9/17/2021
s -
Open-Ended Lea ads to Get J—uJJy (“.Jr: le Agent
" i S 0 ,‘

Open-Ended L eammz Team, DeepMind, Loni bn
ps://arxiv.org/abs/2107.128C

Qted by Drew é‘u’c! I!

~—

University of Missouri

Department of Electrical Engineering and Computer Science

https://arxiv.org/abs/2107.12808

—
N

d& Results Showreel

. Introduction

. XLand Environment Space

2.1. World Space

2.2. Game Space

2.3. Task Space

. Environment Properties

3.1. World Properties
3.1.1. World Vastness
3.1.2. World Smoothness
3.1.3. World Diversity

3.2. Game Properties
3.2.1. Game Vastness
3.2.2 Game Smoothness
3.2.3. Game Diversity

. Goal and Metric

4.1. Normalized Percentiles

4.2. Evaluation Task Set

4.3. Hand-authored Task Set

. Learning Process

5.1. Deep Reinforcement Learning

5.2. Dynamic Task Generation

5.3. Generational Training

5.4. Combined Learning Process

6.1.
6.2.

6.3.

6.4.

6.5.
6.6.

. Results and Analysis

Experimental Setup

Agent Training

6.2.1. Dynamic Task Generation Evolution
6.2.2. Ablation Studies

Performance Analysis

6.3.1. Coverage

6.3.2. Relative Performance

General Capabilities

6.4.1. Hand-authored Tasks

6.4.2. Behavioral Case Studies
6.4.3. Multi-agent

6.4.4. Goal Interventions

6.4.5. Failed Hand-authored Tasks
Finetuning for Transfer
Representation Analysis

. Related Work
. Conclusions

@ Outline (continued)

A. App
Al

AZ2.

endix

Worlds

A.1.1. Procedural World Generation
A.1.2. Counting Worlds

A.1.3. Worlds Linear Projection
Games

2.1. Relations

2.2. Atomic Predicates

.2.3. Generating Games

2.4. Creating Alike Games

.2.5. Generation of a 3 Player Game
2 6. PCA Projection

ing Out Tasks From Training
inforcement Learning

SE

A.5. Distillation
A.6. Network Architecture
A.6.1. Auxiliary Losses
A.7. Population Based Training
A.8. GOAT
A.9. Multi-agent Analysis
A.9.1. Hide and Seek
A.9.2. Conflict Avoidance
A.9.3. Encoding Chicken in XLand
A.10. Hand-authored Levels
A.11. Representation Analysis
B. Proofs for Section 3 (Environment Properties)
C. Proofs for Section 5 (Learning Process)

@ Additional Resources

Blog post (good summary):
https://deepmind.com/blog/article/generally-capable-
agents-emerge-from-open-ended-play

Results showreel (15 min):
https://www.youtube.com/watch?v=ITmL 7/jwFfdw

https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
https://www.youtube.com/watch?v=lTmL7jwFfdw

Player holding

purple sphere Redplaysr Blue player :

White floor World Topology Orange ramp

Task rendering Task rendering

Black pyramid

Blue player: See red player or stand on orange floor ' Put purple sphere near black pyramid
Red player: Put purple sphere near black pyramid

Figure 2 | (Left & Center) An instance of a task within the XLand environment space, composed of the world — the layout of the topology,
initial object and player positions, and player gadgets — as well as the game — the specification of rewarding states for each player in this
task. (Right) The observation of the red player consisting of the first-person view and the goal of the player.

The XLand Universe

e the Cub || Ioeilandilinkass e — Figure 3 | Visualisation of the
apture e Lube The points in the galaxy are games where 2D posi- atchasphere and a Cube H
tion is embedded distance, the size is the balance XLand enV| ronment Space (Left)
Rules of thelgamel énd the colour !'l1<?w co'mpvetitive the Rules ' EaCh dot COI’I‘ESpOI’]dS to a S|ng|e
game is (blue is fully competitive, pink is fully coop- Blue agent wants:
erative). purple sphere to be f _e i game and is positioned by a 2D
Blue agent wants a i near purple cube X i
Gl e O Yellow sphere to © UMAP embedding of distance
on the white floor be near yellow cube v v H H
Or: Black sphere to between games, Wlth the Size Of the
be near black cube d :
: ot corresponding to the balance of
s:ni:vgzl?;::t;: Sampsietve | I Red agent wants: Competetive || ‘ | | ' . . p g
on the blue floor Balance | | purple sphere to be Bal the game, and the COIOur
¢ o oo | = representing competitiveness of the
Options i Or: Yellow sphere to Options — p g p
) be near yellow cube —
?(f;f:ilorlattlon ") Or Blackspheroto Exploration | game (from blue Completely
Sy be near black cube | difficulty 3 , competitive, to purple — completely
L i -
L § cooperative). (Right) Each game
;',1 can be played on a myriad of
. N csss=ily worlds, which we can smoothly
| === ia=s H mutate to traverse a diverse set of
- g === \4’ physical challenges. (Bottom) An
Hide and Seek || XLand task consists of combining a
Rules game with a world and co-players.
Blue agent does
not want to be
seen by the red
agent
Red agent wants to Competetive |
see the blue agent -
Balance == 4+
Options l[II 0 G OB 5 @ B }[]1
Exploration |l ¢
difficulty = e — = e = e

Figure 6 | An example array of worlds from the XLand environment space.

Worlds contain:
* Static topology
*Up to 5 layers
*Ramps, walls, ... constrained
* Movable objects
*3 colors
* 4 shapes
* Players
*Up to 3 players
*Each player has one gadget:

* Freeze gadget
* Makes object temporarily unmovable
* Tag gadget
» Temporarily removes another player
* Player is returned to its initial position

@ Procedural World Generation

Seed Worlds

Topology height map

Tileset

XLand world in Unity

Wave
- a Function
Collapse

Per-object probability map

World ;
conditioning .-

Conditional World Generation

Per-player probability map

Figure 31 | Worlds can be generated conditioned on an existing Figure 32 | The steps of procedural world generation. The process is conditioned on a seed and optionally an existing world to be similar to.
world. This allows smooth variation of worlds. This figures shows Wave Function Collapse (Gumin, 2016) acting on a tileset of primitive building blocks creates a height map of the topology. Additionally,
three examples of this process, with each column showing an initial for each object and player, a CPPN (Ha, 2016; Stanley, 2007b) creates a probability map for the entity’s initial spawn location. These
seed world and the rows showing two steps of conditional world elements are combined in the Unity game engine to produce the playable world.

generation.

@ World-Agent Co-Evolution

EEEsEsgsEsaspRetny K r - | Long _
»»»»»»»»»»»» 8 Eh paths “To evaluate a world in
s T (' the evaluate set, we make
----------- ESSEESE. - | the agent play in the
....... - H world for 100 episodes.
Stmssssassssas HEEHEN | L_'_A/ -~ Navigation ... If the agent scores a
BIESESEIESENES — LN = = £ S = ‘ around reward in at least one
SIZEEEEEEEIE EELEE il | | N cliff edges episode but less than half
S . | of the 100 episodes, the
| Many corresponding vyorld |s
— , i R —— added to the train set.
BB Qe N dead

L1 | ends

Figure 33 | The process of world-agent co-evolution resulting in complex worlds. (Left) The initial seed world to the train world set. The
agent is trained to maximise the reward of its goal “Be near a yellow pyramid”. (Middle) The progression of the worlds in the train set
as training progresses. Worlds undergo evolution with a minimum criterion fitness such that a world must be solved sometimes but not

too often by the agent. (Right) The resulting world set is more diverse in terms of the navigational feature space and exhibit interesting
topological elements.

10

A game G consists of a goal g; € G for each of the
n players, G = (g4, ..., gn)-

A binary atomic predicate ¢;: § — {0, 1} indicates if a
physical relation is true in a particular state of the
simulated environment s € §.

EX: near (purple sphere, opponent)

A goal could look like
9=, 70;,)V(0j,A0;, 1 },)

option 1 option 2

meaning, “Hold a purple sphere (¢f1) while being near a
yellow sphere (cpjz) or be near a yellow sphere (¢1'2)

while seeing an opponent (¢j3) who is not holding the

yellow sphere (¢j4)

The reward function r;(s) for a goal g = V<, [/\;.1;1 qbij] is

k n;
r,(s) = min zn¢ij(s),1 € (0,1}

i=1 j=1

Ex: The game hide and seek consists of two goals (gseek, ghide)

Iseek = ¢Seek = see (me, opponent)

Ihide = ¢hide = not (see (opponent, me))

11

@ Game Properties

To define the more complex game properties, recall that
every goal is a Boolean expression over a set of d predicates
¢;j. Let us define ¢ : S — {0, l}d, a mapping that assigns
each simulation state s to a binary vector of d predicate
truth values. A goal is simply a mapping from ¢(S) to
{0, 1}, labelling which predicate states are rewarding. We
denote by Ny, := #{¢(s) : s € S} the size of the predicate
state space. We define a distance metric between two goals
gi and g; as

#{¢(s) : rg,(s) # rg;(s)}

Ny e [0, 1].

g — gijllg :=

Definition 3.4. Exploration difficulty of a game is the fraction
of predicate states in which no player is being rewarded.

#{¢p(s) : Yirg (s) = 0}
Ng

K(G) = k((g1,...,8n) =

we will also call the unnormalised exploration difficulty the

quantity
K(G) := Ngk(G).

Definition 3.5. Cooperativeness is the fraction of predicate
states in which all the players are being rewarded compared
to the number of predicate states in which at least one of them
is.

#{@(s) : Virg (s) = 1}
Ny — &(G)

coop(G) = coop((g1,...,8n)) =

Definition 3.6. Competitiveness is the fraction of predicate
states in which some but not all players are being rewarded
compared to the number of predicate states in which at least
one of them is.

#{¢(s) : maxy rg; (s) # ming rg; (s)}
Ny - #(G)

comp((g1,...,8n)) =

Definition 3.7. Balance with respect to game transformations
E D {identity} is the maximal cooperativeness of the game
when goals are transformed with elements of Z:

bal(G) = 1';1;:1%(coop(£(G)).

12

Simple navigation task XLand games include simple chal-
lenges such as a player being tasked with finding an object
of interest and grabbing it. Tasks like this challenge naviga-
tional skills, perception, and basic manipulation.

g1 :=hold(me, yellow sphere)

gy :=near (me, yellow pyramid)

x(G)=% comp(G)=3% bal(G)=f

Simple cooperation game Setting the goal of both play-
ers to be identical gives a fully cooperative, balanced game,
which challenges a player’s ability to navigate and manipu-
late objects, but also to synchronise and work together.

g1 = near(yellow pyramid, yellow sphere)
g, = near(yellow pyramid, yellow sphere)

x(G) =+ comp(G)=0 bal(G)=1

Hide and Seek A well known game of hiding and seeking,
that has been used in the past as a source of potentially
complex behaviours (Baker et al., 2020). This is an example

of a simple, fully competitive, imbalanced game in XLand.

g1 := see(me, opponent)

g9 :=not(see(opponent, me))
x(G)=0 comp(G)=1 bal(G)=3

Capture the Cube The competitive game of Capture the
Flag has been shown to be as a rich environment for agents
to learn to interact with a complex 3d world, coordinate
and compete (Jaderberg et al., 2019). Each player must get
the flag (for example represented as a cube) to their base
floor to score reward. An example one-flag instantiation of
this game in XLand (with a supporting world) is

g1 = on(black cube, blue floor)A
not (on(black cube, red floor))
go == on(black cube, red floor)A
not (on(black cube, blue floor))

k(G)= 7 comp(G)=1 bal(G)=1 .

XRPS A final example is that of XRPS games, inspired by
the study of non-transitivites in games leading to strategic
depth (Czarnecki et al., 2020; Vinyals et al., 2019). We
give each player three options to choose from, each one
being explicitly countered by exactly one other option. A
player can choose to pick up a yellow sphere, but it will get
a reward if and only if an opponent is not holding a purple
sphere; if it picks up a purple sphere the reward will be given
if and only if the opponent does not pick up a black sphere,
and so on. With these cyclic rules, players are encouraged
not only to navigate and perceive their environment, but
also to be aware of opponent actions and strategies, and to
try to actively counter potential future behaviours, leading
to potentially complex, time-extended dynamics.

Emck =

Epaper =

Escissors

g1 =
g2 =
k(G) =

hold(me,yellow sphere)A

not (hold (opponent,yellow sphere))A
not (hold (opponent ,purple sphere))
hold(me,purple sphere)A

not (hold (opponent,purple sphere))A
not (hold (opponent,black sphere))
hold(me,black sphere)A

not (hold (opponent,black sphere))A
not (hold (opponent,yellow sphere))
Emck v Epaper v Escissnrs

8rock V 8paper V Bscissors

7 comp(G)=1 bal(G)=1

14

@ Generating Games

6o B8
68 BE

Greedy
‘ \

At .
genec::::or — ge:eor:mr Candidate game Evaluator Generated game
Objects

{lmlmlqﬂ 1 .lI]llI]!PHi
s B JoI Jojej|e Desied. el Jof Top 1"

Optional seed
game

Predicates

Options = 1 Competitiveness = 1 Competitiveness = 1 Competitiveness = 1
Balance = 0.3333... Balance = 1 Balance = 1
Hide and seek Seek while hiding

Figure 37 | The process of generating of a game with target properties. We see the matrix representation, as well as relations. Greedy local
search performs simple modifications to the game matrix, as described in Section A.2.

15

@ Normalized Percentiles

Goal when training agents is to maximize expected total return (reward) over all tasks.
But, each task can be of completely different complexity, so how to aggregate scores over many tasks?

Agents should catastrophically fail on a few tasks as possible

Agents should be competent on as many tasks as possible A Game Theoretic solution would be to
Broad ability is preferred over narrow competency focus on the worst-case scenario.
Percentile O Percentile 25 Percentile 50
(worst case) (median))
Normalised

<——percentile
Best known

score

Normalised
Agent) _— Agent

curve

— > — e E?:' - i e i’ﬂ‘ Tasks
Tasks A e r'n. r)”" - _{ 4 B . .4 f,,_ F}. . e ordered by

J_' .
> o
>
g i
f;i\i normalised score
Ry
IJ\'.

Figure 10 | The process of computing normalised percentiles. Tasks vary significantly in terms of their complexity, some have much higher
values of optimal policies than others. We normalise the performance of the agent by an estimate of an optimal policy score — using the
Nash equilibrium of trained agents — providing a normalised score, which after ordering creates a normalised percentile curve. This can be
iteratively updated as new trained agents are created.

16

Three main components for training:

1. Deep RL to update the policy for a
single agent

2. Dynamic task generation with
population based training (PBT)

3. Generational training to bootstrap
behavioral learning

Agent architecture

Internal computation

> - ==

ay

A

. @ Observations affecting policy
: Differentiable connection
s, external
policy head vaehead Y B s Non-differentiable connection

A

1
v

Observations only for learning

-=> Loss © Stopped gradient

GOAT unit
GOAT
module

attention

predicate
predictor

@ Hold purple sphere 6
or
@ See yellow cube

~ J N\ J -

reshape

goal embed
Pt o
/

Figure 12 | A schematic of the neural network used to parameterise the agent’s policy. The input observations o, consist of RGB images
and the proprioception, and the agent also receives its goal g. The agent processes the observations through the torso and a recurrent core
to produce h;, which is used for the predicate predictor, producing p;. The recurrent core output, the predicate predictor output, and the
goal is passed to the GOAT module. The GOAT module (see Section 5.1) attends to a specific part of the recurrent representation based on
the current goal of the agent, and performs logical analysis of the goal using value consistency (see Theorem 5.1). The goal embedding and

predicate predictor architectures are provided in Figure 38. Modules with the same names share weights (i.e. each value head, as well as
each GOAT unit).

17

@ Goal Embedding

See opponent while holding a yellow pyramid or while yellow sphere is not on a green floor
[not(On(Yellow Sphere, Green Floor)) A See(Me, Opponent)] v [Hold(Me, Yellow Pyramid)) A See(Me, Opponent)]

Predicates Options

on(Yellow Sphere, Green Floor) @ [:] D D C] 'J9 predict-mip pred-mip
See(Me, Opponent) . m . [I] —19 predict-mip pred-mip
Hold(Me, Yellow Pyramid)
@ - m D G predict-mlp pred-mip
| S —)

NN NN

} Predicate 1

} Predicate 2

0 @)) o s
BO0)) e

} Predicate 3

a O w O w = w © o
@ o = o = =t ==
= = ol = o) @ Q@ oT@
@ =] b= [=} b= Qo o=
+ c ™ c] = (D - o B
[= = o 2] =Nyl
o Ot e ;
=R S S— s g S Ao Option
o an option-mlp option-mlp embeddings
(] w
W w
9]
T o
3

T 109(qo
Z 190alqo

@ Goal
embedding

Figure 38 | The architecture of the goal embedding/prediction modules. Atomic predicates are provided in a 5-hot encoded fashion, since
all the relations used take two arguments, each of which can be decomposed to a colour and shape. For player object we simply have a
special colour "me" and "opponent". Details of the architecture are provided in Section A.6.

18

Figure 13 | The combined learning process. (Top) Generations of agents are
trained, composed of populations of agents where the best performing agents
become distillation teachers of the next generation as well as co-players to train
against. (Middle) Inside each population, agents are trained with dynamic task
generation that continuously adapts the distribution of training tasks Prk(X) for
each agent wk, and population based training (PBT) modulates the generation
process by trying to Pareto dominate other agents with respect to the normalised
percentiles metric. (Bottom) Each agent trains with deep reinforcement learning
and consists of a neural network producing the policy = and value function v.

Take the best agent Next generation distills from the
from a generation best of previous generation
Population 1 Population 2 Population 3 Population 4
o
®
o
o —— 00 — 000 —0 000
[J
@
®

Previous generation agents
are also used to provide
other player policies and
normalise scores

PBT Fitness

PBT fitness is based on Pareto dominance of one
agent compared to another, computed over all
normalised percentiles

e o O 2
S) @ ©

Normalised performance
o
]

o
o

Each agent has its own
task distribution which
changes throughout
training in response to
the agent’s performance

Population of agents

Agent Architecture

20 10 (0]

Percentile

with RL

O
O

Policy and value function
are produced by a neural
network acting on image
observations with internal
attention based on the
goal of the agent

19

@ Generational Training

RL cbjective RL objective RL objective RL objective
Sell reward-play Self reward-play Reward Reward Reward
PET objective PBT objective PBT objective PBT objective PBT objective

Participation Participation Percentiles Percentiles Percentiles
>e ; >e >e e
Co-players Co-players. i Co-players i Co-players i Co-players
L] : [N L N]

i i ® eeo@))
‘i : e - R Figure 14 | Generations of performance as measured on the held out

test task set. The first two generations focus on the maximisation of
5 participation using the self reward-play RL objective (Section 5.3).
: In between generations, the best agent wrt. the objective is selected
Fac and used as a teacher and additional co-player to play against in
5 ; 3 S 1 : 3§ 3 6 further generations. Generations 3-5 focus on the improvement of
e normalized percentiles, and use the raw reward for the RL
i algorithm. The dashed line in each plot corresponds to the
f performance of the teacher from the previous generation. The co-
3 players are the set of policies that populate the co-players in these
6 3 6 3 S : 3¢ 1 3 3 7 35 § - multiplayer tasks, with this set initialised to just the trivially created
noop-action and random-action agents (white and grey circles).
| N e T e - [//
= = teacher score

4
1210 1e10 1610 110

Steps Steps Steps Steps Steps 20

Ridge-Fencing

152G

21G

r— -
38G 59G

Learning step

Handauthored levels O-shot generalisation

Hide and Seek

38G 152G

86G

"G

Capture
the Cube

1G 38G

Normalised performance

o

o
o

O
o

o
F'S

or Compete

1G 38G 152G 1G 38G 152G

Agent participates in
94% of the games

Median normalised
performance of 110%

Agent scores at least
80% normalised score
in 90% of the games

o]

N
/
J

/

00 —

Percentile

Counter
Yellow Sphere

Cooperate

Figure 15 | (Top) On the left we see the learning surface,
showing the progress of a generation 5 agent through time with
respect to each of the normalised percentiles. The surface shows
the normalised score (height) for each percentile (depth) through
training (x-axis). Therefore, the flat bottom of the surface (zero
height) is the part of the space where the agent is not
participating. On the right, we see an orthogonal projection onto
the surface at the end of training. (Bottom) We highlight the
performance on 6 hand-authored tasks at three points in training,
showing how improvements in the normalised percentiles
correspond to improvement in these hand-authored tasks.

21

@ Example: Changing Goals

Test Example 1: Agent evaluating on the fly and changing its mind

A goal composed of 3 options, each composed of a single predicate

Yellow sphere starts out

2 : — o

of sight behind the agent Ym
—

v

] g

%

F [Put black pyramid near sphere [mm [] []
- @. : P : ;
: (7 or i L :
¢ K : i i
Put purple sphere near pyramid ' . .
i i
or ! !
1 r
I
T

|

Put black pyramid on orange floor

{

[
N
®

@
@

Episode time

'
]
Npomnemeos o J ol

i
1
i
i
i
i
1
i
i
1
i

3s 4:|; 5s 6s
i
i
i
i
i
i
i
i
1
i
i
'

[]

Agent identifies black Agent grabs the Agent catches a Agent brings the Agent keeps pyramid
pyramid and decides pyramid and is looking glimpse of a yellow pyramid close to close and both objects
to go for option 3 for a way to get to the sphere and realises the sphere in view to ensure it

orange floor option 1is more viable succeeded

Agent’s observation
++REWARD ++REWARD

- 1

Agent'’s internal state

-

\ S /74

Third person view

o

D
*
o
o

s

@]

Y .
\
00
#
€
00
:
"
000
L4

@ Example: Using Tools

Test Example 2: Agent facing a new challenge and shows tool use

A goal composed of a single option with a single predicate, requiring getting to the purple pyramid
but without any static ramps to navigate up the world topology

&) : v

No ramps up to platform =
with a pyramid —]) e <
—_— gl - e
) & 1
4 7 | [Get near purple pyramid = u u] u
3 3 “ : : : ; s
\ i i i i i
=5 1 1 1 1 !
I i I |]
i I I I i
i i I I i
! ! 1 1
s pdsmedl]
i i 0 I I
sulb- 100N N\w: ; :
i i I i i
Os 128 ! 4s ! Bs | 8s i 1ls
. . ! ! 1 1 !
Episode time ! ! ! ! i
i i ; i :
| 1 I 1 !
et ’ ! ! : i
: R =i ek S kR R T 1 i ,:
1 1 ' 1 g
1 ' I S N S R |
i ' i | i
1 i I 1]
| ' | . I
® [] [] [] @
Agent sees the target Agent throws objects Agent uses a freeze Agent notices the Agent uses a newly
object but cannot around, hoping to find a gadget on a flat object frozen object built ramp to reach its
reach it ramp underneath forms something goal A
like a ramp n
Agent’s observation
++REWARD

23

@ Example: Experimentation

Test Example 3: Agent faces logical puzzle and shows experimentation

A goal composed of a single option with a conjunction of 3 predicates requiring finding the correct physical layout of cubes

—_— gl
Put black cube near purple cube
and]
Put cube near purple cube E
and E
Put cube not near black cube H

o
@

Episode time "y

i
1
:
h
105 21s 31s 42s " p3s
i
h
1
1
1
i
h
1

Agent starts to bring Agent notices black Agent tries different Agent evaluates Agent is satisfied with
cubes together and yellow cubes are arrangement of cubes new arrangement new positions

too close

Agent’s observation
++REWARD ++REWARD

Third person view

Agent’s internal state

£

O

E
O

©
®
O
©

\J/

O
Q
[J@)
E S
‘ O
® O
£ £
.

k-
|
pe

24

Internal Representation

Many
missing One option
atoms

Early in the Agentis High Rewarding Knows it's Knows One missing
episode holding baseline state rewarded entire state atom

Many
options

Goal embed

DOO SO
HOPHHy @@

Figure 28 | Internal representation analysis of the agent. We use Kohonen Network representations of various properties for three different
modules of the agent (LSTM, goal embedding, GOAT). Within a Kohonen Network, the bright yellow colour denotes states where the
property is true, and blue where it is false. We shade out plots which represent combinations of properties and modules where the given
property is not represented in a statistically significant manner by the output of the module (see Section 6.6).

<
o)
G

25

@ Kohonen Networks

Sampled 180,000 states from 30k trajectories.
Mapped onto goo Kohonen Neurons. (Self-Organizing Map)

Color based on fraction of states that map to a neuron that satisfy a given probe property.

Figure 39 | Visualisation of the Kohonen Network used in our anal-
ysis, composed of 900 Kohonen Neurons. Three neurons are called
out in colour, with their receptive field (neurons that have non zero
update weight) colour-coded with the colour intensity representing
the weight.

Early in the episode High baseline

’ b
0 an 0 10 I
II%239 = el |? 18272 — hy]|?

?
Knows it's rewarded b Multiple missing atoms
L

0 N
|I843 — hel|?

T
15666 — hel|*

Figure 29 | Internal representation analysis of the agent. The Koho-
nen Neurons encode four well represented concepts from Figure 28.
The kernel density estimation plots represent the density of the
activity of the neuron when the concept is true (in colour) or false
(in gray).

26

aillure Cases

Test galaxy performance Tasks with O reward

On(Opponent, ? Floor)

Apart from rare cases it is impossible to
put the opponent on a given floor

Hold(Opponent, ?)

It is not possible to force the opponent
to hold something

Near(Me, Yellow Pyramid)

se of a ve s bug, the

dyramia is in

Near(Opponent, Purple Cube)
and

On(Purple Cube, Brown Floor)

This task effectively requires the agent to put the
opponent on the brown floor

Figure 18 | A visualisation of the test set of tasks, with the corresponding agent performance. The red colour corresponds to a low
normalised score and green to a high one. We identify four sources of games the agent scores O reward on (listed on the right): 1) tasks
that require the agent to put the opponent on a specific floor (marked as triangles in the galaxy); 2) tasks that require the agent to make
the co-player hold an object (marked as circles in the galaxy); 3) a single task (in red in the galaxy) which is impossible due to a very
rare physics simulation bug; 4) a single task (in orange in the galaxy) that requires the agent to put the co-player on a given floor by a
composition of two predicates. After removing these four types of tasks, which cannot be solved even by a human, our agents participate
in every test task. 27

Scores by level and agent

B From scratch
1 B Zero-shot
|] i J B fFine-tuned
o 1 .
R

Raw reward
Is fa)] Te)
LN - o
(] un -]

N
[
v

'3 “\.,
& & X "«.
& & % & @ & 3 i S ?
&P \~>‘° 3 £ & & o N g & 'o‘:’e’ ¥ & &
& S d o = S & & & @ e C

& ¢ ¢ F & N N e

C o & S o’ g W« il & v ra N
¢ ¢ & & & K& & ¥
@ R > QQQ <
&

Figure 27 | Comparison of three agents from different training regimes on a range of hand-authored levels. Scratch: An agent trained

from scratch for 100 million steps. Zero-shot: the agent trained using our methodology and evaluated on these held out levels zero-shot.

Fine-tuned: the same agent but trained for an additional 100 million steps on the level. 100 million steps is equivalent to 30 minutes of

wall-clock time in our setup. This rapid finetuning improves the agent score significantly compared to zero-shot, and in the majority of
cases training from scratch does not achieve any reward.

28

	Slide 1: MINDFUL Seminar Series
	Slide 2: Results Showreel
	Slide 3: Outline
	Slide 4: Outline (continued)
	Slide 5: Additional Resources
	Slide 6: XLand Environment Space
	Slide 7: The XLand Universe
	Slide 8: World Space
	Slide 9: Procedural World Generation
	Slide 10: World-Agent Co-Evolution
	Slide 11: Game Space
	Slide 12: Game Properties
	Slide 13: Game Examples
	Slide 14: Game Examples
	Slide 15: Generating Games
	Slide 16: Normalized Percentiles
	Slide 17: Deep Reinforcement Learning
	Slide 18: Goal Embedding
	Slide 19: Learning Process
	Slide 20: Generational Training
	Slide 21: Evaluation
	Slide 22: Example: Changing Goals
	Slide 23: Example: Using Tools
	Slide 24: Example: Experimentation
	Slide 25: Internal Representation
	Slide 26: Kohonen Networks
	Slide 27: Failure Cases
	Slide 28: Fine Tuning

