine. This is useful because there is no conversion step needed between feedback and update, maintaining
the full explainability of the feedback.

Features and the relationships between features are used to distinguish exemplars of a concept from non-
exemplars.2 A machine can represent features and relationships between features as a model, and this model can
be learned from data and human interaction. In Figure 2, an example dialogue between human and machine is
shown. The human has pre-trained the machine to learn a concept model based on features and the relationships
between features. Input data is then given to the machine, and it utilizes the learned model to determine if the
data is representative of the concept or not. This determination is made based on the presence of certain features,
and how well the relationships between these features match with the learned concept model. The machine’s
answer explains exactly what features and relationships contributed to the decision as well as the degree to which
each feature and relationship contributed. Because the explanation can represent the entire chain from input to
computation to output, the human can easily interpret why the machine made a certain decision.3 Of course,
this explanation could be too much information for the user; the scope of the explanation can be intelligently
limited. The explanations provide the perfect interface for the human to provide actionable feedback to adjust
the concept model. This feedback can adjust which features are important, how present they must be, which
relationships are important, and the nature of those relationships. It is then straightforward for the machine to
update its concept model to reflect the feedback provided by the human.

The process of updating the concept model lends itself well to tackling important problems related to concept
drift and concept evolution.4 There isn’t always curated data to train on, leading to systems that may not
generalize well, and overfit the data. Streaming data is a good way to address this problem, but leads to
problems of its own. The concepts that were initially designed may need to be updated or changed to reflect the
changing meaning of those concepts, and our method can allow for these changes thanks to the human feedback
and update abilities.



(a) Airplane identification from 1942

(b) Geospatial reasoning

(c) Sentiment analysis

Figure 3: Some application areas for concept learning based on human-interaction and explainable AI



This method is particularly well-suited to complex scenes and objects that have regular spatial attributes.
Figure 3a shows how airplane identification follows spatial patterns with changing objects. The figure details
the shapes and spatial relations involved with recognizing friendly aircraft. These are very distinct spatial
relationships that lend themselves to classification.5 Figure 3b shows geospatial reasoning over complex scenes,
which can be simplified to reasoning over individual parts and their spatial relationships to one another. The
individual parts of a construction site can include things like work trucks, engineering vehicles, cranes, etc. These
parts can then be reasoned about spatially to determine if the scene involves construction. Figure 3c shows an
example of sentiment understanding. The process can be improved by tracking changing spatial relationships
of individual facial features to one another. In this case, the shape of the mouth changes relative to the other
features of the face, leading to a likely change in sentiment. Other applications involving visual reasoning6 could
be good use cases for our method.

3. SPECIFIC METHODS

3.1 Concept Learning

The driving force behind choosing concept learning as the paradigm to view our general problem through is
the explainability benefit. Our goal here is not to completely replace pattern recognition as a technique, but
rather to rely less on it for complex scenes and objects. Similarly to how complex scenes can be broken up
into their constituent objects, complex objects can be broken up into their constituent features. Building a
reasoning machine from simpler pattern recognition tasks allows for greater explainability. Complex pattern
recognition systems, e.g. CNNs, have no specific, defined internal method for dealing with sub-features, causing
these techniques to appear as a black box. A system informed by simpler parts detectors that then reasons on
top of the simple parts is by-design more explainable since all of the simpler features are built into the system and
easily interpretable. We call this technique concept learning because it serves as a good reference for reasoning
over features to identify larger concepts/objects/scenes.3 Simply put, we are moving the pattern recognition
layer one level down from object detection to parts detection, and then performing concept learning on the parts
to determine the presence of an object. Since this method is more explainable, humans can easily interpret the
reasoning behind decisions made by the machine, which also provides a common language for humans to give
feedback to the machine.1

3.2 Spatially Attributed Graph

Our main goal in building the framework of this technique is to learn concepts from features. The learning process
utilizes the features themselves, and also the relationships between features2.7 The features and relationships
are analogous to the nodes and edges of a graph, as shown in Figure 4. The features are parts detectors, and the
relationships are spatial relations between parts. This natural graph structure and the usage of spatial attributes
is combined into the term spatially attributed graph.8 Here, the nodes of the graph represent the parts detectors
used in the system. The edges represent every relationship and function defined between parts in the system.
Formally, within the system there exists F , the set of all features. Specific features are denoted as Fi. The set
of all possible relationships is denoted as R, with each unique type of relationship denoted Rt, where t is the
type of relationship (distance, histogram of forces, etc.). Finally, each relationship applies to multiple features,
denoted with a subscript as Rt

ij , where ij are all nodes that the relationship relates together, in the direction i
to j if needed. In the next subsections, we discuss some of the specific parts and relationships used.

3.3 Human Interaction

A driving force behind the choice of concept learning a spatially attributed graph is the natural interaction
humans can have with those specific techniques. Concept learning allows humans to give feedback to machines
in order to teach them how to better recognize a concept. It is a paradigm that allows for human-in-the-loop
interaction.9 In a spatially attributed graph, the behavior of each node and edge is interpretable, allowing the
human to see exactly how each node and edge contributes to the decision. Using this setup, when a machine
makes a wrong decision, we can see precisely which nodes and edges don’t fit with the concept definition. The
language of the spatially attributed graph allows us to communicate which nodes or edges are wrong, and how
to fix them to better represent the concept.



Figure 4: On the left, an image containing three features (the circle, square, and triangle). The gray arrows
between the features represent the different relationships between features (distances, spatial relations, etc.).The
features and relationships between features directly translate to the nodes and the edges between nodes of a
graph, shown on the right.

Finally, the human in the loop has direct supervision over the learning process, since the human can provide
precise feedback to directly change the feature or relationship that was incorrect. This can help prevent large
errors from dominating a system, and allows for faster machine learning. This is particularly helpful for problems
that require a high-degree of accuracy, yet are limited in the amount of training data they have.

3.4 Parts Detectors

Any type of parts detector can be used in our system. We don’t do anything to deal with the uncertainty of
the parts detectors, we treat them as a given. Currently, black-box architectures perform well at simple pattern
recognition tasks.10 We seek to utilize state-of-the-art parts detectors at the low-level, while focusing on the
explainability and human interaction benefits of spatially attributed graph concept learning at the high-level.
This combination allows us to use the advantages produced by state of the art parts detectors, but also not fully
trust their outputs, letting us deal with the uncertainty at a higher level.

3.5 Spatial Relations

Concepts are learned from independent features, but the relationships between features provides important
contextual details that allow for richer concepts to be developed by a machine. Spatial relationships are implicitly
explainable, since they are interpreted by humans easily. For example, an object that exists at 90 degrees
to another object could easily be interpreted as “to the right” (depending on reference frame), since spatial
relationships are concepts that humans are very familiar with. Many different ways of relating objects spatially
have been developed; here we focus on binary relationships. Simple relationships such as relative distances are
trivial to define and can change based on context.

We use histograms of forces as one of the key tools to relate objects spatially. This type of relation calculates
the force exerted by some object B on some object A, at all angles −π to π, and creates a histogram representing
the force at every angle.11 The force at an angle relates the number of particles of object B encountered by vectors
emanating from A, and the distance those particles are relative to A. As shown in Figure 5, the histogram is built
from scenes where one object exerts force on another object; this force represents the direction and intensity of
that force at all angles emanating outward from the argument object. This creates a histogram that is interpreted
as the relative spatial positioning of the referent object to the argument object. In the case of Figure 5, it is
clear that the blue blob in the top right is “above and to the right” of the green blob in the bottom left. The
histogram to the right in the figure shows this as the force being most intense at and angle of π/4. The histogram
is the description of the spatial relationship, and can be translated into linguistic descriptions like “above and to
the right”. This histogram can then inform linguistic descriptions of scenes.11 Histograms are compared to one



Figure 5: Two objects exist in the image on the left; the blue blob in the top right is “above and to the right” of
the green blob in the bottom left of the image. The Histogram of Forces for these two objects is shown on the
right.

another using similarity functions, as defined in,12 which provides the basis for how they are used in spatially
attributed graph concept learning.

4. OVERALL METHOD

4.1 Combining Features and Relationships into a Graph

For the purposes of this paper, we assume that concepts are partially constructed, and we focus on the human
machine interaction. The spatially attributed graph model is composed of nodes and edges. The nodes are
chosen from the set of features, or parts, that currently have parts detectors in the system. These parts detectors
independently analyze the image data for their respective parts, acting as modular components that are added
and removed as necessary. The edges are comprised of all relationships between two parts that are currently
defined in the system. These spatial relationships are also modular, since different relations can be defined based
on the problem domain. Simply, the nodes and edges come from the features found in the input data, and the
relationships between features, respectively. The graph is limited by the total number of parts detectors in the
system. Features that are not detectable by the system cannot be included in the graph, which is a limitation
for all machine learning systems. Similarly, relationships that have not been defined are impossible to detect
and add to the graph. This is to say that the possible combinations of nodes and edges are limited to what is
detectable by the system (nodes), and what we have defined to be relationships between nodes (edges). This
limited set of nodes and edges forms the shared “language” that machine and human can use to create and refine
concepts. In the context of images in space, we refer to this as a spatially attributed graph, since the nodes and
edges have spatial attributes. An example of this limited language is shown in Figure 6, where three different
objects are currently detected, and all other objects in the scene are not part of the shared language of that
system.

4.2 From Input to Concept Graph

This graph model can represent a concept present in an image by including features of the concept (nodes) and
specific relationships between those features (edges) from the total set of features and relationships available in
the system. The presence of each unique feature is determined from the set of parts detectors in the system.
Using parts detectors introduces some uncertainty into the system, so the presence of each part can have a
relative match strength, e.g. a number between 0 and 1 of how present that part is in the image. This presence
value is used to determine which features from the total set of detectable features are present in any given
input image. Once the present features are determined, each spatial relationship between features is calculated.
These relationships can be of any arity, but for our purposes as defined in the previous section, we use binary
relationships. These relationships, along with the features themselves, form the complete spatially attributed



Figure 6: In this scene, three different types of objects are currently being detected by their respective parts
detectors, the red box is medium trucks, the green boxes are small trucks, and the yellow box is a crane.
Currently, concepts can only be built using these parts, since all other parts of the image are not being detected
at this time – they are unknown to the system.



Figure 7: Each feature in the image on the left maps to a node in the graph on the right. Specifically, Node 1
= right circle, Node 2 = left circle, Node 3 = triangle, Node 4 = crescent, Node 5 = outer oval

graph for the given input image. This graph model is easily interpretable, since for each input image, every
feature that was detected and the relationships between features are easy to inspect. Specifically, to demonstrate
what the process would look like, we will look at the example of a cartoon face shown in Figure 7. In this Figure,
each of the five features of the cartoon face in the image on the left map to nodes on the graph. This example is
simple to describe, and recognizable as an example that heavily depends on the relationships between features.

4.3 Learning a Concept from Scratch

For the purposes of human-machine interaction, and for the sake of speed, a human expert can define an
approximate concept using the shared language of the spatially attributed graph by selecting important features
and relationships. The process of defining a concept is as simple as selecting which features must be present,
and then determining the approximate spatial relations between features. The problem of learning the concept
from scratch is currently unsolved, and outside of the scope of this paper. We don’t discuss exactly how to learn
the concept, instead we focus on comparing concepts and the human feedback loop of concept learning.

4.4 Comparing Concept Graphs

The graph model representing the input image will be referred to as the input graph, and the graph model
representing the existing concept model will be referred to at the reference graph. It is easy to determine which
features and relationships are necessary for a given concept by analyzing the reference graph. Each specific
required feature is present in the reference graph, and the relationships between each feature are easily inspected
to determine the spatial relationships between features. The input graph is compared to the reference graph to
determine if the necessary concept features in the reference graph are all present in the input graph.

Using Figure 8 as an example, we can see that the reference graph on top contains 5 nodes, each specifying a
specific feature. The input graph on bottom contains those same five nodes. If there are more or fewer features
present in the input graph compared to the reference graph, then the concept is not present, by definition.
However, extra or missing features do not necessarily mean that the input data does not demonstrate the concept
or at least a partial concept, both of which can be useful. Due to the fuzzy nature of defining concepts, partial
concepts may be present in images and will need to be dealt with, e.g. by forming a new concept, removing
requirements from the current concept, etc. Humans can easily verify visually that the same features are present
in both images. The spatial relationships between features are compared depending on the type of relationship.
If the relationships are relative distances, the scalars are compared using allowable plus/minus thresholds, or a
matter of degree represented by a fuzzy set. If the relationships are relative positions using histograms of forces,
the histograms are compared using similarity functions. Of course, spatial relationships don’t necessarily have
to perfectly match. Thresholds of allowable deviation are set to allow for some variation in spatial positioning.



Figure 8: The comparison between input graph and reference graph. Note that while Features 1 and 2 are the
same distance in both, and the histograms look similar, the histogram mean is at a different angle for the two
graphs.

Depending on how each node and edge is compared, the overall graph comparison is determined using any
combination function – minimum usually makes sense, because if any part of the input is wrong, the entire input
doesn’t fit the concept. Again, if this isn’t the case, the human can provide feedback to the machine to learn
a better concept. In Figure 8, the spatial relationship between Nodes 1 and 2 are shown on the right. Nodes
1 and 2 (the right eye and left eye of the cartoon face), are the same relative distance away from each other in
both images, but the histogram of forces clearly shows that they are at different relative positions in the different
images. The similarity between the two histograms is low, which shows that the input image does not match the
reference image. This overall comparison leads to the decision of whether a concept is found within the input
image or not.

4.5 Feedback Loop

For an input, the machine computes the spatially attributed graph and performs the comparison to the reference
graph, deciding if the concept is present or not. Any of the set of features, relationships, and comparisons
leading to the final decision can then be displayed to the human expert for evaluation, as shown in Figure 8. Of
course, all of these are displayed easily, showing the full explainability of the system, but this could also be an
overwhelming amount of information, given the problem domain. The human is able to analyze each step that
led to the decision and determine if the decision is correct or incorrect, and either way, if any of the steps were
correct or incorrect. The human can then provide feedback of varying degrees and specificity explaining what
aspects are incorrect, and why, using the common language of the spatially attributed graph. An example of
what this looks like is shown in Figure 9. In the example, the human gives linguistic feedback, specifically the
term “farther”. The machine uses this to shrink the allowable histogram of forces between the two objects to
better match the intended relationship based on the term “farther”. Using feedback, the machine can refine the
features, relationships, thresholds, and comparisons to better represent the given concept. This process can then
be repeated for more input images, and even the same input image to compare performance of concepts as they
develop across time.



Figure 9: An example of the shared language the human can use to provide feedback to the machine to assist
in concept learning. The machine has a method of translating the linguistic term “farther” into an operation on
the histogram values to reduce the allowable force.



Figure 10: An example of the shared language the human can use to provide feedback to the machine to assist
in concept learning.

5. EXAMPLE

5.1 Prototype

Here, we call the allowable ranges for each feature and relationship the prototype of the concept. This prototype
represents the currently defined concept, including all relevant features, and the specifics of the relationships
allowed. We use the cartoon face example because it does a good job of demonstrating why this technique
is useful: specifically, because each feature is distinct and detectable, and the relationships between features
defines whether or not the features represent a cartoon face or not. The prototype can be represented using crisp
relationships with margins of error, or fuzzy relationships that build uncertainty into the relationship directly.
The visual representation of the prototype, shown in Figure 10, is meant to show roughly where the allowable
spatial positions for each feature are, based on the allowable spatial relations between features The prototype
on the left represents the core of each image allowable spatial position, along with a higher and lower confidence
interval to show the range of positions into which each feature could fit. The spatial relations, in effect, constrain
the features to certain positions relative to one another. Of course, the figure doesn’t show the relative angles or
distances between individual features – for example, the right eye should be 0 degrees (to the right) of the left
eye, and can’t be at -2 or +2 degrees. These constraints allow the machine to determine if the image represents
a certain concept or not. The flexibility in the constraints allows the machine to deal with uncertainty, as shown
in the more translucent areas surrounding each crisp feature on the prototype.

5.2 Difficult False Positive

Here, we show what would happen when a false-positive is shown to the system, i.e. an input image that
presents the current features and relationships of the prototype, but shouldn’t, so the human has an opportunity
to demonstrate the process of fixing this. In Figure 11, we see an image that currently matches the prototype
for all features. The prototypical relationship between the eyes, Nodes 1 and 2, is shown in every histogram.
Histogram a.) shows the allowable spatial relation between the eyes for the protoype initially. Since histogram
b.), which shows the relationship between the eyes for the input image, clearly falls within the allowable region
defined in histogram a.), the prototype needs to be refined to specify the relationship better. The human expert
has decided that this cartoon face does not satisfy their concept of a face, so provides feedback to the machine
that the right eye is too far above the left eye. The human feedback triggers and update to the prototype, which
leads to the refined prototype relationship shown in histogram c.), where the relationship between the eyes has
been specified to allow fewer angles.



Figure 11: Input image on the left, overlaid on top of the prototype image. a.) is the prototype relationship of
right eye to left eye. b.) is the input image HoF. c.) is the updated prototype after human feedback.

6. CONCLUSION

In this article, we explored concept learning based on human interaction and explainable AI. In the context
of parts-based concept learning about complex scenes, we showed how features found using parts detectors act
as nodes in a graph, and the spatial relations between features act as edges, creating a spatially attributed
graph. We discussed the process of inputting an image into this system, and how the image data forms the
spatially attributed graph. Next, we showed how concepts are represented in the spatially attributed graph, and
the current state of learning a concept from data. Next, we showed how concepts are compared across different
graphs due to the interpretable nature of the graphs, allowing humans to understand and take part in the process.
This naturally leads to the opportunity for human interaction, where humans can improve the system using the
shared language of the spatially attributed graph. Effectively, we showed how to perform online concept learning
of a spatially attributed graph. We emphasized the explainability of this method by demonstrating the process
using a synthetic example, helping to show the way forward towards more explainable artificial intelligence.
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