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Motivation

» 3D scenes have a lot of information!

» How should it be represented?

» What are the relationships between objects?

http://www.semantic3d.net/

» Point clouds give raw 3D data
» Easy to acquire as raw data from LIDAR or depth camera
» Files can be huge! Voxels can help sometimes...
» How to represent the important aspects of the scene?
» Semantic segmentation can identify individual objects
» How to store and query spatial configurations?
» Use bounding boxes to represent important objects

» Compute relationships between bounding boxes
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Applications

» Ultimately, we would like Al systems to have an
interpretable understanding of their environment

» This can help design and communicate intended behaviors
» Make an Al agent act more like a human

» Unmanned Aerial Vehicles (UAVs)
» Small embedded systems need to respond in real-time

» Require minimal overhead and processing

» Human robot interaction
» Use natural language to communicate

» Mobile computing devices (AR/VR headsets) with limited
streaming bandwidth
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Benchmark Datasets

» We assume that a semantic segmentation of the scene can be acquired
» Many recent works for labeling and segmenting point clouds

» Focus here on ground truth, hand-labeled benchmark datasets
» Each object instance is given a unique ID
» Easy to find individual objects or categories

» Looking at the NPM3D benchmark suite
» https://npm3d.fr/paris-lille-3d

» Outdoor street scene (static)

» Chose this dataset because it has ground truth segmentation
» Objects are identified by class and an instance ID

» 50 classes organized in a hierarchal ontology
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https://npm3d.fr/paris-lille-3d

Example Scene

» We chose to look at an example region with
~10,000,000 points and ~100 labeled objects

» How to compute the spatial relationships
between objects?

» Each object can be shown with an axis-aligned
bounding box (trivial to compute)
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Bounding Box Representation

» Consider the relationship between these two objects.

» We can easily compute the bounding boxes and centroids.

Front
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Triangular Fuzzy Numbers

» Along each dimension, we define a triangular
fuzzy number (TFN) from the minimum and
maximum extents of the bounding box and
the object centroid.

» Store 9 values for each object

A= Tri(alr as, ag), B = Tri(bli bZr b3) z
Object Bounds and Centroid: [min, centroid, max]
X Y yA
Signpost  [-2.4,-1.8,-1.4]  [0.9, 2.0, 3.2] [0, 3.2, 4.4]
Light pole  [-0.6, -0.2, 1.7] [3.9, 4.6, 4.9] [0, 4.2, 10.8] s = ¢ 3 =
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Bounding Box Distance

» Using fuzzy arithmetic, the difference between the two
objects is computed along each dimension as a new TFN.

» This represents the minimum, maximum, and average
distance between objects A and B in each dimension.

» (can be negative) ,

A—B = Tri(a1 — b3, a, — bz, as — bl)

Ay = Tri(-2.4,-1.8,—1.4) B, = Tri(—0.6,—0.2,1.7)
Ay = Tri(0.9,2.0,3.2) B, = Tri(3.9,4.6,4.9) 0
A, =Tri(0.0,3.2,4.4) B, = Tri(0.0,4.2,10.8)

D, =B, — A, = Tri(0.8,1.6,4.1)
D, = B, — A,, = Tri(0.7,2.6,4.0)
D, =B, — A, = Tri(—4.4, 1.0,10.8) |
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Overall Distance

» The overall distance is computed as the Euclidean norm of
the differences along each axis using fuzzy arithmetic.

D, = Tri(0.8, 1.6, 4.1) A® = Tri(amin, a, max{ai, as}),

X Jy LY, L . )
D, = Tri(0.7, 2.6,4.0) L ai,as}, ifa; <0<ag
D, = Tri(—4.4,1.0,10.8) min{af, a3},  otherwise

A+ B =Tri(ay + by,a; + by,az +b
D2 = Tri(0.64,2.56,16.81) (a1 + by, az + by, as + bs)

D; = Tri(0.49,6.76,16.0)
DZ = Tri(0.0,1.0,116.64)

VA = Tri(yay, /az,y/a3), 0<a; <a;<az

DZ + D} + DZ = Tri(1.13,10.32,149.45) Dag

D,p = \/D,% + Dj + D = Tri(1.06,3.21,12.22)

Distance
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Spatial Relationship Graph

» Knowing the distances between objects lets
us define a spatial relationship graph over a
scene to show how objects are connected.

» We’ll add an edge between two nodes
(objects) if the distance between them is
less than some threshold d.

» So, we need a way to determine if a
triangular fuzzy number represents a
distance that is less than d.

Dap

|
i Is D,g less than 10?7
|
1

Distance
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TFN Defuzzification

» Given a triangular fuzzy number X = Tri(a, b, c), we
can defuzzify to a crisp value using an
optimism/pessimism parameter ¢ € [0,1].

] a+26(b—-a), §<05
x5 = {b +2(§-05)(c—b), £>0.5

» This gives a way to select the minimum (¢ = 0),
maximum (¢ = 1), or average (¢ = 0.5) values of the
TFN.

» When ¢ is high, it’s like complete linkage clustering.

When ¢ is low, it’s like single linkage clustering.
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Distance Queries

» Suppose we want to find all objects that are a
certain distance away from a reference object.

» We define the query distance as a TFN
Q = Tri(qlr q2, qS)

» The similarity between two TFNs can be computed 1.0 -
as the maximum of their intersecting points.

S(4, B) = max{min(u, (x), 5 (x))}

» The distance D,z between objects A and B can be
compared with the query distance Q to give the
distance similarity sgict € [0, 1].
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Example Distance Queries

Q = Tri(0,0,1)

Somewhat
Distant

Q = Tri(20, 30, 40)
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Q = Tri(5, 10, 15)

Q = Tri(50, 75, 100)
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Looking at the heat maps
for different distance
queries from a person in
the scene, outlined with
a red box.




Normalized Direction

» The axis-aligned difference TFNs D,, D,, and D,

encode both the relative distance and direction
between two objects.

» We can use this to compute how much support
there is for the statement “Object B is in direction
u from Object A,” where u is a unit vector
pointing in the direction of interest.

» First, we need a normalized difference vector,
D = |D,,D,,D,|, where D,, D,, and D, are
normalized versions of the computed difference
TFNs D,, D,,, and D,.

D, = aD,, st. max D, =1
f f kexy,z} ¢

» Consider a 2-dimensional example...
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Directional Similarity

» Given a reference direction u, the directional similarity
to the normalized difference TFN D is the dot product.

Sdir =D - @ = Dyuy + Dyu,, + D,u,

» Sgir is @ TFN bounded in the range [-1, 1].

» See example...

» To reduce the directional similarity to a scalar value
(like distance), we can use the defuzzification
parameter ¢ and clamp to positive values.

Sdir = max{O, F(Sdirlf)}
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Example Directional Queries

1.0
Strictly to 0.9
the north

0.8

ol v 2 7 - B 0.7
. 5 " Mainly to the
' southeast

- 0.6
£ = £=05
0 = [0.707, —0.707, 0] ]
0.5 Looking at the heat maps for
different directional queries
0.4 .
from a person in the scene,
Generally to 0a outlined with a red box.
the northeast ' 3 g '
/ , 0.2
o W  Generally
vy _ above 0.1
£=1 £=1 0.0
4 = [0.707,0.707, 0] a=[0,0,1] :
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A Multi-Criteria Framework

» Distance and direction are two features that can be used to search for objects in
a scene.

» Other features might include class type, number of neighbors of a certain type,
location in world space, etc.

» Our criteria for object selection is represented by a normalized feature vector
s = [sq,...,S,], where each s; € [0, 1] represents the degree to which an object
satisfies a particular set of criteria.

» The multidimensional feature vector can be mapped to a single value with a
scalarization function gy (s), where 6 represents the parameterization.

1

Javg(s) = EZ Si Imin(s) = ml_in Si
i=1
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Example: Multi-Criteria Selection

Distance Query
Q = Tri(0,5,10)

» Consider a person (red) looking to
identify a lamp post that is “near”
and to the “front-left”.

0.0 0.0 071 0.0
i
|
m ; Combined Query
4 (min operator)
0.0 0.2 0.4 0.6 0.8 1.0

Direction Query
u=[0.707,0.707,0],§ =1 &

0. 2111997 6,78 | o] 79
Pet-m
= \‘
il 5!
I B
—
0.0 0.2 0.4 0.6 0.8 1.0
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Example: Choosing an Exploration Target

Distance Query Direction Query
Q = Tri(10,20,30) [ ee— i=[1,00],¢=1 [ e—

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Consider an agent in the
environment choosing its
next exploration target.

Frontier Score Combined Query Want to select an object
(fewer neighbors better) ESE_—_—_—_—_—_—————— (min operator) e — to interrogate that is
_ e BT * Nearby
* In the forward direction
* Near the edge of what’s
already been explored
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Conclusions

» We’ve shown a way to compute distance and directional spatial relationships
between objects in a 3D scene represented with axis-alighed bounding boxes.

» These features can be used to construct a spatially attributed graph of the
environment and search for objects using multiple criteria.

» Simplifying the representation to bounding boxes instead of full point clouds
helps achieve real-time performance on embedded hardware.

» Future directions:
» Handle dynamic environments and an incremental/updating graph
» Integrate with semantic segmentation algorithms for point clouds

» Use a hierarchical representation to represent large compound objects

» E.g., buildings with windows and doorways, roads and intersections, etc.
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