A Fuzzy Spatial Relationship Graph for Point Clouds Using Bounding Boxes

Andrew R. Buck^a, Derek T. Anderson^a, James M. Keller^a, Robert H. Luke III^b, and Grant Scott^a

^aElectrical Engineering and Computer Science (EECS) Department, University of Missouri, Columbia, MO, USA

^bUS Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA

FUZZ-IEEE 2021

Presented by Andrew Buck

Motivation

- > 3D scenes have a lot of information!
 - How should it be represented?
 - What are the relationships between objects?
- Point clouds give raw 3D data
 - Easy to acquire as raw data from LIDAR or depth camera
 - Files can be huge! Voxels can help sometimes...
 - How to represent the important aspects of the scene?
- Semantic segmentation can identify individual objects
 - How to store and query spatial configurations?
 - Use bounding boxes to represent important objects
 - Compute relationships between bounding boxes

http://www.semantic3d.net/

https://github.com/microsoft/AirSim

Applications

- Ultimately, we would like AI systems to have an interpretable understanding of their environment
 - This can help design and communicate intended behaviors
 - Make an AI agent act more like a human
- Unmanned Aerial Vehicles (UAVs)
 - Small embedded systems need to respond in real-time
 - Require minimal overhead and processing
- Human robot interaction
 - Use natural language to communicate
 - Mobile computing devices (AR/VR headsets) with limited streaming bandwidth

Benchmark Datasets

- We assume that a semantic segmentation of the scene can be acquired
 - Many recent works for labeling and segmenting point clouds
- Focus here on ground truth, hand-labeled benchmark datasets
 - Each object instance is given a unique ID
 - Easy to find individual objects or categories
- Looking at the NPM3D benchmark suite
 - https://npm3d.fr/paris-lille-3d
- Outdoor street scene (static)

- Chose this dataset because it has ground truth segmentation
 - Objects are identified by class and an instance ID
 - 50 classes organized in a hierarchal ontology

Example Scene

- We chose to look at an example region with ~10,000,000 points and ~100 labeled objects
- How to compute the spatial relationships between objects?
- Each object can be shown with an axis-aligned bounding box (trivial to compute)

Bounding Box Representation

Consider the relationship between these two objects.

We can easily compute the bounding boxes and centroids.

Тор

Triangular Fuzzy Numbers

- Along each dimension, we define a triangular fuzzy number (TFN) from the minimum and maximum extents of the bounding box and the object centroid.
- Store 9 values for each object

$$A = \text{Tri}(a_1, a_2, a_3), \qquad B = \text{Tri}(b_1, b_2, b_3)$$

Object Bounds and Centroid: [min, centroid, max]			
	X	Y	Z
Signpost	[-2.4, -1.8, -1.4]	[0.9, 2.0, 3.2]	[0, 3.2, 4.4]
Light pole	[-0.6, -0.2, 1.7]	[3.9, 4.6, 4.9]	[0, 4.2, 10.8]

Bounding Box Distance

- Using fuzzy arithmetic, the difference between the two objects is computed along each dimension as a new TFN.
- This represents the minimum, maximum, and average distance between objects A and B in each dimension.

(can be negative)

$$A - B = \text{Tri}(a_1 - b_3, a_2 - b_2, a_3 - b_1)$$

$$A_x = \text{Tri}(-2.4, -1.8, -1.4) \\ A_y = \text{Tri}(0.9, 2.0, 3.2) \\ A_z = \text{Tri}(0.0, 3.2, 4.4)$$

$$B_x = \text{Tri}(3.9, 4.6, 4.9) \\ B_z = \text{Tri}(0.0, 4.2, 10.8)$$

$$D_x = B_x - A_x = \text{Tri}(0.8, 1.6, 4.1) \\ D_y = B_y - A_y = \text{Tri}(0.7, 2.6, 4.0) \\ D_z = B_z - A_z = \text{Tri}(-4.4, 1.0, 10.8)$$
University of Missouri

MISSOUT

Overall Distance

The overall distance is computed as the Euclidean norm of the differences along each axis using fuzzy arithmetic.

$$D_x = \text{Tri}(0.8, 1.6, 4.1)$$

$$D_y = \text{Tri}(0.7, 2.6, 4.0)$$

$$D_z = \text{Tri}(-4.4, 1.0, 10.8)$$

 $D_x^2 = \text{Tri}(0.64, 2.56, 16.81)$ $D_y^2 = \text{Tri}(0.49, 6.76, 16.0)$ $D_z^2 = \text{Tri}(0.0, 1.0, 116.64)$

$$A^{2} = \operatorname{Tri}(a_{\min}, a_{2}^{2}, \max\{a_{1}^{2}, a_{3}^{2}\}),$$

$$a_{\min} = \begin{cases} \min\{0, a_{1}^{2}, a_{3}^{2}\}, & \text{if } a_{1} \leq 0 \leq a_{3} \\ \min\{a_{1}^{2}, a_{3}^{2}\}, & \text{otherwise} \end{cases}$$

$$A + B = \operatorname{Tri}(a_{1} + b_{1}, a_{2} + b_{2}, a_{3} + b_{3})$$

$$\sqrt{A} = \operatorname{Tri}(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3}), \qquad 0 \le a_1 \le a_2 \le a_3$$

$$D_x^2 + D_y^2 + D_z^2 = \text{Tri}(1.13, 10.32, 149.45)$$
$$D_{AB} = \sqrt{D_x^2 + D_y^2 + D_z^2} = \text{Tri}(1.06, 3.21, 12.22)$$

Spatial Relationship Graph

- Knowing the distances between objects lets us define a spatial relationship graph over a scene to show how objects are connected.
- We'll add an edge between two nodes (objects) if the distance between them is less than some threshold d.
- So, we need a way to determine if a triangular fuzzy number represents a distance that is less than *d*.

TFN Defuzzification

Given a triangular fuzzy number X = Tri(a, b, c), we can defuzzify to a crisp value using an optimism/pessimism parameter $\xi \in [0,1]$.

$$\Gamma(X|\xi) = \begin{cases} a + 2\xi(b-a), & \xi \le 0.5\\ b + 2(\xi - 0.5)(c-b), & \xi > 0.5 \end{cases}$$

- This gives a way to select the minimum ($\xi = 0$), maximum ($\xi = 1$), or average ($\xi = 0.5$) values of the TFN.
- When ξ is high, it's like complete linkage clustering.
- When ξ is low, it's like single linkage clustering.

Distance Queries

- Suppose we want to find all objects that are a certain distance away from a reference object.
- We define the query distance as a TFN $Q = \text{Tri}(q_1, q_2, q_3)$.
- The similarity between two TFNs can be computed as the maximum of their intersecting points.

 $S(A,B) = \max_{x \in \mathbb{R}} \{\min(\mu_A(x), \mu_B(x))\}$

▶ The distance D_{AB} between objects A and B can be compared with the query distance Q to give the distance similarity $s_{dist} \in [0, 1]$.

Example Distance Queries

1.0

Looking at the heat maps for different distance queries from a person in the scene, outlined with a red box.

Normalized Direction

- The axis-aligned difference TFNs D_x , D_y , and D_z encode both the relative **distance** and **direction** between two objects.
- We can use this to compute how much support there is for the statement "Object B is in direction û from Object A," where û is a unit vector pointing in the direction of interest.

First, we need a normalized difference vector, $\widehat{D} = [\widehat{D}_x, \widehat{D}_y, \widehat{D}_z]$, where $\widehat{D}_x, \widehat{D}_y$, and \widehat{D}_z are normalized versions of the computed difference TFNs D_x , D_y , and D_z .

$$\widehat{D}_k = \alpha D_k$$
, s.t. $\max_{k \in \{x, y, z\}} \widehat{D}_k = 1$

Consider a 2-dimensional example...

Directional Similarity

• Given a reference direction \hat{u} , the directional similarity to the normalized difference TFN \hat{D} is the dot product.

$$S_{\text{dir}} = \widehat{\boldsymbol{D}} \cdot \widehat{\boldsymbol{u}} = \widehat{D}_x u_x + \widehat{D}_y u_y + \widehat{D}_z u_z$$

- S $_{dir}$ is a TFN bounded in the range [-1, 1].
 - See example...
- To reduce the directional similarity to a scalar value (like distance), we can use the defuzzification parameter ξ and clamp to positive values.

 $s_{\rm dir} = \max\{0, \Gamma(S_{\rm dir}|\xi)\}$

Example Directional Queries

Looking at the heat maps for different directional queries from a person in the scene, outlined with a red box.

16

A Multi-Criteria Framework

- Distance and direction are two features that can be used to search for objects in a scene.
- Other features might include class type, number of neighbors of a certain type, location in world space, etc.
- Our criteria for object selection is represented by a normalized feature vector $s = [s_1, ..., s_n]$, where each $s_i \in [0, 1]$ represents the degree to which an object satisfies a particular set of criteria.
- The multidimensional feature vector can be mapped to a single value with a scalarization function $g_{\theta}(s)$, where θ represents the parameterization.

$$g_{\text{avg}}(\boldsymbol{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$$

$$g_{\min}(\mathbf{s}) = \min_{i} s_i$$

Example: Choosing an Exploration Target

Consider an agent in the environment choosing its next exploration target.

Want to select an object to interrogate that is

- Nearby
- In the forward direction
- Near the edge of what's already been explored

University of Missouri

20

Conclusions

- We've shown a way to compute distance and directional spatial relationships between objects in a 3D scene represented with axis-aligned bounding boxes.
- These features can be used to construct a spatially attributed graph of the environment and search for objects using multiple criteria.
- Simplifying the representation to bounding boxes instead of full point clouds helps achieve real-time performance on embedded hardware.
- Future directions:
 - Handle dynamic environments and an incremental/updating graph
 - Integrate with semantic segmentation algorithms for point clouds
 - Use a hierarchical representation to represent large compound objects
 - E.g., buildings with windows and doorways, roads and intersections, etc.

