
Simulated Photorealistic Deep Learning Framework and Workflows to

Accelerate Computer Vision and Unmanned Aerial Vehicle Research

Brendan Alvey, Derek T. Anderson, Andrew Buck, Matthew Deardorff, Grant Scott, James M. Keller
University of Missouri

Columbia MO 65211, USA
(bja3md@mail, andersondt@, buckar@, msdrm8@mail, scottgs@, kellerj@)missouri.edu

Abstract

Deep learning (DL) is producing state-of-the-art results

in a number of unmanned aerial vehicle (UAV) tasks from

low level signal processing to object detection, 3D mapping,

tracking, fusion, autonomy, control, and beyond. How-

ever, barriers exist. For example, most DL algorithms re-

quire big data, but supervised ground truth is a bottle-

neck, fueling topics like self-supervised learning. While it

is well-known that hardware and data augmentation plays

a significant role in performance, it is not well understood

which data augmentations or what real data need be col-

lected. Furthermore, existing datasets do not have suffi-

cient ground truth nor variety to support adequate con-

trolled experimental research into understanding and mit-

igating limitations in DL algorithms, models, data, and bi-

ases. In this article, we address the combination of photo-

realistic simulation, open source libraries, and high qual-

ity content (models, materials, and environments) to de-

velop workflows to mitigate the above challenges and ac-

celerate DL-enabled computer vision research. Herein, ex-

amples are provided relative to data collection, detection,

passive ranging, and human-robot teaming. Online video

tutorials are also provided at https://github.com/

MizzouINDFUL/UEUAVSim.

1. Introduction

A recent report by the Grand View Research [1] esti-

mated that the global market size of AI was $39.9 billion

in 2019, with a projected 42.2% compound annual growth

rate until 2027. Investors range from government (e.g., bil-

lions committed by the US [2]) to commercial (e.g., one

billion from Tesla and SpaceX [3]). For example, Tesla is

heavily investing in areas like large scale machine learning

(ML) based computer vision (CV) from cameras, which has

required them to perform large scale human assisted label-

ing of petabytes of data [4]. This data dependency is not

Figure 1. Example of a simulated aerial dataset for a rural neigh-

borhood in AirSim and the Unreal Engine, automatically gener-

ated ground truth, voxel data, and 3D point cloud.

new. Numerous companies have emerged and raised tens of

billions to label data for ML [5]. The point is, data-driven

AI/ML is on the rise for a variety of applications from cy-

bersecurity to social media, remote sensing, biomedical,

healthcare, smart cars, and beyond. At that, data is the new

oil and new ideas are needed to generate and label data.

While recent AI/ML progress is impressive, a number of

deep limitations have become clear. Examples include: de-

pendency on large typically annotated for supervised learn-

ing volume/variety data; cost and time bottleneck of col-

lecting (annotated) data; and understanding what data to

augment or collect; and how to conduct controlled exper-

iments in this complex landscape to study, profile, and un-

derstand algorithm, model, data limitations and biases. In

this article, we explore photorealistic simulation to address

these challenges. Our contribution is a workflow for col-

lecting controlled photorealistic simulated data with asso-

ciated metadata via simple to use open source tools to as-

sist deep learning (DL) CV research for unmanned aerial

vehicles (UAVs). Multiple examples are provided to help

the reader apply and generalize these ideas to new con-

texts and code with video tutorials are provided at https:

//github.com/MizzouINDFUL/UEUAVSim.

https://github.com/MizzouINDFUL/UEUAVSim
https://github.com/MizzouINDFUL/UEUAVSim
https://github.com/MizzouINDFUL/UEUAVSim
https://github.com/MizzouINDFUL/UEUAVSim

The use of simulation for data generation, algorithm

training and testing, design-space exploration, sensor ver-

ification and validation, virtual and augmented reality, etc.,

is not new. What is new is a convergence in the matu-

rity, realism, and availability of relatively simple to use

tools and web-based tutorials that allow controlled, wide

breadth simulation-enabled computer vision and DL re-

search for individuals who are not computer graphics nor

gaming experts. This is a potential game changer. Ex-

amples are boundless, e.g., accelerating research by en-

abling greater exploration, generating larger heterogeneous

datasets, unit testing, improved ground truth, reducing time

and cost barriers of collecting poorly labeled uncontrolled

real-world data, and closed-loop simulated for systematic

analysis and life long AI/ML learning. Just as hardware

and data changed the face of DL, flexible open source pho-

torealsitic simulation has the potential to be the next leap.

In 2015, Gaidon et al. used Unity to make a VIR-

TUAL KITTI (VKITTI) autonomous car non-photorealistic

dataset [6]. In 2015, Chen et al. [7] used The Open Racing

Car Simulator (TORCS) [8] to train a deep NN (DNN) to

drive (again, non-photorealistic imagery). In 2017, Mar-

tinez et al. used the video game Grand Theft Auto to gener-

ate high quality rendered imagery for training, testing, and

enhancing DL for self-driving cars [9]. In 2018, Martinez

et al. proposed UnrealROX [10], which used UE4 to create

realistic looking indoor scenes for robots to interact with ob-

jects in simulation. In 2018, Muller et al. explored Sim4CV

[11] in UE4 for generic CV research. In 2020, Drouin et al.

[12] used real ortho-photos to simulate aerial data collec-

tions, and in 2021, Nouduri et al. [13] generated synthetic

views from a dense 3D point cloud. While Sim4CV is the

closest work to our current article, the content used and im-

agery produced is not photorealistic, no detailed workflows

are outlined, no supplemental online training is available,

and results are simulator-focused vs real world and simula-

tion cross-validated.

2. Modeling and Rendering : Unreal Engine

In this section, we highlight the Unreal Engine (UE) [14]

for generation of photorealistic environments and pristine

computer vision and UAV (meta)data production. Histori-

cally, UE was created for video games, but it is now used

for film [15], computer graphics [16], architecture [17], and

beyond. Figures 2 and 3 show existing free and purchasable

online content, Figure 4 shows free high quality real-world

scanned data, and Figure 5 shows an online store of pur-

chasable content. The bottom line is, high fidelity custom

dynamic scenes can be manually produced in little time or

purchased. It is also easy to mix content, manually or via

scripting, to vary or cater to niche applications where sce-

narios are costly, hard, or not practical to obtain.

The reader can refer to [21] for a video-based intro-

Figure 2. Example of urban and rural scenes–prices range from

free to a few hundred dollars–on the UE Marketplace [18].

Figure 3. Example of large outdoor area from the UE Marketplace

[18] and seasonal variation for train/test data variation.

Figure 4. Example of photorealistic scenes by Quixel [19] (real-

world scanned models and textures) content (over 15,000 avail-

able), made free to UE users.

duction to producing photrealistic scenes in UE via Quixel

Megascans. Users can use AirSim (Section 3) to generate

data or the Movie Render Queue (MRQ) in UE [22] (Fig-

ure 6). We recommend the MRQ over AirSim–to gain full

access to lumen, ray tracing, anti-aliasing, and more photo-

realistic image generation options–and that users manually

script a UAV flight using a Cine Camera Actor [23] (with

parameters like spatial resolution, FOV, focal length, and

more) as keypoints or tracks in the Sequence Editor [24].

Figure 5. Example Turbosquid [20] FBX content (500,000+ mod-

els) for rapid creation of dynamic environments.

We recommend this path to obtain the best imagery, and it

is arguably the quickest way to get up and running for a

controlled non-autonomous UAV dataset. For readers that

need a higher degree of scene dynamics, the UE Blueprint

Editor can be used to script based on a clock, spatial posi-

tion of objects, collisions, or other triggerable events. If a

reader requires depth or per-pixel object (or instance) IDs,

the MRQ can be used. However, recording metadata like

UAV state is not trivial; it requires a custom Blueprint.

3. Autonomy and Control : AirSim

Microsoft’s AirSim [25], see Figure 1, is an open-source

robotics simulation platform, for UE4. A number of ex-

tensions have been proposed, including simulating limited

infrared (rather than standard RGB imagery) [26] and Cin-

emAirSim [27], a camera-realistic robotics simulator for

cinematographic purposes. The main advantage over an

existing robotics simulation environment like Gazebo [28]

is the maturity of UE with regard to photorealistic content

creation (i.e., ray tracing, 3D modeling, physics, scripting,

etc.). While AirSim has been used to date for a few tasks

like deep reinforcement learning [29], drone racing [30],

and autonomous cars [31], research has focused on setting

up and validating the simulation environment, i.e., sensors,

physics simulation of a car and drone, etc. AirSim is cur-

rently supported in C++ and Python.

While at first AirSim appears to be the winner for all DL

and UAV research, there are drawbacks. To start, the cost of

entry is arguably higher, backed by significantly less doc-

umentation and tutorials. Second, AirSim only has access

to a subset of UE functionality. This can be prohibitive if

the reader desires advanced scripting and non offline MRQ

ultra photorealistic imagery. At the moment, AirSim seems

best suited for tasks like testing control and reinforcement

learning algorithms vs generating realistic looking data to

train, test, and profile methods for object detection, passive

ranging, tracking, etc. However, as we discuss in our use

case sections, the flexibility and rendering quality from Air-

Sim might prove to be good enough for many applications.

Our group uses AirSim for a few specific tasks: (i) au-

tonomy scenarios that are too complex to be implemented

in UE (e.g., requiring core engine modification and compi-

lation or ridiculous UE Blueprint designs); and (ii) stream-

ing custom (meta)data to an augmented reality device (e.g.,

HoloLens). An example of (i) is our multi-sensor DL-based

EHD from UAVs [32, 33]. That research requires real-time

algorithms (detection, tracking, and control that runs on an

embedded device, e.g., NVIDIA Jetson), dynamic UAV in-

terrogation of an object and scene, and exploration. While

it is possible that some subset could be implemented in UE,

an AirSim backbone simplifies life. An example of (ii) is

real-time streaming of large voxel or point cloud data and an

agent’s internal mental map (objects, spatial relations, etc.)

for human-robot teaming and augmented reality (AR) [34]

(examples in Figures 16 and 17). In order to achieve this

custom feat, we had to develop a workflow that routes data

from UE and AirSim through ROS to Unity for real-time in-

teraction on the HoloLens. In summary, we claim that Air-

Sim is maturing and it is helpful for tackling tasks that are

too cumbersome or not possible in UE directly. However,

if the reader desires a pre-planned UAV flight with RGB

imagery, odds are it can be achieved faster and to higher

quality directly in UE.

4. Related Open Source Libraries

Not all DL and UAV tasks can be supported in UE and

AirSim alone. In addition to libraries that our group is de-

veloping, we make use of a few open source tools. First, we

use the Robotic Operating System (ROS) [35] for contexts

involving augmented reality. While UE supports streaming

to the HoloLens directly, we have found Unity to be a more

natural fit for working with ROS and AR. Our workflow

is to use UE and AirSim for simulation and data collec-

tion, and to transmit that data to Unity for processing via

ROS message passing. A major reason for supporting this

functionality is that under the hood, our team is constantly

switching between data coming from a real drone, camera

on the computer, and simulation. We are constantly chang-

ing where data is routed, e.g., NVIDIA Jetson for real-time

UAV operations, a desktop, server, etc. The point is, ROS

enables a great deal of flexibility, re-routing, and interfacing

of DL and UAV information across I/O devices.

To work with 3D data outside of UE and Unity for cus-

tom algorithms and processing, we have made significant

use of the Open3D library [36]. Open3D supports basic

point cloud and voxel operations, and provides a Python

OpenGL rendering context to help facilitate rapid prototyp-

ing and visualization (see Figure 7). Although Open3D can

display point clouds with millions of points, it lacks many

of the optimizations that would enable efficient processing

and manipulation of large scale point clouds and voxel data.

For this, we recommend OpenVDB [37] (by DreamWorks

Figure 6. Example UAV lawnmower flight pattern data collection specified manually in UE. See article for additional details.

Figure 7. Example of a 3D point cloud and digital elevation model

generated for a waffle flight UAV pattern in AirSim and UE.

Animation), a hierarchical data structure and suite of tools

for the efficient storage and manipulation of sparse volu-

metric data discretized on 3D grids. In a big open outdoor

scene (see Figure 6), we used OpenVDB to stream over

36,864,000 points in a 4.637 billion voxel space at 33 fps

on a desktop PC. This brings us back to a theme of the cur-

rent article. Our field is driven in part by tools, and we are

at a convergence point due to low-to-no cost tools like UE,

AirSim, PyTorch, Open3D, OpenVDB, ROS, etc.

5. Framework, Workflow, and Case Studies

This section illustrates our overall framework (Figure 8)

with four example workflow use cases: (1) offline UAV data

collection, (2) training of an online DL-based real-world ob-

ject detector, (3) offline training, augmenting, and scoring a

DL-based 3D passive ranging algorithm, and (4) online au-

tonomy in support of human-robot teaming and AR.

5.1. Case 1: Offline UAV Data Collection Workflow

Case 1 highlights a workflow for collecting a low altitude

UAV dataset with RGB imagery and ground truth (depth

and per-pixel object or instance IDs). We assume that the

reader has an environment loaded in the UE Editor; e.g., the

Modular Neighborhood Pack [38] from the Unreal Market-

place [18] or a custom scene they perhaps built following

Quixel’s photorealistic tutorials [21]. Next, the user needs

to create a Cine Camera Actor [23], set its camera settings

(FOV, image resolution, etc.), select Add Level Sequence

[24], and add the Camera Actor to the Track. The reader can

then manually or via the Details panel move (translate) the

camera (Cine Camera Actor) to a desired start location and

rotation (e.g., nadir) and add a keyframe.1 The reader needs

to repeat this translation and rotation for each waypoint (in-

termediate location) in the flight pattern at desired temporal

offsets2 in the Sequencer timeline.3 Next, the reader needs

to add the MRQ Plugin, select their desired render settings

1UE operates by default in centimeters.
2A simple strategy is to regard each unit as a frame
3UE will automatically interpolate object properties between

keyframes; but the user can override it if desired.

Figure 8. Example of overall predominantly open source photorealistic simulation framework discussed herein. Blue lines show scene

modeling, red shows ways to carry out controlled data collection, green shows data generation, and purple shows corresponding metadata.

[22], and specify render options to generate per-pixel IDs

and depth in addition to the default RGB imagery. Just like

in the real world, the reader will need to plan their data col-

lection, i.e., determine a desired ground sampling distance

(GSD) based on camera FOV, number of pixels, UAV speed,

altitude, etc. The resulting data, which is output into fold-

ers specified in the MRQ, are now ready for processing, i.e.,

detection, tracking, 3D mapping, etc. If 3D data is needed

and it is not the focus of the readers research, then an open

source structure from motion (SfM) or multi-view stereo

(MVS) library like COLMAP [39, 40] can be used.

A different workflow is needed for AirSim. First, the

user needs to create an appropriate AirSim configuration file

(settings.json) with desired platform (“SimMode”:

“Multirotor”), sensors (e.g., RGB and LiDAR) [41], and

sensor settings. Next, the user will create a simple multi-

rotor drone controller in Python [25]. The reader can spec-

ify each location for the drone (client.simSetVehiclePose),

which operates differently based on what is selected for

“SimMode” in settings.json. “Multirotor” mode

will use the AirSim control logic to move from way-

point to waypoint, while “ComputerVision” will instanta-

neously take the drone to a specified location. The point

is, the user can program where to go, what data to col-

lect (e.g., RGB imagery and depth via client.simGetImages,

LiDAR via client.getLidarData, etc.), etc. It is im-

portant to note that AirSim makes it easy to poll the

drone flight metadata4, e.g., location and roll, pitch and

yaw (client.simGetVehiclePose), which can easily be writ-

ten out to file. Furthermore, as all this information

4To the best of our knowledge, this has to be done externally to the

Sequencer Editor in UE by scripting a Blueprint if not using AirSim.

is known, the reader can use it to generate 3D data

(e.g., o3d.geometry.PointCloud.create from rgbd image in

the Open3D library). While AirSim provides great flexibil-

ity, the rendering quality is not as good as UE. However,

in many of our DL studies, e.g., detectors like YOLO and

Monodepth2 for PR, AirSim data often good enough.

5.2. Case 2: RealWorld EHD Workflow

In [33], we demonstrated how to train a YOLOv5 [42]

(object detection and localization algorithm) DL model in

UE for a UAV equipped with RGB and IR cameras for ex-

plosive hazard detection (EHD). Specifically, in [33] we

documented the generation of full scene EHD imagery in

UE (Figures 9 and 10). Our goal was to increase our num-

ber of training samples across different environments, tar-

gets, and emplacement contexts for this otherwise class im-

balanced under-sampled domain. While we set up our UE

scene to look like environments of interest, no attempt was

made to model a specific EHD target, environment, or clut-

ter. The goal was to quickly set up a data collection that

is not re-substitution and allows us to test if our algorithms

generalize.5 In that article, we also explored exporting im-

ages from 3D target objects and their shadows (see Figure

11). The goal is to leverage all possible environmental im-

agery and to increase the number of looks of targets in those

contexts that is otherwise too expensive and time consum-

ing to collect. This approach is deemed particularly use-

ful because many DL detection algorithms only make use

of imagery with labeled targets in it. As a result, many

frames that are good to learn from go unused during train-

5Generalizability here refers to differences in real targets vs 3D EHD

targets, differences in scenes, 3D models, and textures, and ultimately, sub-

tle differences between ray tracing-based data generation vs a real sensor.

Figure 9. Example non-photorealistic UE scenes and imagery we

built by mixing existing content to train an EHD DL detector [33].

Figure 10. Example of increased photorealism in UE for EHD.

Figure 11. Example false color imagery and resultant alpha trans-

parency EHD target templates from UE placed into real UAV

drone imagery. Our insertion technique [33] combines UE and

real UAV metadata to intelligently insert EHD templates.

ing. Therefore, this approach not only allows us to increase

our training data, it allows us to fully make use of all col-

lected UAV data.

Figure 12 is a summary of our DL-based object detection

results as receiver operating characteristic (ROC) curves.6

The reader can see that the real data model is the worst, fol-

lowed by full simulated data, simulated objects inserted into

real data, and the combination of all four. Our suspicion,

which needs to be experimentally backed by more experi-

ments, is that the training data has the least amount of va-

riety, the full simulated data has more background, target,

6These results are not offline and hypothetical. These models are run

in real-time on a Jetson for UAV demonstrations by our US government

collaborators.

Figure 12. ROC results for YOLOv5 trained using real data, UE

full simulated data only, real data with UE templates, and all com-

binations [33]. ROCs are divided into performance on four EH

targets across three runs, and shading shows max, min, and aver-

age (the bold color lines) performance across a set of YOLOv5’s.

The y-axis are classifier accuracy and the x-axis is the number of

mistakes (false alarms (FAs)). We do not publish FA rate units

nor training set specifics due to the sensitive nature of EHD. The

reader can still clearly see relative performance.

and clutter variation, the templates increased target object

instances and increased real non-target background useful-

ness, and the combination of these is clearly the most ben-

eficial. We also suspect that while our fully simulated data

is not photorealistic, this might be to our advantage. That

is, many false correlations are not present; the data high-

lighted the most relevant features like shape and contrast.

Future DL and UAV research will be needed to understand

and demonstrate just where simulation is most useful, e.g.,

backgrounds/targets/clutter not seen in training data, edge

cases that will likely never be encountered in real data, in-

creasing sampling in support of real data, etc. It should be

noted, cases with very low performing ROC curves were

associated with high altitudes and too few of looks on tar-

get, which also plagued a human observer, meaning lack of

performance had less to do with the overall algorithm.

Last, in [32] we used UE for rapid research testing of

UAV and environment contextual metadata driven fusion

using fuzzy integrals. That is, on the fly construction of

multi-algorithm and multi-sensor data fusion. Coordinat-

ing a UAV EHD collection is an expensive and time con-

suming process; designing the collection, acquiring ground

truth, data collection with trained pilots, etc. Our aim is to

bootstrap UE simulation for rapid testing of ideas to bet-

ter inform our collaborators what to collect, vs our tradi-

tional take on iteration and trial and error. Figure 13 is a

simple EH scene with the UAV at different altitudes, times

Figure 13. UE images and ROCs showing simulation predicted

multi object detection algorithm fusion gain and degradation with

respect to different types and amounts of metadata error. As in

Figure 12, x-axis units are not reported due to sensitivity of EHD.

The reader can still see and gauge relative algorithm performances.

of day, shadows, object emplacements, occlusions, etc. As

discussed in [32], this setup aided our research process by

allowing for quick specification and controlled variation of

UAV and environment parameters to help us study the im-

pact of fusion vs single algorithm processing and its degra-

dation with respect metadata error; something not typically

possible in real-world data collections due to factors like

cost, time, and ability to collect accurate ground truth.

5.3. Case 3: Passive Ranging (PR) Workflow

Next, we highlight the use of UE simulation for PR. Ex-

isting PR datasets (e.g., Cityscapes and KITTI) are video se-

quences from a car. However, KITTI also provides a sparse

LiDAR ground truth, which is incomplete, range limited,

and error prone vs the perfect information we get in UE.

Herein, we highlight results for the self-supervised Mon-

odepth2 DL algorithm [43]. While metrics like Abs Rel,

Sq Rel, RMSE, and log base 10 are frequently used for

PR, real-world truthing makes answering certain questions

hard if not impossible, e.g., long distance ranging, error as

a function of object or feature type, etc. In general, lack

of ground truth in real-world PR data is what has led to the

use of self-supervised learning and hard to optimize loss

functions involving photometric error (e.g., SSIM) and pose

estimation error (e.g., cycle-consistency). Lack of quality

truth also has big financial implications, like discussed ear-

lier like Tesla’s human data labeling and curation.

Figure 14 shows example imagery from a training and

test UE dataset. While we showed quantitative results

in Section 5.2, in this section we show qualitative results

Figure 14. Monodepth2 output on UE data.

in Figure 14 for a KITTI real-world trained Monodepth2

model on simulated data. These examples are not “cherry

picked”, Monodepth2 does a great job on simulated UE

data. The reason why we did not strive for extreme pho-

torealistic imagery (use of AirSim vs generation in UE di-

rectly) is because we wanted to test if less than perfect im-

agery from UE4, which looks good to a human, is already

convincing enough to a PR algorithm. It should be noted

that there is little “overlap” between our arbitrary selected

urban and rural simulated scenes and real KITTI environ-

ment. After performing these experiments, we then (Fig-

ure 15) trained new Monodepth2 models (i) from our UE

dataset, (ii) the KITTI dataset, and (iii) a combination of

simulated UE data transfer learned with KITTI data. As

the reader can see, the simulated data does well on KITTI

(on various objects but also the horizon) and the combined

model does best. We know these results are qualitative and

preliminary. A future detailed study is needed to understand

where simulated data can be used to advance PR.

5.4. Case 4: HumanRobot Teaming Workflow

The point of this last section is to demonstrate a more

complicated example of the proposed workflow. This case

study uses AirSim to get data from UE and to control the

UAV. 3D data and imagery is managed via Open3D in

Python and is transmitted to a C# Unity client (which can

be on the same or a different computer) via ROS. The ren-

dered output is sent over WiFi to the Microsoft HoloLens

headset for real-time interactive AR (see Figure 17). While

UE and AirSim are used for data generation and UAV con-

trol in this example, we have also been able to use this AR

interface to control a real DJI drone. To control the drone

(real or simulated), the user can grab a blue arrow hologram

(bottom left image in Figure 17) and move it around (twist

command messages are sent via ROS). The upper left image

Figure 15. Monodepth2 on real, simulated, and combined data.

is a HoloLens virtual monitor that shows the streaming UE

or real UAV video data. The bottom right image shows the

user selecting a region of interest to go to and/or enlarge for

AR interrogation. The top right image shows the enlarged

point cloud and RGB real-time streaming feed. This case

study shows how this workflow for data collection and real-

time DL algorithm training, testing, and evaluation can be

easily adapted using open source libraries into an interactive

demo for human-robot (in this case a UAV) teaming.

Figure 16 is an example of rendering simplified metadata

vs raw data for use in AR. The tracked person, a reference

object, is rendered in red, the point cloud is color coded

based on the degree to which points satisfy a linguistic

query (aka the person can talk to the UAV), and segmented

objects are shown with axis aligned bounding boxes. Lin-

guistic spatial queries (e.g., “close and to the left”) need

to be specified in the reference object, UAV (relative to its

heading), or user’s viewpoint (reference frame). The point

is, real time streaming and our UAV’s “mental map” (repre-

sentation of scene) can be processed, visualized, and inter-

acted with via the outlined tools and workflow.

6. Conclusions and Future Work

In summary, DL has changed the landscape of AI/ML

for application specific tasks at the expense of a depen-

dency on large collections of labeled supervised data. This

is a bottleneck for many domains like UAVs. While the

field is constantly in search of new innovate theory, prac-

tical advancements are equally welcome. Herein, we out-

line a framework built on open source tools and example

workflows are demonstrated for offline data collection, on-

line object detection, 3D mapping, and human-robot in-

teraction via AR. In order to close the gap and facili-

tate reproducible research, online video tutorials for each

Figure 16. Attributed relation graph (ARG). Objects are outlined

by bounding rectangles. Human is shown in red. Also shown are

linguistic queries based on distance, direction, object type, and

neighboring relations. Brighter colors are query satisfaction; e.g.,

user telling a UAV “find all close objects in front of this person.”

Figure 17. Example UE data in the Microsoft AR HoloLens. Real

time video feed on a virtual AR monitor, real time point cloud

streaming, and dynamic interrogation UAV data.

case study are provided at https://github.com/

MizzouINDFUL/UEUAVSim. As we demonstrated,

quantitatively and qualitatively, research can be acceler-

ated, models can be improved, and hybridization’s of real

world and photorealsitic simulated data are of utility. While

preliminary, our article shows that the convergence of

these tools–for academia, but also industry–are extremely

promising and worth the time investment. In future work,

we will continue to explore interesting fringes of sim in of-

fline, online, and closed loop ways to improve ML/AI for

applications like UAVs in ways that cannot be realistically

achieved due to financial, time, and/or practical real-world

limitations. In order to concrete the role of photorealistic

simulation, akin to how data augmentation has become an

every day tool to DL researchers, new workflows and stud-

ies with quantitative metrics need to be performed.

https://github.com/MizzouINDFUL/UEUAVSim
https://github.com/MizzouINDFUL/UEUAVSim

References

[1] “Artificial intelligence stocks: The 10 best

AI companies,” 2021. [Online]. Available:

https://money.usnews.com/investing/stock-market-

news/slideshows/artificial-intelligence-stocks-the-

10-best-ai-companies

[2] “Final report: National security commission

on artificial intelligence,” 2021. [Online]. Avail-

able: https://www.nscai.gov/wp-content/uploads/

2021/03/Full-Report-Digital-1.pdf

[3] “Elon Musk and tech heavies invest 1 billion

in artificial intelligence,” 2021. [Online]. Avail-

able: https://money.cnn.com/2015/12/12/technology/

openai-elon-musk/

[4] “Tesla AI chief explains why self-driving cars

don’t need LiDAR,” 2021. [Online]. Available:

https://venturebeat.com/2021/07/03/tesla-ai-chief-

explains-why-self-driving-cars-dont-need-lidar/

[5] “If data is the new oil, these companies

are the new Baker Hughes,” 2021. [Online].

Available: https://fortune.com/2020/02/04/artificial-

intelligence-data-labeling-labelbox/

[6] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual-

Worlds as proxy for multi-object tracking analysis,” in

2016 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2016, pp. 4340–4349.

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deep-

Driving: Learning affordance for direct perception

in autonomous driving,” in 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp.

2722–2730.

[8] B. Wymann, C. Dimitrakakisy, A. Sumnery, and

C. Guionneauz, “TORCS: The open racing car sim-

ulator,” 2015.

[9] M. Martinez, C. Sitawarin, K. Finch, L. Meincke,

A. Yablonski, and A. Kornhauser, “Beyond Grand

Theft Auto V for training, testing and enhancing deep

learning in self driving cars,” 2017.

[10] P. Martinez-Gonzalez, S. Oprea, A. Garcia-Garcia,

A. Jover-Alvarez, S. Orts-Escolano, and J. Garcia-

Rodriguez, “UnrealROX: An extremely photorealistic

virtual reality environment for robotics simulations

and synthetic data generation,” ArXiv e-prints, 2018.

[Online]. Available: https://arxiv.org/abs/1810.06936

[11] M. Müller, V. Casser, J. Lahoud, N. Smith, and

B. Ghanem, “Sim4CV: A photo-realistic simulator for

computer vision applications,” Int. J. Comput. Vision,

vol. 126, no. 9, p. 902–919, Sep. 2018. [Online].

Available: https://doi.org/10.1007/s11263-018-1073-

7

[12] M. Drouin, J. Fournier, J. Boisvert, and L. Borgeat,

“Modeling and simulation framework for airborne

camera systems,” in ICPR Workshops, 2020.

[13] K. Nouduri, K. Gao, J. Fraser, S. Yao, H. AliAkbar-

pour, F. Bunyak, and K. Palaniappan, “Deep realistic

novel view generation for city-scale aerial images,” in

2020 25th International Conference on Pattern Recog-

nition (ICPR), 2021, pp. 10 561–10 567.

[14] “Unreal Engine,” https://www.unrealengine.com/,

(Accessed: 1 March 2021).

[15] “Storytelling reimagined,” 2021. [Online]. Avail-

able: https://www.unrealengine.com/en-US/solutions/

film-television

[16] “Real-time ray tracing,” 2021. [Online]. Avail-

able: https://docs.unrealengine.com/4.26/en-US/

RenderingAndGraphics/RayTracing/

[17] “UE Architecture,” https://www.unrealengine.com/

en-US/solutions/architecture, (Accessed: 1 March

2021).

[18] “Unreal Marketplace,” https://www.unrealengine.

com/marketplace/en-US/store, (Accessed: 1 March

2021).

[19] “Quixel,” https://quixel.com/, (Accessed: 1 March

2021).

[20] “TurboSquid,” https://www.turbosquid.com/, (Ac-

cessed: 1 March 2021).

[21] “Creating Photoreal Cinematics with Quixel,” https:

//www.unrealengine.com/en-US/onlinelearning-

courses/creating-photoreal-cinematics-with-quixel,

(Accessed: 1 March 2021).

[22] “How to Use the Movie Render Queue for High-

Quality Renders,” https://docs.unrealengine.com/

4.26/en-US/RenderingAndGraphics/RayTracing/

MovieRenderQueue/, (Accessed: 1 March 2021).

[23] “Using Cine Camera Actors,” https://docs.

unrealengine.com/4.26/en-US/AnimatingObjects/

Sequencer/HowTo/CineCameraActors/, (Accessed: 1

March 2021).

[24] “Sequencer,” https://docs.unrealengine.com/4.26/en-

US/AnimatingObjects/Sequencer/Overview/, (Ac-

cessed: 1 March 2021).

https://money.usnews.com/investing/stock-market-news/slideshows/artificial-intelligence-stocks-the-10-best-ai-companies
https://money.usnews.com/investing/stock-market-news/slideshows/artificial-intelligence-stocks-the-10-best-ai-companies
https://money.usnews.com/investing/stock-market-news/slideshows/artificial-intelligence-stocks-the-10-best-ai-companies
https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf
https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf
https://money.cnn.com/2015/12/12/technology/openai-elon-musk/
https://money.cnn.com/2015/12/12/technology/openai-elon-musk/
https://venturebeat.com/2021/07/03/tesla-ai-chief-explains-why-self-driving-cars-dont-need-lidar/
https://venturebeat.com/2021/07/03/tesla-ai-chief-explains-why-self-driving-cars-dont-need-lidar/
https://fortune.com/2020/02/04/artificial-intelligence-data-labeling-labelbox/
https://fortune.com/2020/02/04/artificial-intelligence-data-labeling-labelbox/
https://arxiv.org/abs/1810.06936
https://doi.org/10.1007/s11263-018-1073-7
https://doi.org/10.1007/s11263-018-1073-7
https://www.unrealengine.com/
https://www.unrealengine.com/en-US/solutions/film-television
https://www.unrealengine.com/en-US/solutions/film-television
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/
https://www.unrealengine.com/en-US/solutions/architecture
https://www.unrealengine.com/en-US/solutions/architecture
https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/marketplace/en-US/store
https://quixel.com/
https://www.turbosquid.com/
https://www.unrealengine.com/en-US/onlinelearning-courses/creating-photoreal-cinematics-with-quixel
https://www.unrealengine.com/en-US/onlinelearning-courses/creating-photoreal-cinematics-with-quixel
https://www.unrealengine.com/en-US/onlinelearning-courses/creating-photoreal-cinematics-with-quixel
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/MovieRenderQueue/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/MovieRenderQueue/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/MovieRenderQueue/
https://docs.unrealengine.com/4.26/en-US/AnimatingObjects/Sequencer/HowTo/CineCameraActors/
https://docs.unrealengine.com/4.26/en-US/AnimatingObjects/Sequencer/HowTo/CineCameraActors/
https://docs.unrealengine.com/4.26/en-US/AnimatingObjects/Sequencer/HowTo/CineCameraActors/
https://docs.unrealengine.com/4.26/en-US/AnimatingObjects/Sequencer/Overview/
https://docs.unrealengine.com/4.26/en-US/AnimatingObjects/Sequencer/Overview/

[25] “AirSim,” https://github.com/microsoft/AirSim, (Ac-

cessed: 1 March 2021).

[26] S. Shah, “AirSim-W: A simulation en-

vironment for wildlife conservation with

UAVs,” in ACM SIGCAS, June 2018. [On-

line]. Available: https://www.microsoft.com/en-

us/research/publication/airsim-w-a-simulation-

environment-for-wildlife-conservation-with-uavs/

[27] P. Pueyo, E. Cristofalo, E. Montijano, and M. Schwa-

ger, “CinemAirSim: A camera-realistic robotics sim-

ulator for cinematographic purposes,” 2021.

[28] “Gazebo,” http://gazebosim.org/, (Accessed: 1 March

2021).

[29] T.-C. Wu, S.-Y. Tseng, C.-F. Lai, C.-Y. Ho, and Y.-

H. Lai, “Navigating assistance system for quadcopter

with deep reinforcement learning,” in 2018 1st Inter-

national Cognitive Cities Conference (IC3), 2018, pp.

16–19.

[30] R. Madaan, N. Gyde, S. Vemprala, M. Brown,

K. Nagami, T. Taubner, E. Cristofalo, D. Scaramuzza,

M. Schwager, and A. Kapoor, “AirSim drone racing

lab,” arXiv preprint arXiv:2003.05654, 2020.

[31] S. Shah, A. Kapoor, D. Dey, and C. Lovett,

“AirSim: High-fidelity visual and physical

simulation for autonomous vehicles,” Field and

Service Robotics, pp. 621–635, November 2017.

[Online]. Available: https://www.microsoft.com/en-

us/research/publication/airsim-high-fidelity-visual-

physical-simulation-autonomous-vehicles/

[32] M. Deardorff, B. Alvey, D. T. Anderson, J. M. Keller,

G. Scott, D. Ho, A. Buck, and C. Yang, “Metadata

enabled contextual sensor fusion for unmannedaerial

system-based explosive hazard detection,” in SPIE,

2021.

[33] B. Alvey, D. T. Anderson, J. M. Keller, A. Buck,

G. Scott, D. Ho, C. Yang, and B. Libbey, “Improving

explosive hazard detection with simulated and aug-

mented data for an unmanned aerial system,” in SPIE,

2021.

[34] A. R. Buck, D. T. Anderson, J. M. Keller, R. H. L. III,

and G. Scott, “A fuzzy spatial relationship graph for

point clouds using bounding boxes,” in FUZZ-IEEE,

2021.

[35] “Robot Operating System (ROS),” https://ros.org,

(Accessed: 25 February 2021).

[36] “Open3D,” http://www.open3d.org/, (Accessed: 1

March 2021).

[37] “OpenVDB,” https://www.openvdb.org/, (Accessed: 1

March 2021).

[38] “Modular Neighborhood Pack,” https://www.

unrealengine.com/marketplace/en-US/product/

modular-neighborhood-pack, (Accessed: 1 March

2021).

[39] J. L. Schönberger and J.-M. Frahm, “Structure-from-

motion revisited,” in 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[40] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-

M. Frahm, “Pixelwise view selection for unstructured

multi-view stereo,” in European Conference on Com-

puter Vision (ECCV), 2016.

[41] “AirSim Settings,” https://microsoft.github.io/AirSim/

settings.html, (Accessed: 1 March 2021).

[42] G. Jocher, A. Stoken, J. Borovec, NanoCode012,

ChristopherSTAN, L. Changyu, Laughing,

tkianai, yxNONG, A. Hogan, lorenzomammana,

AlexWang1900, A. Chaurasia, L. Diaconu, Marc,

wanghaoyang0106, ml5ah, Doug, Durgesh, F. In-

gham, Frederik, Guilhen, A. Colmagro, H. Ye,

Jacobsolawetz, J. Poznanski, J. Fang, J. Kim,

K. Doan, and L. Yu, “ultralytics/yolov5: v4.0 -

nn.SiLU() activations, Weights & Biases logging,

PyTorch Hub integration,” 2021. [Online]. Available:

https://doi.org/10.5281/zenodo.4418161

[43] C. Godard, O. M. Aodha, M. Firman, and G. Brostow,

“Digging into self-supervised monocular depth esti-

mation,” 2019.

https://github.com/microsoft/AirSim
https://www.microsoft.com/en-us/research/publication/airsim-w-a-simulation-environment-for-wildlife-conservation-with-uavs/
https://www.microsoft.com/en-us/research/publication/airsim-w-a-simulation-environment-for-wildlife-conservation-with-uavs/
https://www.microsoft.com/en-us/research/publication/airsim-w-a-simulation-environment-for-wildlife-conservation-with-uavs/
http://gazebosim.org/
https://www.microsoft.com/en-us/research/publication/airsim-high-fidelity-visual-physical-simulation-autonomous-vehicles/
https://www.microsoft.com/en-us/research/publication/airsim-high-fidelity-visual-physical-simulation-autonomous-vehicles/
https://www.microsoft.com/en-us/research/publication/airsim-high-fidelity-visual-physical-simulation-autonomous-vehicles/
https://ros.org
http://www.open3d.org/
https://www.openvdb.org/
https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://microsoft.github.io/AirSim/settings.html
https://microsoft.github.io/AirSim/settings.html
https://doi.org/10.5281/zenodo.4418161

	. Introduction
	. Modeling and Rendering : Unreal Engine
	. Autonomy and Control : AirSim
	. Related Open Source Libraries
	. Framework, Workflow, and Case Studies
	. Case 1: Offline UAV Data Collection Workflow
	. Case 2: Real-World EHD Workflow
	. Case 3: Passive Ranging (PR) Workflow
	. Case 4: Human-Robot Teaming Workflow

	. Conclusions and Future Work

