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 Blog post (good summary): 

https://deepmind.com/blog/article/generally-capable-

agents-emerge-from-open-ended-play

 Results showreel (15 min): 

https://www.youtube.com/watch?v=lTmL7jwFfdw
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Figure 3 | Visualisation of the 

XLand environment space. (Left) 

Each dot corresponds to a single 

game and is positioned by a 2D 

UMAP embedding of distance 

between games, with the size of the 

dot corresponding to the balance of 

the game, and the colour 

representing competitiveness of the 

game (from blue – completely 

competitive, to purple – completely 

cooperative). (Right) Each game 

can be played on a myriad of 

worlds, which we can smoothly 

mutate to traverse a diverse set of 

physical challenges. (Bottom) An 

XLand task consists of combining a 

game with a world and co-players.
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Worlds contain:
•Static topology
•Up to 5 layers
•Ramps, walls, … constrained
•Movable objects
• 3 colors
•4 shapes
•Players
•Up to 3 players
•Each player has one gadget:
• Freeze gadget
• Makes object temporarily unmovable

• Tag gadget
• Temporarily removes another player
• Player is returned to its initial position
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“To evaluate a world in 

the evaluate set, we make 

the agent play in the 

world for 100 episodes. 

… If the agent scores a 

reward in at least one 

episode but less than half 

of the 100 episodes, the 

corresponding world is 

added to the train set.”
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A game 𝑮 consists of a goal 𝒈𝑖 ∈ 𝒢 for each of the

𝑛 players, 𝑮 = 𝒈1, … , 𝒈𝑛 .

A binary atomic predicate 𝜙𝑗: 𝓢 → 0, 1  indicates if a 

physical relation is true in a particular state of the 

simulated environment 𝒔 ∈ 𝓢.

 Ex: near(purple sphere, opponent)

A goal could look like

𝒈 = 𝜙𝑗1
∧ 𝜙𝑗2

option 1

∨ 𝜙𝑗2
∧ 𝜙𝑗3

∧ 𝜙𝑗4

option 2

meaning, “Hold a purple sphere 𝜙𝑗1
 while being near a 

yellow sphere 𝜙𝑗2
 or be near a yellow sphere 𝜙𝑗2

 

while seeing an opponent 𝜙𝑗3
 who is not holding the 

yellow sphere 𝜙𝑗4
”.

The reward function 𝑟𝒈 𝒔  for a goal 𝒈 ≔ 𝑖=1ڀ
𝑘 𝑗=1ٿ

𝑛𝑖 𝜙𝑖𝑗  is

𝑟𝒈 𝒔 = min 

𝑖=1

𝑘

ෑ

𝑗=1

𝑛𝑖

𝜙𝑖𝑗 𝒔 , 1 ∈ 0, 1

Ex: The game hide and seek consists of two goals 𝒈seek, 𝒈hide

 𝒈seek = 𝜙seek = see(me, opponent)

 𝒈hide = 𝜙hide = not(see(opponent, me))
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Goal when training agents is to maximize expected total return (reward) over all tasks.
But, each task can be of completely different complexity, so how to aggregate scores over many tasks?
• Agents should catastrophically fail on a few tasks as possible
• Agents should be competent on as many tasks as possible
• Broad ability is preferred over narrow competency

A Game Theoretic solution would be to 

focus on the worst-case scenario.
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Three main components for training:

1. Deep RL to update the policy for a 
single agent

2. Dynamic task generation with 
population based training (PBT)

3. Generational training to bootstrap 
behavioral learning
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Figure 13 | The combined learning process. (Top) Generations of agents are 

trained, composed of populations of agents where the best performing agents 

become distillation teachers of the next generation as well as co-players to train 

against. (Middle) Inside each population, agents are trained with dynamic task 

generation that continuously adapts the distribution of training tasks P𝜋𝑘(ℵ) for 

each agent 𝜋𝑘, and population based training (PBT) modulates the generation 

process by trying to Pareto dominate other agents with respect to the normalised 

percentiles metric. (Bottom) Each agent trains with deep reinforcement learning 

and consists of a neural network producing the policy 𝜋 and value function v.



20

Figure 14 | Generations of performance as measured on the held out 

test task set. The first two generations focus on the maximisation of 

participation using the self reward-play RL objective (Section 5.3). 

In between generations, the best agent wrt. the objective is selected 

and used as a teacher and additional co-player to play against in 

further generations. Generations 3-5 focus on the improvement of 

normalized percentiles, and use the raw reward for the RL 

algorithm. The dashed line in each plot corresponds to the 

performance of the teacher from the previous generation. The co-

players are the set of policies that populate the co-players in these 

multiplayer tasks, with this set initialised to just the trivially created 

noop-action and random-action agents (white and grey circles).
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Figure 15 | (Top) On the left we see the learning surface, 

showing the progress of a generation 5 agent through time with 

respect to each of the normalised percentiles. The surface shows 

the normalised score (height) for each percentile (depth) through 

training (x-axis). Therefore, the flat bottom of the surface (zero 

height) is the part of the space where the agent is not 

participating. On the right, we see an orthogonal projection onto 

the surface at the end of training. (Bottom) We highlight the 

performance on 6 hand-authored tasks at three points in training, 

showing how improvements in the normalised percentiles 

correspond to improvement in these hand-authored tasks.
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Sampled 180,000 states from 30k trajectories.
Mapped onto 900 Kohonen Neurons. (Self-Organizing Map)
Color based on fraction of states that map to a neuron that satisfy a given probe property.
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