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Motivation
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 3D scenes have a lot of information!

 How should it be represented?

 What are the relationships between objects?

 Point clouds give raw 3D data

 Easy to acquire as raw data from LIDAR or depth camera

 Files can be huge! Voxels can help sometimes…

 How to represent the important aspects of the scene?

 Semantic segmentation can identify individual objects

 How to store and query spatial configurations?

 Use bounding boxes to represent important objects

 Compute relationships between bounding boxes

http://www.semantic3d.net/
https://github.com/microsoft/AirSim



Applications
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 Ultimately, we would like AI systems to have an 

interpretable understanding of their environment

 This can help design and communicate intended behaviors

 Make an AI agent act more like a human

 Unmanned Aerial Vehicles (UAVs)

 Small embedded systems need to respond in real-time

 Require minimal overhead and processing

 Human robot interaction

 Use natural language to communicate

 Mobile computing devices (AR/VR headsets) with limited 

streaming bandwidth



Benchmark Datasets
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 We assume that a semantic segmentation of the scene can be acquired

 Many recent works for labeling and segmenting point clouds

 Focus here on ground truth, hand-labeled benchmark datasets

 Each object instance is given a unique ID

 Easy to find individual objects or categories

 Looking at the NPM3D benchmark suite

 https://npm3d.fr/paris-lille-3d

 Outdoor street scene (static)

 Chose this dataset because it has ground truth segmentation

 Objects are identified by class and an instance ID

 50 classes organized in a hierarchal ontology

https://npm3d.fr/paris-lille-3d


Example Scene
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 We chose to look at an example region with 
~10,000,000 points and ~100 labeled objects

 How to compute the spatial relationships 
between objects?

 Each object can be shown with an axis-aligned 
bounding box (trivial to compute)



Bounding Box Representation

 Consider the relationship between these two objects.

 We can easily compute the bounding boxes and centroids.
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Triangular Fuzzy Numbers

 Along each dimension, we define a triangular 

fuzzy number (TFN) from the minimum and 

maximum extents of the bounding box and 

the object centroid.

 Store 9 values for each object
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X Y Z

Signpost [-2.4, -1.8, -1.4] [0.9, 2.0, 3.2] [0, 3.2, 4.4]

Light pole [-0.6, -0.2, 1.7] [3.9, 4.6, 4.9] [0, 4.2, 10.8]

Object Bounds and Centroid: [min, centroid, max]

X Y

Z𝐴 = Tri 𝑎1, 𝑎2, 𝑎3 ,  𝐵 = Tri 𝑏1, 𝑏2, 𝑏3
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𝐴𝑥 = Tri −2.4, −1.8, −1.4
𝐴𝑦 = Tri 0.9, 2.0, 3.2

𝐴𝑧 = Tri 0.0, 3.2, 4.4

𝐵𝑥 = Tri −0.6, −0.2, 1.7
𝐵𝑦 = Tri 3.9, 4.6, 4.9

𝐵𝑧 = Tri 0.0, 4.2, 10.8

 Using fuzzy arithmetic, the difference between the two 

objects is computed along each dimension as a new TFN.

 This represents the minimum, maximum, and average 

distance between objects A and B in each dimension.

 (can be negative)

𝐷𝑥 = 𝐵𝑥 − 𝐴𝑥 = Tri 0.8, 1.6, 4.1
𝐷𝑦 = 𝐵𝑦 − 𝐴𝑦 = Tri 0.7, 2.6, 4.0

𝐷𝑧 = 𝐵𝑧 − 𝐴𝑧 = Tri −4.4, 1.0, 10.8

Bounding Box Distance

𝐴 − 𝐵 = Tri 𝑎1 − 𝑏3, 𝑎2 − 𝑏2, 𝑎3 − 𝑏1



Overall Distance
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𝐷𝑥 = Tri 0.8, 1.6, 4.1
𝐷𝑦 = Tri 0.7, 2.6, 4.0

𝐷𝑧 = Tri −4.4, 1.0, 10.8

𝐷𝑥
2 = Tri 0.64, 2.56, 16.81

𝐷𝑦
2 = Tri 0.49, 6.76, 16.0

𝐷𝑧
2 = Tri 0.0, 1.0, 116.64

𝐷𝑥
2 + 𝐷𝑦

2 + 𝐷𝑧
2 = Tri 1.13, 10.32, 149.45

𝐷𝐴𝐵 = 𝐷𝑥
2 + 𝐷𝑦

2 + 𝐷𝑧
2 = Tri 1.06, 3.21, 12.22

𝐴2 = Tri 𝑎min, 𝑎2
2, max 𝑎1

2, 𝑎3
2 ,

𝑎min = ൝
min 0, 𝑎1

2, 𝑎3
2 , if 𝑎1 ≤ 0 ≤ 𝑎3

min 𝑎1
2, 𝑎3

2 , otherwise

𝐴 + 𝐵 = Tri 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3

𝐴 = Tri 𝑎1, 𝑎2, 𝑎3 ,  0 ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎3

 The overall distance is computed as the Euclidean norm of 

the differences along each axis using fuzzy arithmetic.



Spatial Relationship Graph

 Knowing the distances between objects lets 

us define a spatial relationship graph over a 

scene to show how objects are connected.

 We’ll add an edge between two nodes 

(objects) if the distance between them is 

less than some threshold 𝑑.

 So, we need a way to determine if a 

triangular fuzzy number represents a 

distance that is less than 𝑑.
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Is 𝐷𝐴𝐵 less than 10?



𝜉 = 1𝜉 = 0.5𝜉 = 0.25𝜉 = 0

TFN Defuzzification

 Given a triangular fuzzy number 𝑋 = Tri 𝑎, 𝑏, 𝑐 , we 

can defuzzify to a crisp value using an 

optimism/pessimism parameter 𝜉 ∈ 0,1 .

 This gives a way to select the minimum (𝜉 = 0), 

maximum (𝜉 = 1), or average (𝜉 = 0.5) values of the 

TFN.

 When 𝜉 is high, it’s like complete linkage clustering.

 When 𝜉 is low, it’s like single linkage clustering.
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Γ 𝑋 𝜉 = ቊ
 𝑎 + 2𝜉 𝑏 − 𝑎 , 𝜉 ≤ 0.5

𝑏 + 2 𝜉 − 0.5 𝑐 − 𝑏 , 𝜉 > 0.5

𝑑 = 10 meters



Distance Queries

 Suppose we want to find all objects that are a 
certain distance away from a reference object.

 We define the query distance as a TFN
𝑄 = Tri 𝑞1, 𝑞2, 𝑞3 .

 The similarity between two TFNs can be computed 
as the maximum of their intersecting points.

 The distance 𝐷𝐴𝐵 between objects 𝐴 and 𝐵 can be 
compared with the query distance 𝑄 to give the 
distance similarity 𝑠dist ∈ 0, 1 .
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𝑆 𝐴, 𝐵 = max
𝑥∈ℝ

min 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥



Example Distance Queries
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Looking at the heat maps 

for different distance 

queries from a person in 

the scene, outlined with 

a red box.

Nearby

Somewhat 

Distant

Far Off

Adjacent



Normalized Direction

 The axis-aligned difference TFNs 𝐷𝑥, 𝐷𝑦, and 𝐷𝑧 

encode both the relative distance and direction 

between two objects.

 We can use this to compute how much support 

there is for the statement “Object 𝐵 is in direction 

ෝ𝒖 from Object 𝐴,” where ෝ𝒖 is a unit vector 

pointing in the direction of interest.

 First, we need a normalized difference vector,
෡𝑫 = ෡𝐷𝑥, ෡𝐷𝑦 , ෡𝐷𝑧 , where ෡𝐷𝑥, ෡𝐷𝑦, and ෡𝐷𝑧 are 

normalized versions of the computed difference 

TFNs 𝐷𝑥, 𝐷𝑦, and 𝐷𝑧.

 Consider a 2-dimensional example…
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෡𝐷𝑘 = 𝛼𝐷𝑘 ,  s.t. max
𝑘∈ 𝑥,𝑦,𝑧

෡𝐷𝑘 = 1

𝐴

𝐵

𝐷𝐴𝐵

෡𝐷𝐴𝐵



Directional Similarity

 Given a reference direction ෝ𝒖, the directional similarity 

to the normalized difference TFN ෡𝑫 is the dot product.

 𝑆dir is a TFN bounded in the range −1, 1 .

 See example…

 To reduce the directional similarity to a scalar value 

(like distance), we can use the defuzzification 

parameter 𝜉 and clamp to positive values.
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𝑆dir = ෡𝑫 ⋅ ෝ𝒖 = ෡𝐷𝑥𝑢𝑥 + ෡𝐷𝑦𝑢𝑦 + ෡𝐷𝑧𝑢𝑧

𝑠dir = max 0, Γ 𝑆dir 𝜉

𝐴

𝐵
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Example Directional Queries

Looking at the heat maps for 

different directional queries 

from a person in the scene, 

outlined with a red box.

Strictly to 

the north

Generally to 

the northeast

Generally 

above

Mainly to the 

southeast



A Multi-Criteria Framework

 Distance and direction are two features that can be used to search for objects in 

a scene.

 Other features might include class type, number of neighbors of a certain type, 

location in world space, etc.

 Our criteria for object selection is represented by a normalized feature vector 

𝒔 = 𝑠1, … , 𝑠𝑛 , where each 𝑠𝑖 ∈ 0, 1  represents the degree to which an object 

satisfies a particular set of criteria.

 The multidimensional feature vector can be mapped to a single value with a 

scalarization function 𝑔𝜃 𝒔 , where 𝜃 represents the parameterization.
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𝑔avg 𝒔 =
1

𝑛
෍

𝑖=1

𝑛

𝑠𝑖
𝑔min 𝒔 = min

𝑖
𝑠𝑖



Example: Multi-Criteria Selection
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0.0 0.0
0.71

0.80

0.0

Distance Query

𝑄 = Tri 0, 5, 10

0. 91 0. 97
0. 78 0. 79

0.0Direction Query

ෝ𝒖 = 0.707, 0.707, 0 , 𝜉 = 1

0.0 0.0 0.0

0.0

0.71

Combined Query

(min operator)

 Consider a person (red) looking to 

identify a lamp post that is “near” 

and to the “front-left”.



Example: Choosing an Exploration Target
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Distance Query

𝑄 = Tri 10, 20, 30
Direction Query

ෝ𝒖 = 1, 0, 0 , 𝜉 = 1

Frontier Score

(fewer neighbors better)

Combined Query

(min operator)

Consider an agent in the 

environment choosing its 

next exploration target.

Want to select an object 

to interrogate that is

• Nearby

• In the forward direction

• Near the edge of what’s 

already been explored



Conclusions

 We’ve shown a way to compute distance and directional spatial relationships 

between objects in a 3D scene represented with axis-aligned bounding boxes.

 These features can be used to construct a spatially attributed graph of the 

environment and search for objects using multiple criteria.

 Simplifying the representation to bounding boxes instead of full point clouds 

helps achieve real-time performance on embedded hardware.

 Future directions:

 Handle dynamic environments and an incremental/updating graph

 Integrate with semantic segmentation algorithms for point clouds

 Use a hierarchical representation to represent large compound objects

 E.g., buildings with windows and doorways, roads and intersections, etc.
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