A Fuzzy Spatial Relationship Graph for Point Clouds Using Bounding Boxes

Andrew R. Bucka, Derek T. Anderson ${ }^{\text {a }}$, James M. Kellera, Robert H. Luke III ${ }^{\text {b }}$, and Grant Scott ${ }^{\text {a }}$
${ }^{a}$ Electrical Engineering and Computer Science (EECS) Department, University of Missouri, Columbia, MO, USA
bUS Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA

FUZZ-IEEE 2021

Presented by Andrew Buck

Motivation

- 3D scenes have a lot of information!
- How should it be represented?
- What are the relationships between objects?

http://www.semantic3d.net/
- Point clouds give raw 3D data
- Easy to acquire as raw data from LIDAR or depth camera
- Files can be huge! Voxels can help sometimes...
- How to represent the important aspects of the scene?
- Semantic segmentation can identify individual objects
- How to store and query spatial configurations?
- Use bounding boxes to represent important objects
- Compute relationships between bounding boxes

University of Missouri

Applications

- Ultimately, we would like AI systems to have an interpretable understanding of their environment
- This can help design and communicate intended behaviors
- Make an Al agent act more like a human
- Unmanned Aerial Vehicles (UAVs)
- Small embedded systems need to respond in real-time
- Require minimal overhead and processing
- Human robot interaction

- Use natural language to communicate
- Mobile computing devices (AR/VR headsets) with limited streaming bandwidth

Benchmark Datasets

- We assume that a semantic segmentation of the scene can be acquired
- Many recent works for labeling and segmenting point clouds
- Focus here on ground truth, hand-labeled benchmark datasets
- Each object instance is given a unique ID
- Easy to find individual objects or categories
- Looking at the NPM3D benchmark suite
- https://npm3d.fr/paris-lille-3d
- Outdoor street scene (static)

- Chose this dataset because it has ground truth segmentation
- Objects are identified by class and an instance ID
- 50 classes organized in a hierarchal ontology

University of Missouri

Example Scene

- We chose to look at an example region with $\sim 10,000,000$ points and ~ 100 labeled objects
- How to compute the spatial relationships between objects?
- Each object can be shown with an axis-aligned bounding box (trivial to compute)

Bounding Box Representation

- Consider the relationship between these two objects.
- We can easily compute the bounding boxes and centroids.

Triangular Fuzzy Numbers

- Along each dimension, we define a triangular fuzzy number (TFN) from the minimum and maximum extents of the bounding box and the object centroid.
- Store 9 values for each object
$A=\operatorname{Tri}\left(a_{1}, a_{2}, a_{3}\right), \quad B=\operatorname{Tri}\left(b_{1}, b_{2}, b_{3}\right)$

Object Bounds and Centroid: [min, centroid, max]

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Signpost	$[-2.4,-1.8,-1.4]$	$[0.9,2.0,3.2]$	$[0,3.2,4.4]$
Light pole	$[-0.6,-0.2,1.7]$	$[3.9,4.6,4.9]$	$[0,4.2,10.8]$

Bounding Box Distance

- Using fuzzy arithmetic, the difference between the two objects is computed along each dimension as a new TFN.
- This represents the minimum, maximum, and average distance between objects A and B in each dimension.
- (can be negative)

$$
A-B=\operatorname{Tri}\left(a_{1}-b_{3}, a_{2}-b_{2}, a_{3}-b_{1}\right)
$$

$$
\begin{aligned}
& A_{x}=\operatorname{Tri}(-2.4,-1.8,-1.4) \\
& A_{y}=\operatorname{Tri}(0.9,2.0,3.2) \\
& A_{z}=\operatorname{Tri}(0.0,3.2,4.4)
\end{aligned}
$$

$$
\begin{aligned}
& B_{x}=\operatorname{Tri}(-0.6,-0.2,1.7) \\
& B_{y}=\operatorname{Tri}(3.9,4.6,4.9) \\
& B_{z}=\operatorname{Tri}(0.0,4.2,10.8)
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=B_{x}-A_{x}=\operatorname{Tri}(0.8,1.6,4.1) \\
& D_{y}=B_{y}-A_{y}=\operatorname{Tri}(0.7,2.6,4.0) \\
& D_{z}=B_{z}-A_{z}=\operatorname{Tri}(-4.4,1.0,10.8)
\end{aligned}
$$

Overall Distance

- The overall distance is computed as the Euclidean norm of the differences along each axis using fuzzy arithmetic.

$$
\begin{aligned}
& D_{x}=\operatorname{Tri}(0.8,1.6,4.1) \\
& D_{y}=\operatorname{Tri}(0.7,2.6,4.0) \\
& D_{z}=\operatorname{Tri}(-4.4,1.0,10.8)
\end{aligned}
$$

$$
\begin{aligned}
& A^{2}=\operatorname{Tri}\left(a_{\min }, a_{2}^{2}, \max \left\{a_{1}^{2}, a_{3}^{2}\right\}\right), \\
& a_{\min }=\left\{\begin{array}{cc}
\min \left\{0, a_{1}^{2}, a_{3}^{2}\right\}, & \text { if } a_{1} \leq 0 \leq a_{3} \\
\min \left\{a_{1}^{2}, a_{3}^{2}\right\}, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
D_{x}^{2}=\operatorname{Tri}(0.64,2.56,16.81)
$$

$$
A+B=\operatorname{Tri}\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

$$
D_{y}^{2}=\operatorname{Tri}(0.49,6.76,16.0)
$$

$$
D_{z}^{2}=\operatorname{Tri}(0.0,1.0,116.64)
$$

$$
\sqrt{A}=\operatorname{Tri}\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}\right), \quad 0 \leq a_{1} \leq a_{2} \leq a_{3}
$$

$$
\begin{gathered}
D_{x}^{2}+D_{y}^{2}+D_{z}^{2}=\operatorname{Tri}(1.13,10.32,149.45) \\
D_{A B}=\sqrt{D_{x}^{2}+D_{y}^{2}+D_{z}^{2}}=\operatorname{Tri}(1.06,3.21,12.22)
\end{gathered}
$$

Spatial Relationship Graph

- Knowing the distances between objects lets us define a spatial relationship graph over a scene to show how objects are connected.
- We'll add an edge between two nodes (objects) if the distance between them is less than some threshold d.
- So, we need a way to determine if a triangular fuzzy number represents a distance that is less than d.

TFN Defuzzification

- Given a triangular fuzzy number $X=\operatorname{Tri}(a, b, c)$, we can defuzzify to a crisp value using an optimism/pessimism parameter $\xi \in[0,1]$.

$$
\Gamma(X \mid \xi)=\left\{\begin{aligned}
a+2 \xi(b-a), & \xi \leq 0.5 \\
b+2(\xi-0.5)(c-b), & \xi>0.5
\end{aligned}\right.
$$

- This gives a way to select the minimum ($\xi=0$), maximum ($\xi=1$), or average ($\xi=0.5$) values of the TFN.
- When ξ is high, it's like complete linkage clustering.
- When ξ is low, it's like single linkage clustering.

$$
d=10 \text { meters }
$$

$$
\xi=0
$$

Distance Queries

- Suppose we want to find all objects that are a certain distance away from a reference object.
- We define the query distance as a TFN $Q=\operatorname{Tri}\left(q_{1}, q_{2}, q_{3}\right)$.
- The similarity between two TFNs can be computed as the maximum of their intersecting points.

$$
S(A, B)=\max _{x \in \mathbb{R}}\left\{\min \left(\mu_{A}(x), \mu_{B}(x)\right)\right\}
$$

- The distance $D_{A B}$ between objects A and B can be compared with the query distance Q to give the distance similarity $s_{\text {dist }} \in[0,1]$.

Example Distance Queries

Looking at the heat maps for different distance queries from a person in the scene, outlined with a red box.

Normalized Direction

- The axis-aligned difference TFNs D_{x}, D_{y}, and D_{z} encode both the relative distance and direction between two objects.
- We can use this to compute how much support there is for the statement "Object B is in direction $\widehat{\boldsymbol{u}}$ from Object A," where $\widehat{\boldsymbol{u}}$ is a unit vector pointing in the direction of interest.
- First, we need a normalized difference vector, $\widehat{\boldsymbol{D}}=\left[\widehat{D}_{x}, \widehat{D}_{y}, \widehat{D}_{z}\right]$, where $\widehat{D}_{x}, \widehat{D}_{y}$, and \widehat{D}_{z} are normalized versions of the computed difference TFNs D_{x}, D_{y}, and D_{z}.

$$
\widehat{D}_{k}=\alpha D_{k}, \quad \text { s.t. } \max _{k \in\{x, y, z\}} \widehat{D}_{k}=1
$$

- Consider a 2-dimensional example...

Directional Similarity

- Given a reference direction $\widehat{\boldsymbol{u}}$, the directional similarity to the normalized difference TFN $\widehat{\boldsymbol{D}}$ is the dot product.

$$
S_{\mathrm{dir}}=\widehat{\boldsymbol{D}} \cdot \widehat{\boldsymbol{u}}=\widehat{D}_{x} u_{x}+\widehat{D}_{y} u_{y}+\widehat{D}_{z} u_{z}
$$

- $S_{\text {dir }}$ is a TFN bounded in the range $[-1,1]$.
- See example...
- To reduce the directional similarity to a scalar value (like distance), we can use the defuzzification parameter ξ and clamp to positive values.

$$
s_{\mathrm{dir}}=\max \left\{0, \Gamma\left(s_{\mathrm{dir}} \mid \xi\right)\right\}
$$

Example Directional Queries

Strictly to the north

Generally to the northeast

$\hat{\mathbf{u}}=[0.707,0.707,0]$

Looking at the heat maps for different directional queries from a person in the scene, outlined with a red box.

A Multi-Criteria Framework

- Distance and direction are two features that can be used to search for objects in a scene.
- Other features might include class type, number of neighbors of a certain type, location in world space, etc.
- Our criteria for object selection is represented by a normalized feature vector $\boldsymbol{s}=\left[s_{1}, \ldots, s_{n}\right]$, where each $s_{i} \in[0,1]$ represents the degree to which an object satisfies a particular set of criteria.
- The multidimensional feature vector can be mapped to a single value with a scalarization function $g_{\theta}(s)$, where θ represents the parameterization.

$$
g_{\mathrm{avg}}(\boldsymbol{s})=\frac{1}{n} \sum_{i=1}^{n} s_{i}
$$

$$
g_{\min }(\boldsymbol{s})=\min _{i} s_{i}
$$

Example: Multi-Criteria Selection

- Consider a person (red) looking to identify a lamp post that is "near" and to the "front-left".

Example: Choosing an Exploration Target

Frontier Score (fewer neighbors better)	0.0	0.2	0.4	0.6	0.8	1.0

Combined Query
(min operator)
Consider an agent in the environment choosing its next exploration target.

Want to select an object to interrogate that is

- Nearby
- In the forward direction
- Near the edge of what's already been explored

University of Missouri

Conclusions

- We've shown a way to compute distance and directional spatial relationships between objects in a 3D scene represented with axis-aligned bounding boxes.
- These features can be used to construct a spatially attributed graph of the environment and search for objects using multiple criteria.
- Simplifying the representation to bounding boxes instead of full point clouds helps achieve real-time performance on embedded hardware.
- Future directions:

- Handle dynamic environments and an incremental/updating graph
- Integrate with semantic segmentation algorithms for point clouds
- Use a hierarchical representation to represent large compound objects
- E.g., buildings with windows and doorways, roads and intersections, etc.

