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ABSTRACT

Numerous real-world applications require the intelligent combining of disparate information streams from sensors
to create a more complete and enhanced observation in support of underlying tasks like classification, regression,
or decision making. An often overlooked and underappreciated part of fusion is context. Herein, we focus on
two contextual fusion challenges, incomplete (limited knowledge) models and metadata. Examples of metadata
available to unmanned aerial systems (UAS) include time of day, platform/sensor position, etc., all of which
have a potentially drastic impact on sensor measurements and subsequently our decisions derived from them.
Additionally, incomplete models limit machine learning, specifically under-sampling of training data. To address
these challenges, we investigate contextually adaptive online Choquet integration. First, we cluster and partition
the training metadata. Second, a single machine learning model is trained per partition. Third, a Choquet
integral is learned for the combination of these models per partition. Fourth, at test/run time we compute
the degree of typicality of a new sample to our known contexts. Fifth, our trained integrals are decomposed
into a bag of underlying aggregation operators and a new contextually relevant operator is imputed using a
combination of the metadata clustering and observation statistics of the integral variables. This process enables
machine learning model selection, ensemble fusion, and metadata outlier detection, with subsequent mitigation
strategy identification or decision suppression. The above ideas are demonstrated on explosive hazard detection
using surrogate data simulated by the Unreal Engine. In particular, the Unreal Engine is used because it
provides us with flexibility to explore the proposed ideas across a range of diverse and controlled experiments.
Our preliminary results show improved performance for fusion in different contexts and a sensitivity analysis is
performed with respect to metadata degradation.

1. INTRODUCTION

The task of detecting and classifying explosive hazards (EH) from unmanned aerial systems (UAS) is a difficult
one, in part due to the drastically varied environments and platform conditions one can expect to operate
in/across. Detection in a hot desert at noon is a significantly different problem than detection in a frozen tundra
at night. Detection from a UAS with a nadir sensing angle at 10 feet is different from a UAS with a sensor
slant angle at 100 feet. Furthermore, the sensors used on UASs–e.g., RGB, IR, LiDAR, multi-spectral, etc.–all
experience different sensor phenomenology depending on the environmental conditions and material properties
of sensed objects. Figure 1 is an example that highlights environment and UAS (platform) variation. Herein,
we refer to the above variations as contexts, as they are sources of information which we can use to enhance
the performance of an underlying task like EH detection. In this paper, we propose an online and adaptive
ensemble-based fusion scheme for EH detection that is driven by environment and platform metadata.

Before we delve into UAS-based EH detection (EHD), we briefly discuss related efforts. EHD technologies
vary drastically. An early and well-known technique is the so-called “metal detector”, which can be used to
detect metal in the ground. However, one limitation with this form of detection is that explosive threats that
contain low amounts of metal may go undetected. Increasing the sensitivity of the device does not necessarily
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Figure 1: Detection and localization algorithms are tasked with understanding objects in a variety of contexts,
requiring robustness across factors like scale, color, illumination, and texture. Often, even a single location can
look very different depending on platform altitude, look angle, time of day, etc. However, this information often
goes unused in algorithms. The proposed contextual fusion scheme attempts to determine proper strategies
based on metadata features which help inform context.

counteract this, as the number of false alarms would likely dramatically increase. To increase the robustness
of detection, many different combinations of sensing methods have and are being explored, such as infrared
(IR), ground penetrating radar (GPR), electromagnetic induction (EMI), and hyperspectral imaging (HSI), to
name a few. The two predominant approaches to date for detecting explosives is vehicle-mounted detectors and
hand-held detectors. While the latter is predominantly used in a downward looking fashion, the prior comes in
a multitude of forms, e.g., forward looking,1 downward looking,2 and even side looking.3 Herein, we focus on a
UAS platform for EHD. Advantages of UAS, versus hand-held or ground vehicle deployment is it keeps humans
at safer standoff distances and a UAS can in theory act like each of the above technologies. That is, it has the
potential to search wide areas and dynamically interrogate regions of interest, likely through the use of a squad
or swarm of UASs, with different sensors at different look angles. In this article, we limit our analysis to the use
of a single UAS with multiple imaging and position sensors.

Adaptive fusion is not a new idea. For example, in Ref. 4, Hichem, Gader, et al. proposed a creative



algorithm, context extraction for local fusion (CELF). We highlight and discuss this algorithm because we also
use the Choquet integral (ChI). In particular, Hichem combined the fuzzy C-means (FCM) clustering algorithm
and the ChI. They formulated a single joint optimization. Hichem partitions the input space based on the
features to be fused. Our work, aka the current article, differs as we initialize contexts based on otherwise
unused metadata features such as altitude and temperature and learn independent operators from subsets of
data. We also approximate the entire integral, aka all the underlying capacity variables, of which there are 2N

for N inputs. Hichem instead focuses on the “densities”, i.e., the capacity defined on only the singletons, and an
imputation strategy (the Sugeno λ fuzzy measure). We focus on learning the entire capacity because the tuples
beyond the singletons capture interaction between sources. This is something we expect to occur and it can
result in performance gain. Last, Hichem’s fusion is driven by clustering. Herein, we exploit our recent integral
transfer learning5,6 and data-driven eXplainable AI (XAI) methods.7,8 XAI allows us to identify what parts
of a model (integral) were not approximated (sufficiently) from training data. Integral transfer learning allows
us to transfer fusions, or parts of fusion, across integrals. In contrast to prior methods, our proposed method
provides a method to measure similarity of new samples relative to prior contexts and determine the sufficiency
of the fusion operator being imputed. These similarity methods are important as our goal is to optimize the
aggregation operator based on information previously observed.

We also explore the use of the Unreal Engine9 to create synthetic imagery. The graphical fidelity offered
by these simulated environments proves as a useful surrogate for the otherwise difficult task of assembling large
amounts of varied, UAS-captured data. Advantages include training real models from simulated data and rapid
prototyping and experimenting with ideas that can later be transfered to real world experiments and solutions.

1.1 Machine Learning Models Derived from Limited Data Sample Sets

Data is king in modern machine learning. The performance of neural networks and other supervised learning
models are intimately linked with the kind, quality, and diversity of training data provided. In a perfect world
we could assume that good quality data can be obtained with enough time and patience, but this is rarely the
case. It is in our interest to develop well performing classification models that have been exposed to only a
limited amount of training data.6,10 This is especially relevant in the domain of UAS based vision as it can be
difficult to obtain large amounts of appropriate aerial data.

The problem of limited training data is one which informs how the rest of this architecture is structured, and
must be considered at every step. One known problem caused by small amounts of training data is overfitting.
Overfitting occurs when a learning model memorises the solutions to training data but is unable to generalize to
data it has not seen before. This is in part due to the training data lacking adequate diversity, as the training
data does not represent all possible variations of data that might be discovered. Our current article attempts to
mitigate the overfitting problem by relying on a collection of niche experts, as opposed to a single model which
can universally solve the problem. As a result, models are only expected to perform well on data similar to what
has been seen before and their use is restricted when performance expectations are low.

Another problem encountered due to limited training data is specifically tied to our fusion operator of choice,
the ChI. As described later, the ChI partitions the input space based on the sorting of the inputs, where each
unique sort results in a different method of combination. Because of this, we ideally would observe every possible
sort in the training data so that an optimization algorithm is able to estimate all the values that are required.
This is often not the case for a number of reasons. First, it can simply be difficult to encounter each sort through
random chance. For N inputs there exist N ! possible sorts, meaning an adequately sized training set is required
just to get one sample from each sort. A second reason the observed sorts are important is specifically tied to
the domain of fusing strong learners. A strong learner is a learning model which usually produces only extreme
(strong) values. For example, a strong classifier would only label detections as 0 (not the class) or 1 (is the class),
but would rarely label something as 0.5 to denote uncertainty. Due to this, it is often the case that all models
to be fused agree on a class label of either 0 or 1. Thus, the only sort encountered is the default from when all
values are the same. This heavily biases the ChI training procedure, as it is possible that nearly all observed
data consists of only a few unique walks. If unencountered sorts ever show up later in testing data, the operators
will be poorly optimized to handle them. Our method attempts to mitigate this problem by transferring learned
values from an integral that has observed a particular sort.



Figure 2: The general flow of images and metadata in our ensemble. Multiple algorithms are treated as sources of
evidence to be fused together, while metadata such as altitude, temperature, and time of day inform the system
how to construct the best possible aggregation operator.

1.2 Ensemble of Neural Networks

A common technique to mitigate the reliance on a single black-box neural network is to train multiple networks
which operate in parallel on the data. While this goes by different names in the community, we refer to it herein
as an ensemble neural network. Each of the networks produces its own estimate of the target value, before
each of the estimates are aggregated back into a single score. The precise method of aggregation depends on
the architecture, though our method uses the ChI, in part due to it’s capability of producing human-readable
explanations of the fusion. This article creates an ensemble of networks with homogeneous architectures trained
on varying subsets of data. A different popular technique in ensemble architectures is to vary the architecture
of the individual networks (depth, number of parameters, etc.) but provide each network with complete data.
The reader can refer to Refs. 11–14 for our recent publications on ensembles of heterogeneous architecture neural
networks for broad area scanning, land classification, and object detection in remote sensing. Figure 2 illustrates
the flow of data and metadata in the ensemble architecture proposed herein. The pieces of this ensemble are
described in greater detail in following sections.

2. METHODS

2.1 Fuzzy Measure and Fuzzy Integral

The fuzzy integral (FI) is a well studied tool in information fusion which defines a family of nonlinear operators.
The integral is evaluated on a fuzzy measure (FM), g : 2X → R+, which is a function that has two properties on
finite X: (i) (boundary condition) g(∅) = 0, and (ii) (monotonicity) if A,B ⊆ X, and A ⊆ B, then g(A) ≤ g(B).
The Choquet integral (ChI) is a type of FI,15 given by∫

h ◦ g = Cg(h) =

N∑
j=1

hπ(j)(g(Aπ(j))− g(Aπ(j−1))), (1)

where h is the integrand (h({xi}) = hi is the input from source i), Aπ(j) = {xπ(1), . . . , xπ(j)}, g(Aπ(0)) = 0, and
π is a sort such that hπ(1) ≥ hπ(2) ≥ ... ≥ hπ(N). In our case, hπ(j) is the j th largest return out of all algorithms,
and a ⊆ A, g(a) denotes the “worth” of a subset of algorithms. Thus, the ChI fuses evidence from each source
based on the worth of a subset of sources.
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Figure 3: Hasse diagrams depicting different strategies of fusion for N = 3 inputs. An optimistic fusion like the
one depicted in 3b averages the two largest input values. A pessimistic operator 3c averages the two smallest
values. In algorithm fusion it is common to see pessimistic operators due to their redundancy as all algorithms
must agree on a high value, i.e., unanimous consent.

It is relevant to note that the ChI is an operator which can be learned from data using various solvers. For
example, in Ref. 16 we use quadratic programming (QP), in Ref. 11 we proposed constraint free full FM gradient
descent optimization for supervised neural networks, and in Ref. 17 we proposed an evolutionary algorithm for
efficient genetic operators on non-convex optimization surfaces. In this paper, we use the QP to learn a number
of ChIs, trained on subsets of the data, which can be selected from based on what we believe the context to be.

A convenient way to visualize the ChI is in the form of its underlying Hasse diagram, where nodes in the
diagram represent the g values of the power set of A in lexicographic order from bottom to top, left to right. For
example, if X = {1, 2, 3} the lexicographic ordering of the power set P (X) is

P (X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The edges in the diagram represent monotonicity constraints, meaning nodes in the upper layers are greater than
or equal to the nodes connected below them. A walk up the Hasse diagram refers to a given sort on h and the
resulting path taken from the bottom of the diagram to the top. Therefore, each walk defines a unique fusion
operation the ChI is capable of. Figure 3 depicts example diagrams which are possible fusion strategies for three
sources (N = 3).

2.2 Context Matters

The discrete ChI described above partitions the input space based on the sorting of inputs and each partition
results in a different fusion operator. One way to think of these partitions is that they provide context as to what
operator is most appropriate. An example interpretation of this for our current paper on UAS-based detection
of EHs using multiple neural net algorithms is: “if Algorithm 1 has the greatest return, listen primarily to it.
Otherwise, take the average of all the algorithms”. We call this kind of context the internal context, as it is based
solely on the data that is directly being fused. Specifically, Equation 2.1 informs us that each internal operator
context is a linear convex sum (LCS) function, when g(∅) = 0 and g(X) = 1.

However, there is more than just internal context in problems such as ours. Consider the task of EHD from a
UAS. There are wildly different conditions in which the UAS might be flown, such as high altitudes, low altitudes,
bright days, or dark nights. These are all normal operating conditions for such a system, yet the sensory feedback
in each of these conditions will be distinct. As a result, the algorithms that we use on this data must be robust
to these variations. This article aims to better handle this kind of context, what we call the external context, of
our fusion problem. Our method attempts to identify these unique external contexts by clustering the metadata



Figure 4: Illustration of the propose methodology. Metadata feature vectors are generated from training data
and they are clustered to define initial contexts (red circles and green triangles). In this diagram we show an
example image and the prototype per cluster. Next, a different ChI that combines a set of neural network
classifiers is built per context (red and green Hasse diagrams). When a new sample (observation) belongs to a
known context, the appropriate ChI is used. However, if a new sample, e.g., blue diamond, does not belong to
a known context but it is similar to known contexts, then a new operator is built on the fly. In the event that a
new sample is extremely different from anything that we have seen before, e.g., the yellow box outlier, then the
system can decide to take no action or an operator can be built if the system is expected to always operate.

obtained from the UAS (platform) and environment. Specifically, we use the GPS reported altitudes, recorded
temperatures, and time of day as initial features to identify unique external contexts. Figure 4 illustrates our
scheme of clustering metadata and using them to train unique fusion operators.

2.3 Metadata Feature Encoding

As the following metadata features will be used to inform the system of which context to associate the data with,
it is important to consider their encoding. A common problem resulting from the use of disparate feature types
is that one feature can dominate the space, e.g., have notably higher magnitudes. In our case, if we assume that
the range of observed temperatures is on average larger than the range of observed altitudes, then the distance
between temperatures will predominantly drive the distance measure. While there are other ways to handle this
using techniques such as categorical encodings, a simple solution is to normalize the values (denoted as z below)
on a scale of [0,1] based on minimum and maximum observed values,

zscaled =
z − zmin

zmax − zmin
. (2)

Special attention should also be paid to how the time of day is encoded, as it is a cyclical feature. Consider what
happens if time of day was encoded as a scalar value in the range 0 to 23 hours (12am to 11pm). If we measure



the distance from t = 23 to t = 1 (11 : 00pm to 1 : 00am), the Euclidean distance is 22, though clearly those two
time periods are only two hours apart. A simple yet clever way to avoid this problem is to split the time feature
into two values given by

tsin = sin (
2πt

23
), tcos = cos (

2πt

23
). (3)

When these two values are plotted as (x, y) pairs in the range [0, 23], the result is a circle. This makes it a more
appropriate encoding for use with Euclidean distance, as it now mimics distance on an actual clock, i.e., t = 0
and t = 23 are adjacent, while any two values offset by 12 hours maximize the distance. Note, in this paper we
explore a few metadata. In future work we will investigate the inclusion of more metadata and their respective
pleasing semantic conditioning.

2.4 Determining Initial Contexts Through Clustering

As already discussed, our ensemble of neural networks is driven by context. To this end, we cluster the training
metadata features into an initial set of contexts via the possibilistic c-means (PCM) algorithm.18 The PCM is a
mode seeking method that operates on a finite set of M samples Z = {z1, ..., zM} relative to a specified number
of c clusters. Unlike the k-means clustering algorithm, which is a crisp partitioning technique (i.e., every sample
belongs to one, and one only, cluster), the PCM is a mode seeking algorithm. The PCM returns c clusters, which
depending on the choice of underlying metric (e.g., Euclidean, Mahalanobis distance, GK metric, etc.) results
in c prototypes, e.g., C = {c1, ..., cc}, and a partition matrix [U ]ik = uik, i = 1, ..., C, k = 1, ...,M , where uik
is the typicality of sample zk to cluster i. Unlike the k-means algorithm, the PCM allows samples to belong
fully to multiple clusters and outliers can now be represented and detected. The PCM typicality degrees are
especially useful at evaluation time, as it gives us a degree to which we believe a new data point belongs to a
known context (cluster). As described later, we adapt our fusion strategy for new data (UAS observations) based
on how similar it is to what has been seen before. In our implementation of the PCM, we use Euclidean distance
and we initialize the cluster centers with the fuzzy c-means algorithm output because it helps us estimate PCM
bandwidth parameters and it provides robustness over random initialization.

A problem ever present in all clustering algorithms is determining an optimal value for c. Herein, we use the
fuzzy partition coefficient19 (PC), an internal cluster validity index. The PC attempts to measure how well a set
of data was partitioned based on the membership values of each class given by

Fc(U) =
tr(U ∗ UT )

M
, (4)

where U is the fuzzy partition matrix segregated into c classes, ∗ is matrix multiplications and tr() is the trace,
or sum of squared diagonals. A desired c can be selected from an index like the PC by looking for the maximum
(or minimum) index value, or a trend (e.g., elbow) in the c plot. While the PC is used herein, it should be
noted that there are more sophisticated internal (Xie and Beni index, Dunn, DBI, etc.) and external (Rand,
etc.) cluster validity measures in the community, e.g., see Ref. 20. If the reader desires to implement and use
the methodologies contained herein, we recommend that a more robust cluster validity index be used.

2.5 Realtime Fusion

The above sections describe a set of offline computations on training data. The result is a set of contexts, neural
classifiers (one per context), and subsequent aggregation operators (one ChI per context). This section outlines
an online (aka runtime) selection mechanism to determine what contexts a new sample belongs to based on the
typicality values provided by the PCM algorithm.

The selection process we developed breaks down into three distinct cases. The first case is when the data to
be evaluated is highly typical of one and only one existing context, meaning we believe we have an appropriate
fusion operator to use. The second case occurs when the data to be evaluated is highly atypical compared to
all known contexts, meaning we are operating in an unknown context and will subsequently resort to using a
default fusion operator. Herein, we explore the idea of a system taking an action, but a user could instead take
no action because we are unable to predict how the system will respond. The third and final case occurs when



the data to be evaluated belongs to more than one context. This is a case where we will fuse multiple operators
together to create a more appropriate adaptive fusion scheme.

The selection process above can be defined for data point zi, where uij is the typicality of zi in cluster j, and
α and β are user defined upper and lower typicality thresholds respectively. The selection function is

g =


gk uik ≥ α and ∀j, j 6= k, uij < α

gdefault ∀j, uij < β

combine(u, g1, ..., gN ) else,

where condition one says pick a single FM/ChI when we are in a known context. Condition two is how we respond
to a metadata outlier and condition three outlines the fusion of our fusions from metadata. The above scheme
still leaves a few questions. First, what operator do we choose in case two? This is the case where the system
is exposed to what appears to be a thus-far unseen context. We explore multiple methods, including a simple
mean average of the network confidences and averaging the operators from all previously observed contexts. The
simple mean is a natural place to start, as it credits equal worth to each of the sources to be fused. This is
useful as it makes no assumptions about the worth of individual sources in unseen contexts, though this is also
the method’s weakness. If there is a clear pattern in the fusion strategies consistent across all contexts then the
simple average will disregard this, throwing away information that could be useful as a default fusion strategy.
The second method explored attempts to handle this problem by averaging the set of trained ChI operators. Here
we define the average of a set of operators to mean calculating the average value on a per-node basis in the Hasse
diagram. This produces a fusion scheme which retains any dominant fusion strategies common across contexts,
while maintaining the monotonicity constraints required by the ChI. If there is no obvious fusion scheme across
all contexts (such as being generally optimistic or favoring a particular source), this averaged operator produces
an operator that is in a way smoothed, and pulled closer to an operator that resembles the mean∗.

This solution inspires the combination method we use for case three (see Figure 5). In this case, our clustering
is tight enough that a new data point can reasonably be considered to be in one of multiple contexts. To resolve
the ambiguity, the operators in question are combined through a weighted average where the weight is determined
by the relative strength of the typicality values. The combine(u, g1, ..., gN ) function above is

g =

N∑
i=1

uik
T (u)

gi, (5)

where γg (γ ∈ [0, 1]) is defined as γg(A),∀A ∈ 2X , g = gi+ gj is defined as g(A) = gi(A) + gj(A),∀A ∈ 2X , T (u)

is the sum total of typicalities for sample k, T (u) =
∑N
i=1 uik. Other possible ways to aggregate FMs include

the operators we outlined in Ref. 21 relative to evolutionary optimization, a simple t-norm like the minimum or
product on each variable, or a set of t-norms and t-conorms outlined in Ref. 22 by Yager.

On a final note, we wish to comment that this is an initial study. That is, the above method only exploits
metadata cluster membership values. This helps us build a new operator on-the-fly based on how similar the
sample is to our past contexts. In future work we will also look at the internal context in each ChI (runs in the
Hasse diagram) and combine it with our probabilistic estimate of how well that operator was supported.7,8 The
idea being, there is no point relying on an operator that has not been sufficiently learned from data. Instead,
a method like our ChI transfer learning5 or similar should be engaged to derive an appropriate data informed
internal operator. Last, these two disparate concepts need be combined.

3. PRELIMINARY EXPERIMENTS AND ANALYSIS

In this section we explore our proposed methods on a set of synthetic imagery meant to imitate changes in
sensor phenomenology we might expect from use in different UAS environments. Imagery was generated using
the Unreal Engine, as it allows automatic data-labeling and complete control of environment parameters. This
provides us needed flexibility to explore ideas like adaptive fusion. That is, our methods are not bottle necked by

∗Assuming uniformly random FM g values



(a) First operator (b) Second operator (c) Minimum combine (d) Average combine

Figure 5: What is a reasonable scheme to combine FMs? 5a and 5b signify fusion schemes which listen entirely
to a single source, a result that is likely to happen in our system if a given algorithm performs especially well in
a certain context. If we combine based on a minimum operator or allow the quadratic solver to recompute on all
data, the result is 5c. This operator is very pessimistic and will require both algorithms to agree on an answer,
something that may be unlikely to happen. 5d is the result of a node-wise average, and maintains a degree of
worth for individual algorithms.

real world factors like time and ultimately expense of collecting and labeling EH data. In our experiments we use
the You Only Look Once version 5 (YOLOv5) network architecture23 for EH object detection and localization, as
it provides estimates of bounding boxes and confidences to fuse across, with a well documented implementation
for easy training. We compare our method against a general model which has been exposed to all training data
and is not a part of an ensemble. We examine what happens when the system is exposed to contexts that are
not present in the training data, as well as good strategies for combining existing operators when the metadata
is ambiguous between multiple existing contexts.

It should be noted that we are intentionally not disclosing which environments, EH targets, and EH em-
placement strategies we simulated. The targets and environments were determined in conjunction with our US
Army Night Vision and Electronic Sensors Directorate (NVESD) collaborators. The targets are above ground
objects (versus buried), they have moderate-to-low clutter (e.g., are often partially obscured by natural objects
like a bush), we use a generic (aka similar to what you would find on the commercial market) RGB camera,
and we believe that objects have enough pixels on target for detection. The goal was not to push the system to
extreme breaking points, i.e., camera spectra being insufficient to detect an object or too few of pixels to even
have an object that can be detected and discriminated from clutter. The point is to create a challenging and
real world achievable problem that we can push to the point of failure and to compare the different avenues out-
lined herein. Furthermore, the UAS platform conditions were nadir (looking straight down) and a few arbitrary
altitude variations were explored. In this article we do not consider all common scenarios, e.g., varying factors
like aircraft speed and subsequent motion blur that would result. The point is, exact altitudes, environments,
camera parameters, and etc. are just a surrogate herein to test the proposed algorithms. These experiments and
environments are not real, but they are set up to mimic similar conditions to data that we have seen to date;
meaning they are not overly simple and unrealistic. This paper is not a documentation of YOLOv5 for EHD on
specific use cases. We would not report that information due to the real-world EH threat. In summary, what
the reader can take away from the following experiments is the relative performance of the algorithms, their
variations, and sensitivities.

3.1 Metadata Enabled Fusion versus Single Model

We start by evaluating the proposed algorithms on six sets of synthetic training data, where each dataset
represents a different context that a UAS could experience during normal operation. As mentioned above, our
goal is generality and diverse training data, not specific operational experiments. Specifically, the training runs



Figure 6: The metadata of our training sets reduced from four to two dimensions by TSNE. Color-coding is
provided by PCM assigned clusters. Cluster centers are marked with a plus.

consist of “high” and “low” altitude variants at solar noon (aka no shadows and ideal radiance conditions),
afternoon (long shadows, darker), and night (very dark, most difficult) data. Below, these training datasets are
referred to as “data set 1”, “data set 2”, and etc., and test datasets are simply referred to as “test 1” (Test1),
“test 2” (Test2), etc. The test data sets contain otherwise unseen data (i.e., not resubstituion) with targets
that are under heavy occlusion, shadows, and extreme angles so that they should be sufficiently difficult tests
to evaluate our method. We feel like there is no loss of generality in our paper, as one can see performance in
context, out of context, and with respect to outlier observations. As each training run has associated higher
dimensional metadata (four dimensions herein) that we visualize using the dimensionality reduction techniques
t-distributed stochastic neighbor embedding24 (TSNE). Figure 6 shows the metadata from the six training runs,
along with PCM assigned clusterings.

While the clusters are clearly separable in our experiments, when transitioning to the real world we do
expect the data to be noisier. This can lead to a larger bandwidth parameter in the PCM algorithm, which
will ultimately cause typicalities to increase across the board as the algorithm becomes more relaxed in what
it considers a cluster. In short, these experiments are less likely produce the third case in the context selection
procedure, as it is unlikely for a given point to have high typicalities across multiple clusters. It can also be
noted that the reason the clusters manifest as rope-like in the projection is due to the time of day feature
increasing linearly through time while the other features are pulled from a normal distribution. Furthermore, we
study this separable problem because it mimics the way that many real world collections occur. That is, data
is often collected for a short number of consecutive days in a specific geographic area. We would not expect
to have data from twenty four hours a day at all geographic locations. Last, it is our strong belief that if the
proposed algorithms do not work for the scenarios explored herein, it is unlikely that they will work for the more
challenging scenarios. And as stated above, an advantage of the Unreal Engine is we can generate a lot of data,
of which all attributes are known. This is rarely the case in the real world as labeling can be sparse and error
prone and documentation is never complete nor perfectly accurate (e.g., amount of cloud cover, temperature at
each geospatial location, etc.).

Figure 7 shows the relative performance of our ensemble network (solid lines) compared to a single, out-of-
the-box YOLOv5 model (dotted lines). Ideally, a good receiver operating characteristic (ROC) curve, where the
x-axis is mistakes and y-axis is the positive detection rate, is the “zero FAR, one PD” (which is almost always
achievable in real datasets). Most often, people look for “quick rises” (increase in PD with little to no mistakes)



Figure 7: The proposed adaptive fusion scenario compared to a basic YOLOv5 architecture on three test sce-
narios. Test sets comprised of seen and unseen contexts.

versus plateaus (no detections but more false alarms) or “linear climbs” (aka you have a 50% chance of calling
something target or a false alarm). Thus, on the three test contexts evaluated, our ensemble method performs
better than the standard model in all cases. This is similar to what we observed relative to fusing, with a fixed
versus adaptive strategy, a set of heterogeneous neural networks for land classification and object detection in
remote sensing.7,12–14 It should be noted that the total amount of data to train the ensemble is the same as
the single model, though the single model was responsible for learning solutions across all of that data, while
the ensemble was free to optimize a smaller subset of that data. While unproven, we believe this experimentally
highlights the need to strike a balance between generalizeable models that perform well on all sorts of data and
models that are experts in a more limited domain.

3.2 Sensitivity to Noise in Metadata

The above experiment is useful in the regard that it helps us understand operation in ideal scenarios. However, our
method is reliant on additional data (metadata) provided by the UAS platform and/or environmental metadata.
A benefit of using simulation is that we have complete control over the fidelity of this data. That is, we can
simulate noise and other errors, which are likely to appear when the algorithm is used in the real world. To better
understand the robustness of our method to such errors, we construct the folowing two sensitivity experiments.

Figure 8a depicts the degradation of fusion performance as noise is introduced to the associated metadata.
Again, we are not disclosing which metadata (altitude, time of day, etc.) lead to the biggest degradation due
to the sensitive nature of EHD. Specifically, our metadata was generated based on normal distributions with
varying levels of standard deviation. The gamma variables in figure 8a are scalar multipliers to the base standard
deviation, resulting in more erratic (and less representative) metadata. Thus, γ = 1 is a single standard deviation
(normal operating conditions), γ = 10 is 10 and γ = 50 is 50 times more noise, respectively. Semantically, the
simulated types of errors lead to incorrect identification of current contexts, or relying on the generated default
operator. It can be noted that the training clusters present in the synthetic experiments are nicely separable
and spaced apart. It is unclear (future work) how these algorithms will work in the case of extremely close
contexts. If the metadata is a good context identification scheme then contexts would be expected to be distinct
and separate in space. However, if context, and or collected data are very close, e.g., model for 1pm and another
model for 1:30pm, then we might expect that the trained classifiers and fusions should be similar. The point
is, further analytical studies with performance characterization or experiments need to be performed in order to
understand the impact of adaptive fusion for such scenarios. In summary, this experiment (Figure 8a) informs



(a) Noise induced in metadata (b) All fusions compared on a single test run

Figure 8: Accurately capturing context data is important for the performance of our system. Excessive noise in
the data can lead to incorrect operator selection as seen in 8a. The entire range of learned operators can also be
evaluated on a single test run such as in 8b.

us that there is indeed an impact, but if our simulation is a close model to the operating conditions of a UAS for
EHD, metadata noise is a concern but detection is not significantly impacted; we still get 40% detection with no
error and do better than chance from that point on.

In Figure 8b, our second experiment, we consider what happens when the selection process consistently iden-
tifies an incorrect context. Whereas the last experiment showed us random controlled variations, this experiment
tests extreme cases. This experiment is achieved by comparing the correct fusion operation to the rest of oper-
ators generated in the training process. These experiments results in six unique contexts being identified, thus,
we can perform the fusion operation tailored to each of the six contexts. It should be no surprise that when the
system is intentionally given incorrect contextual information, the performance of the fused algorithm is lowered,
e.g., a morning model is used to detect EHs later in the day at a higher altitude. In general, we can see that the
correct fusion operator (the generated weighted average) results in the best possible performance, though a few
of the existing operators manage to perform equally well.

3.3 Explainability of Fusion

In this section we explore if there are any additional benefits of the proposed methodologies. One our underlying
goals was to realize a trustworthy system versus opaque model. Our aim is to make a mathematical system
that can be extended in future work, e.g., factor in additional advanced EHD or physics knowledge. The system
outlined herein is really “level 1 visual intelligence”. That is, the system processes imagery and tries to learn
robust low-level spatial and spectral features. Ideally, the system outlined herein is not the entire system,
but one stage in the detection and understanding pipeline. The end goal being a “higher level environmental
understanding” algorithm. To that end, one of the primary benefits of using the proposed ChI fusion strategy,
as opposed to a black-box neural network is that the ChI can be opened up and examined after the fact to
determine what fusion strategies were prevalent. That is, the ChI is a centralized and explicit model versus a
distributed and implicit neural network. However, we remark that in Ref. 11 we put forth a way to encode and
optimize a full ChI as a neural network, without loosing interoperability. In this section we take a look at what
was learned in the previous experiments. We only report a subset of explanations. The reader can refer to our
past works7,8, 11,25 for our wider set of XAI fusion tools that generate statistical, graphical, local, and linguistic
explenations.

In Murray et al.,7,8 data-centric indices were proposed as a way of evaluating the kind and quality of data
that was used to train the ChI. Of particular note is the walk-visitation calculation which describes what part



of the Hasse diagram is well supported by data, i.e., how many (and which) internal contexts has a trained ChI
observed and approximated. This can be used to identify “missing data”, or perhaps more appropriately labeled
“missing model variables.” The trends reported herein are consistent across contexts, therefore we select and
focus on the arbitrary Context 1. In this context, only 19% of the total possible walks received even a single piece
of support. With this being a six source fusion, 6! = 720 sorts are possible on the data, though only 137 of those
were seen. Therefore, the integral is only approximately 20% approximated, which is not good. However, as
we discuss in our fusion for remote sensing work,7,8, 12,13 most real world datasets do not have sufficient volume
nor diveristy. While many datasets claim to have both, our prior work showed that even for the higher volume
datasets, their estimated fusion model values are frequently less than 20%. Meaning, our simulated scenario has
arguably more diversity than we would encounter in practice. This makes sense to us, as the Unreal Engine lets
us produce more data across different context.

Furthermore, of the walks that were taken, 65% of the time the data took the sort (1, 2, 3, 4, 6, 5), meaning
that one walk almost completely dominates the operator. This is a common thing to encounter when training
a ChI. That is, this is the default sort order. Usually that means that a bulk of the data is in agreement, is all
saying the same thing. This is a typical behavior of strong learners, which we might expect from the YOLOv5
algorithm. Furthermore, this most prevalent walk corresponds to a max operator, meaning this particular
operator tends to be optimistic. This is a difficult run in the Hasse to interpret. There is an fundamental
entanglement that we cannot break apart. That is, this run is both the default sort order run and a valid case
of what happens when algorithm 1 is more confident than algorithm 2, followed by 3, and so forth. As such, did
we need the max to solve the latter or did it simply pick the max because it was an arbitrary selection when all
algorithms say the same thing. Furthermore, the densities (values of the lowest level in the Hasse diagram) are
g({x1}) = 0.99, g({x2}) = 0.07, g({x3}) = 0.99, g({x4}) = 0.77, g({x5}) = 0.48, g({x6}) = 0, showing that the
fusion is often based entirely on the largest confidence value, as long as the largest confidence does not come from
source two or six. Further analysis7,8, 11,25 would be required to separate these variables to determine which are
supported by data and we should trust.

This trend continues for most of the other contexts. Due to specific algorithms performing very well in each
context (as the training procedure is therefore resubstitution), the fusion operators in those contexts weight those
sources heavily. In future work we will look to sample and study validation data to minimize this effect. However,
this is not the case for the default operator that was learned, as it was exposed to all data and it did not perceive
a clear superior in the sources. As described in section 2.5, we explored multiple methods to generate default
operators including an average aggregation and retraining on all data. While it would be difficult to display
the full Hasse diagrams here (visually and with respect to page count), the operator that was retrained on all
data resembles a min operator, while the average aggregation resembles a mean. This means that it is nearly
impossible for the retrained operator to produce a high output, as all six algorithms would need to agree on a
detection with a high confidence (something that rarely happens.) While it may seem a bit counter-intuitive to
do all of this machine learning only to end up with something similar to what could be guessed at from the start
(using a mean to aggregate sources), we believe that encouraging a less pessimistic model generalizes better to
unseen data. The reader needs to keep a few things in mind. First, this is not conclusive and it is not a proof. It is
merely an observed behavior of our experiments and experimental setup; i.e., simulated scenes, trained YOLOv5
classifiers, quadratic solver, etc. Thinking beyond our experiments, it is reasonable to expect that a high quality
model trained for a specific context could prove to be optimal ; versus the unachievable single model trained on
all possible data or its ensemble approximation. Furthermore, we might expect that a mean like operator is an,
on average, least worse strategy for outlier metadata scenarios. Last, when contexts truly overlap, something not
explored yet, a mixture of models could prove to be a more robust approximation; similar to the performance
gain we observed using fusion in Figure 7. Last, if we assume that each of these models and fusions are derived
at least in part from data, then the models will always fundamentally have missing pieces. The point is, the
above conclusion from our papers experiments are in no way conclusive. They are an experimental observation
that we can use as intuition to set up the next and better approach.

4. CONCLUSION AND FUTURE WORK

This article proposes a metadata enabled adaptive fusion scheme for UAS-based EHD which attempts to discover
the underlying contexts data was collected in to better inform the fusion operation. The offline determination



of what constitutes a context is made by the possibilistic c-means (PCM) algorithm, a clustering algorithm
which provides typicality values that describe to what degree a data point is typical of a given cluster. Once the
training metadata is clustered, a set of context specific YOLOv5 location and detection classifiers are built, one
per cluster. Finally, a Choquet integral (ChI) aggregation operator is trained for each context.

At evaluation time, the typicality values provided by the PCM allows the system to make an intelligent
decision of whether or not an appropriate fusion scheme has already been trained. If the new data is sufficiently
similar to an existing context then we are able to use the associated operator directly. If the new data is highly
atypical from all previous contexts or similar to multiple contexts then the system uses a default strategy or it
creates a new fusion scheme on the fly based on weighted interpolations of existing operators.

We evaluated the above methods on a set of synthetic imagery generated in the Unreal Engine, a process
which allows us to circumvent the otherwise tedious process of obtaining large amounts of varied UAS data.
Our results showed that there is benefit across the board in taking a metadata driven ensemble of our context
dependent classifiers. Furthermore, we showed that while our system, as expected, is sensitive to metadata
perturbation, the resultant ROC curve performance is still encouraging. Last, we showed additional sensitivity
analysis experiments where we intentionally tried to destroy the algorithm. We note that this scenario is rare
and might never be encountered in practice. However, the experiment reinforced our expected behavior of the
system. That is, when out of context classifiers are used, performance is not ideal. However, our metadata fused
result remains resilient. In summary, these preliminary experiments are encouraging.

In the future, we will evaluate how well simulator informed models transfer to real environments. We will
apply intuition developed through our setup and experiments to an in depth investigation for each component
in a real UAS scenario, e.g., metadata, its similarity, context prediction, etc. for GPS, IMU, and environmental
factors. Furthermore, we only achieved a first step of adaptive fusion herein. That is, we use clustering to inform
the construction of an on the fly fusion operator. In future work we will advance this model to include the factors
discussed above, like internal context and its degree of approximation in a ChI for a given context. We want
to advance this adaptive fusion method to let us produce operators that are similar to prior operators when
we understand their performance. This may involve transferring solutions in and across models and metadata
clustering typicality. Our goals are to determine if a well-trained model in a context outperforms an ensemble
and to find optimal operators for addressing outliers. We intend to move away from experimentation and to
rely on analytical proofs when possible to achieve this end. While preliminary experiments and the method are
encouraging, there remains a great deal of future work.
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