
A Fuzzy Spatial Relationship Graph for Point
Clouds Using Bounding Boxes

Andrew R. Buck∗, Derek T. Anderson∗, James M. Keller∗, Robert H. Luke III†, and Grant Scott∗
∗Electrical Engineering and Computer Science (EECS) Department, University of Missouri, Columbia, MO, USA

†US Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA
Email: {buckar, andersondt, kellerj, scottgs}@missouri.edu, robert.h.luke2.civ@mail.mil

Abstract—Three dimensional point cloud data sets are easy to
acquire and manipulate, but are often too large to process directly
for embedded real-time applications. The spatial information
in a point cloud can be represented in a variety of reduced
forms, such as voxel grids, Gaussian mixture models, or spatial
semantic structures. In this article, we show how a segmented
point cloud can be represented as a spatial relationship graph
using bounding boxes and triangular fuzzy numbers. This model
is a lightweight encoding of the relative distance and direction
between objects, and can be used to describe and query for
particular spatial configurations using linguistic terms in a multi-
criteria framework. We show how this approach can be applied
on a hand-segmented subset of the NPM3D data set with several
illustrative examples. The work herein has useful applications
in many applied domains, such as human-robot interaction with
unmanned aerial systems.

I. INTRODUCTION

A three dimensional (3D) point cloud is a common way
to represent physically sensed objects in an environment.
These data sets are often generated by a time-of-flight (ToF),
structured light, structure from motion (SfM), multi-view
stereo (MVS), or stereo vision system and they can grow
to be quite massive. For many applications, including mobile
robotics, raw point clouds are often too large to store and
process directly in real-time. In these scenarios, some form of
compression or abstraction is required. One popular approach
is to convert a point cloud into a voxel space, where individual
voxels are 3D objects (typically cubes). An example of a
slightly higher-level abstraction is a 3D occupancy grid map
via a mixture of Gaussians [1]. While these approaches reduce
data, they are low-level representations.

Another route involves representing scenes by a segmented
point cloud, where each point is assigned a class label and
an instance ID. Herein, we assume that such a data set can
be acquired, either through manual annotation or automatic
segmentation methods, e.g., PointConv [2], KPConv [3], etc.
Once objects have been identified, an agent can perform tasks
like reasoning about the spatial configuration of objects in the
scene. This may be important to help determine interesting
things, perhaps to decide where to go next, what object to
interrogate, or how to explore an environment.

Herein, we propose a general framework to compute fuzzy
spatial relationships between 3D point cloud objects using
bounding boxes and triangular fuzzy numbers (TFNs). As
an example, we demonstrate our approach on a portion of

Fig. 1. A segmented point cloud from the NPM3D benchmark suite. Objects
are reduced to their bounding boxes and centroids, from which we construct
a fuzzy spatial relationship graph to efficiently understand the scene.

the NPM3D benchmark suite [4], which contains ground
truth segmentations (Fig. 1). For reference, the considered
point cloud has about 10 million points with approximately
200 labeled objects spanning just over one city block. The
segmented point cloud is reduced to a collection of annotated
bounding boxes and object centroids, from which we compute
a graph of fuzzy spatial relationships. This in turn can be used
to quickly and efficiently identify objects based on spatial
queries. For instance, we can find a “person standing near
a tree” or a “row of cars.” For egocentric applications, we
may wish to identify our next destination as an object “not
too far away” and “near the edge of the explored map.” To
accomplish this, we define measures of distance and direction
between objects and evaluate the degree to which candidate
objects satisfy the criteria. This framework can be used as part
of a larger system to guide agent actions or better understand
a scene.

The concepts expressed above are driven by a real-world
need to support human-robot teaming in the context of aug-
mented reality (AR) for shared spaces, where robots in this
context are unmanned aerial systems (UASs) and users are
wearing AR headsets. One of our research needs is to build
lightweight 3D representations of environments in real-time.
The spatial relationship graph (SRG) proposed herein is one
such structure that can be used to develop domain specific
robot behaviors, e.g., multi-criteria decision making involving
complex and dynamic combinations of exploration, mapping,
detection and tracking, etc. Furthermore, our linguistic SRG
not only captures the inherent underlying uncertainty of spatial
relations in a scene, it also comes with the added benefit of
assisting human-robot communication. Aspects of our SRG
can be graphically displayed in a users AR headset or spatial



queries like those discussed above can be used to let humans
and robots talk to each other. In prior work, we demonstrated
the utility of the latter in the context of spatial language driven
navigation for ground robotics [5, 6].

This current article makes the following contributions. First,
we outline an efficient and effective way to use triangular fuzzy
sets to model 3D spatial relationships in a spatial relationship
graph (SRG). To the best of our knowledge, this is new, as
prior work has focused on black box neural solutions in 2D
imagery [7], 2D histogram of forces (HOF) [8, 9], or 3D HOFs
[10] that do not lend themselves to real-time applications.
Second, we propose a set of directional, distance, object,
and combinations therein, anchored linguistic SRG queries to
support UAS navigation and human-robot teaming.

II. BACKGROUND

A. Point Cloud Segmentation

The reader can refer to recent literature such as [11] for SfM
and MVS, [12] for passive ranging, or any number of other ar-
ticles on SLAM, LiDAR, ToF, structured light, or stereo vision.
These are the primary sensors and sources for generating 3D
point clouds. In recent years, commercial products at low cost
have been introduced, e.g., Intel’s RealSense RGBD (where
D is depth), which is based on active sensing and ToF. Fur-
thermore, the reader can refer to work such as PointConv [2],
KPConv [3], or other semantic segmentation algorithms and
neural networks to produce arbitrary segments with unknown
class labels or objects with labels. Herein, we do not focus on
the data stream generation nor its segmentation. The current
article builds on these works and we focus on translating these
low to mid level object and environment representations into
high-level structures that can be acted on.

B. Fuzzy Spatial Relationships

As in Section II-A, we quickly summarize related spatial
relationship research. As noted in the Introduction section,
deep neural networks have been proposed to learn spatial
relations in 2D imagery [7]. While intriguing, a shortcoming
of an approach like this is a lack of rich linguistic support,
e.g., object A is surrounded by B, object A is above and to
the right of B, etc. Furthermore, the system has to be trained,
current data sets do not possess this type of labeling, and
labeling the imagery is a demanding task, something not likely
to scale. On the other hand, Matsakis et al. have produced
very rich and deep work on spatial relations via histograms of
forces (HoF) and fuzzy vocabularies to support them [8, 9].
Herein, we define a SRG to be a graph where nodes are entities
(e.g., objects in a scene) and edges are spatial relations, e.g.,
HoFs. One advantage of the HoF is its rigorous definition,
theorems, and years of analysis. In [10], Matsakis et al. discuss
extensions of 2D HoF to 3D vector objects.

A natural question is, why not use the HoFs? First, to the
best of our knowledge, no efficient 3D HoF computational
algorithm has been proposed. Keep in mind, efficient herein
is with reference to large 3D point data sets and real-time
algorithmic performance. That is, we need spatial relations

Fig. 2. A triangular fuzzy number X can be defined over a set of numbers
x1, ..., xn to represent the minimum, mean, and maximum values of the set.

that can be calculated in a fraction of a second. This is only
one piece in a larger puzzle of robot autonomy and human-
robot teaming in a shared AR space. Next, there is error in
3D mapping algorithms and objects in the visible spectrum
result in hulls. That is, additional processing, e.g., calculating
an umbra, is required to determine filled 3D objects. It is not
clear what the result of a 3D HoF would be on a partially
observed and error prone object. Herein, we instead focus on
a light weight structure that can ideally absorb such errors
and be of high level benefit. As we show in the results
section, our TFN approach is perhaps already a good enough
descriptor to power the downstream tasks outlined above
(robotic navigation, exploration, human-robot teaming, etc.).
In future work we will work to develop an analytical procedure
or more extensive experiments, e.g., involving evaluation of
robotic behavior, to further quantify and investigate these
interesting questions.

C. Fuzzy Numbers

Fuzzy numbers provide a way to represent imprecision in
the specification of a real-valued number [13]. The member-
ship function µA(x) of a fuzzy number A maps the value
x into the range [0, 1], where µA(x) represents the degree
to which x belongs to A. In this work, we consider only
triangular fuzzy numbers (TFNs), each represented as a triplet
Tri(a, b, c), where a ≤ b ≤ c and a, b, c ∈ R. Here, the interval
[a, c] represents the support where µA(x) > 0 and {b} is the
singleton core set where µA(x) = 1.

There are many possible ways to define a TFN from a
set of real-valued numbers x1, ..., xn, but we focus here on
the following intuitive approach. Let X = Tri(a, b, c) be
a TFN, where a = min{x1, ..., xn}, b = 1

n

∑n
i=1 xi, and

c = max{x1, ..., xn}. This captures the minimum, maximum,
and average values of the set (Fig. 2). An alternative approach
might use the median and some form of outlier detection to
increase robustness.

1) Fuzzy Arithmetic: Arithmetic operations on TFNs are
defined here as an extension of interval arithmetic, although
other operators could be chosen. For two TFNs A =
Tri(a1, a2, a3) and B = Tri(b1, b2, b3), the result of a function
f(A,B) is a new TFN C = Tri(c1, c2, c3). Here, c1 and c3 are
the minimum and maximum possible values respectively that



could result from f(a, b), where a1 ≤ a ≤ a3 and b1 ≤ b ≤ b3.
Since the middle element is chosen to represent the mean
value, c2 is defined as f(a2, b2).

Using this notation, we define the following operations used
throughout this work.

A+B = Tri(a1 + b1, a2 + b2, a3 + b3) (1)

A−B = Tri(a1 − b3, a2 − b2, a3 − b1) (2)

λA = Tri (min{λa1, λa3}, λa2,max{λa1, λa3}) (3)

A2 = Tri
(
amin, a

2
2,max{a21, a23}

)
,

amin =

{
min{0, a21, a23}, if a1 ≤ 0 ≤ a3
min{a21, a23}, otherwise

(4)

√
A = Tri(

√
a1,
√
a2,
√
a3), 0 ≤ a1 ≤ a2 ≤ a3 (5)

Note that λ ∈ R is a scalar multiplier, and when squaring a
fuzzy number that spans both positive and negative values, the
minimum value will be set to zero.

2) Fuzzy Similarity: Two TFNs A and B (defined as above)
can be compared to determine the degree to which they are
equivalent. Note that for this application we are not looking for
the amount of overlap between the sets, but rather a best-case
sense of how well an element from A might be represented by
B and vice versa. Of the many possible similarity operators,
an appropriate choice here to measure the similarity between
two TFNs is

S(A,B) = max
x∈R

{
min

(
µA(x), µB(x)

)}
. (6)

For TFNs, this can be computed quickly by finding the
maximum of four intersecting line segments as shown in
Fig. 3. Consider two lines

x− (ah − al)y − al = 0

x− (bh − bl)y − bl = 0

where µA(al) = 0, µA(ah) = 1, µB(bl) = 0, and µB(bh) = 1.
Solving for y reveals the level where the lines intersect,

y =
bl − al

(ah − al)− (bh − bl)
. (7)

If the denominator here is 0, the two lines are parallel. If
al = bl and ah = bh, the two lines are also coincident. Only
when 0 ≤ y ≤ 1 do the lines intersect as part of the
membership function. Let us define a function

h(al, ah, bl, bh) =


1, if the lines are coincident
0, if the lines are otherwise parallel
y, if 0 ≤ y ≤ 1

0, otherwise.
(8)

The similarity of A and B can now be defined as

S′(A,B) = max
al∈{a1,a3}
bl∈{b1,b3}

h(al, a2, bl, b2). (9)

Fig. 3. The similarity of two TFNs A and B is defined as the maximum of
the intersecting points.

3) Defuzzification: There are times, typically at the end of
a calculation, when a fuzzy number needs to be reduced to a
single crisp value. This may be done to provide a reference
point upon which a decision can be made, or to facilitate
working with scalar numbers. For a TFN X = Tri(a, b, c),
any value x ∈ [a, c] could be chosen as the crisp result
of defuzzification. We can parameterize this decision with a
variable ξ ∈ [0, 1] that interpolates the result between a and
c. If b is defined to represent the average value, then a natural
interpolation approach would be

Γ(X|ξ) =

{
a+ 2ξ(b− a), ξ ≤ 0.5

b+ 2(ξ − 0.5)(c− b), ξ > 0.5.
(10)

The parameter ξ can be viewed as an optimism or pessimism
term, where small values shift Γ(X|ξ) toward a and large
values shift Γ(X|ξ) toward c. When ξ = 0.5, the defuzzified
value is equal to b. This provides a straightforward method to
interpolate between the TFN control points and select among
the minimum, maximum, or average values.

III. METHOD

A. Bounding Boxes

Consider a collection of points in 3D space that represent a
segmented object. That is, all points in this set have the same
label and instance ID. The axis-aligned bounding box of these
points spans the minimum and maximum values of any point
in this set along each axis. Additionally, the centroid of this
object is the mean value of the points in the set and can be
thought of as the object’s center of mass. Note that while the
centroid will always be contained within the bounding box,
it may fall outside of the actual object boundary if the object
is not convex. Fig. 4 shows two point cloud objects and their
corresponding bounding boxes and centroids.

We denote the position of an object A with three TFNs,

Ax = Tri(xmin, xmean, xmax)

Ay = Tri(ymin, ymean, ymax)

Az = Tri(zmin, zmean, zmax),

which represent the extents of the axis-aligned bounding box
of A, and the centroid of A. Likewise, we can define the
position of an object B with TFNs Bx, By , and Bz . The



Fig. 4. Two point cloud objects, A (purple) and B (red), represented by their
axis-aligned bounding boxes and centroids.

relative position of an object B with respect to an object A can
be computed as B−A. Taken along each axis, three distance
values can be computed using Eq. 2 as

Dx = Bx −Ax (11)
Dy = By −Ay (12)
Dz = Bz −Az. (13)

These differences represent the minimum, mean, and maxi-
mum distance between the two objects in each direction. The
overall distance from A to B can then be computed as

D =
√
D2
x +D2

y +D2
z . (14)

Equation 14 makes use of Eq. 1, 4, and 5, and represents the
overall average distance between the two objects, as well as
the minimum and maximum possible distances. Because the
distances are computed between bounding boxes and not the
object points themselves, the computation is very fast, but also
captures extreme values for the minimum and maximum. The
centroid value is therefore critical in representing the under-
lying distribution, while the endpoints describe the possible
extent. Fig. 5 shows the fuzzy spatial relationship computed
for the example in Fig. 4.

B. Spatial Relationship Graph

A point cloud environment can have many individual seg-
mented objects, spread out over large distances. Often, we are
concerned with only the local neighborhood of a particular
object and would like to ignore any relationships to objects that
are far away. A spatial relationship graph (SRG) can be defined
over the objects to show this local topology. Using the distance
measure defined above, we define a neighborhood graph that
contains each segmented object as a node and includes an
edge between each pair of objects that are closer than some
threshold distance d. Since we consider the graph to be crisp,
the distances between objects are defuzzified with a parameter
ξ using Eq. 10. When ξ is high, only object pairs that are
completely within the threshold distance are included as edges
in the graph (similar to complete linkage clustering). When ξ
is low, the closest distance between object pairs is considered

Fig. 5. The fuzzy spatial relationship between objects A and B in Fig. 4 is
computed as the difference between the TFNs representing the objects along
each axis. The overall distance is computed as the Euclidean norm of these
directional fuzzy numbers.

(similar to single linkage clustering). Fig. 6 shows an example
SRG computed for different values of ξ with a fixed distance
threshold.

The SRG provides a way to identify objects that have
relevant spatial relationships to each other. A common type
of spatial query is to determine an object (or set of objects)
that is (are) a particular distance away from, and in a certain
direction of, some reference object R. These queries are
explored further in the following sections. The SRG can be
used to restrict the search to neighboring objects of R, denoted
as N(R) Changing the distance threshold d and defuzzification
parameter ξ can change the average number of neighbors in
the graph, and in the extreme case (when d is large) this can
result in a fully-connected graph. The distance pruning rule
can be adapted for specific object types, e.g. to connect an
egocentric actor in the scene to distant objects while keeping
other object types more locally connected. This can result in a
graph that more naturally expresses the relationships between
objects in the scene, restricting connections to only object pairs
that have some inherent relationship.

C. Distance Queries

The fuzzy neighborhood graph provides a way to evaluate
the distance between objects in an imprecise way, such as with
natural language. A linguistic distance term can be modeled
as a TFN to represent a query such as “nearby” or “not too
far away.”1 The similarity of this query to the computed fuzzy
distance between two objects gives the degree to which the
spatial relationship between these objects matches the query.

The distance between the axis-aligned bounding boxes of
two objects is computed as a TFN by Eq. 14. Consider a
query distance Q = Tri(q1, q2, q3) and the distance between a
pair of objects A and B as DAB = Tri(d1, d2, d3). The degree

1We only consider triangular fuzzy numbers in this work, although the ideas
could be easily extended to other representations, such as trapezoids.



Fig. 6. The spatial relationship graph computed for a set of objects with a fixed distance threshold of 10 meters and different values of ξ.

Fig. 7. An example scene from the NPM3D data set showing heat maps for different distance queries from a person in the scene, outlined with a red box.
The queries could be interpreted linguistically as “nearby,” “somewhat distant,” and “far off.” Note that the imprecision in these terms is reflected in how
objects are evaluated.

to which A and B are distance Q apart from each other would
be given by Eq. 9 as

sdist = S′(Q,DAB). (15)

Here, sdist is defined to be in the range [0, 1]. This feature could
be used along with other features to filter and select objects in
the fuzzy neighborhood graph. For instance, we could find all
objects in N(R) that are some query distance Q away from a
reference object R.

In Fig. 7, we show an example scene from the NPM3D data
set centered on a person (identified with a red box). The person
could be considered an egocentric actor in the scene, from
which we want to know the distances to all other objects. Four
different distance queries are shown with a heat map indicating
the degree of match between each object and the specified
query distance. These queries could be interpreted as linguistic
terms such as “nearby,” “somewhat distant,” or “far off.” The
imprecise nature of the bounding box representation allows
queries to span both wide and narrow ranges, but only entire
objects are considered. This means that if an object spans the
entire scene—such as the roadway, which is not divided into
separate objects—it may always be evaluated as being near to
other objects in the scene. This could be useful for semantic
reasoning (the minimum distance to the road is always small,
but the maximum can be quite large), or with some additional
processing, large objects could be further segmented into a
hierarchical representation with a built-in size limit.

D. Directional Queries

The fuzzy relative position between two objects A and
B encodes both the distance and direction between them
in the three TFNs, Dx, Dy , and Dz (Eq. 11–Eq. 13). This
information can be used to evaluate queries such as the degree
of support for the statement “B is in direction û from A,”
where û is a unit vector pointing in the direction of interest.
Consider the difference values

Dx = Tri(dx1, dx2, dx3)

Dy = Tri(dy1, dy2, dy3)

Dz = Tri(dz1, dz2, dz3).

A vector vAB = [dx, dy, dz] represents the position of a
point in B relative to a point in A if dx1 ≤ dx ≤ dx3,
dy1 ≤ dy ≤ dy3, and dz1 ≤ dz ≤ dz3. We can determine the
degree to which B is in direction û from A by comparing û
with a normalized version of vAB .

The maximum length of vAB is computed by measuring
the distance from the origin to each of the corners of the box
defined by Dx, Dy , and Dz . If

vmax = max
x∈{dx1,dx3

}
y∈{dy1,dy3}
z∈{dz1,dz3}

√
x2 + y2 + z2, (16)



Fig. 8. An example scene from the NPM3D data set showing heat maps for different directional queries from a person in the scene, outlined with a red box.
The queries show concepts such as “strictly to the north,” “generally to the northeast,” and “generally above” (assuming an ENU reference frame).

then the normalized difference values are defined as

D̂x = Tri
(
dx1
vmax

,
dx2
vmax

,
dx3
vmax

)
(17)

D̂y = Tri
(
dy1
vmax

,
dy2
vmax

,
dy3
vmax

)
(18)

D̂z = Tri
(
dz1
vmax

,
dz2
vmax

,
dz3
vmax

)
. (19)

The fuzzy dot product between the normalized difference
vector D̂ = [D̂x, D̂y, D̂z] and a query vector û is defined
as

Sdir = D̂ · û = D̂xûx + D̂yûy + D̂zûz, (20)

where ûx, ûy , and ûz are the crisp scalar components of û.
Recall that the multiplication of a TFN with a scalar may
result in swapping the minimum and maximum values if the
scalar is negative (Eq. 3). Sdir is a TFN bounded in the range
[−1, 1] that represents how much B is in direction û from A.
The value can be reduced to a crisp scalar as

sdir = max {0,Γ(Sdir|ξ)} . (21)

Here, sdir is defined to be in the range [0, 1] using ξ as a
defuzzification parameter with Eq. 10. Small values of ξ imply
that B must be nearly entirely in direction û from A to
score highly, whereas large values of ξ allow for only part
of B to be in the specified direction. Limiting sdir to the unit
interval allows directional similarity to be evaluated along with
distance similarity in a general multi-criteria framework.

Fig. 8 shows several directional queries on the example
scene from the NPM3D data set. Here, we show concepts
such as “strictly to the north,” “generally to the northeast,”
and “generally above.” As with the distance queries, the
imprecision in the linguistic terms is reflected in how objects
are evaluated.

E. A Multi-Criteria Framework

The distance and direction between objects in the fuzzy
neighborhood graph provide two features that can be used to
filter and select objects that match certain criteria. In general,
we assume that each object in the scene has a vector of features
or attributes that describe it. These may be intrinsic to the

object itself, such as a class label or world-space position, or
the features may be computed relative to another object, such
as the spatial relationship to a reference object as described
in the previous sections. We require each feature to map
to a normalized scalar value si in the range [0, 1] so that
the features can be compared on the same scale. Here, the
features represent the degrees to which an object satisfies a
particular set of criteria. Given a normalized feature vector
s = [s1, ..., sk] for each object in the scene, the objects can
be compared in k-dimensional objective space. Choosing an
object that best satisfies all of the (perhaps conflicting) criteria
involves understanding the trade-offs between criteria, and
perhaps computing the Pareto optimal set.

For this work, we chose to scalarize each feature vector s
into a single value that can be ranked using a scalarization
function gθ(s), where θ represents the parameterization of the
function. While many options exist for choosing this function,
two simple methods are the average and minimum operators.
Assuming all features have equal weight, the average operator
is defined as

gavg(s) =
1

k

k∑
i=1

si, (22)

and the minimum operator is

gmin(s) = min
i
si. (23)

The average operator treats all features equally, whereas the
minimum operator considers only the least-satisfied criteria,
ensuring that objects that score highly have no significant
unsatisfied criteria. Extending this idea, one could imple-
ment weighted preferences for each feature, and perform a
generalized ordered weighted average to better capture the
decision-maker’s intentions. Once all feature vectors have been
scalarized, they can be ranked and the corresponding objects
visualized as a heat map. The object with the largest scalarized
value would be chosen as the option that best satisfies the
stated criteria.

IV. EXAMPLES

The spatial relationship graph described in the previous
section can be applied to real-world problems in a variety



of ways. The methods are generic and extendable so they can
be adapted for specific context domains. In this section, we
describe in greater detail how these ideas can be used for
reasoning about the spatial configuration of objects in a scene.
The following two examples illustrate potential applications of
the SRG using the NPM3D data set, but are not the only ways
in which this approach can be used.

A. Example 1: Multi-Criteria Selection

This example demonstrates using distance, direction, and
object type to select a specific object in a scene. Consider
Fig. 9, where a pedestrian in the NPM3D data wants to refer
to a lamp post that is “nearby” and “to the front-left.” This
may be part of a larger natural language application that
involves interaction between the human and a robot. For the
purposes of this example, we assume that we can model the
linguistic distance term “nearby” as the TFN Tri(0, 5, 10) and
the direction “front-left” as the vector û = [0.707, 0.707, 0].

To begin, we use a pre-computed SRG over the entire scene
with a distance threshold of 35 meters and ξ = 0.5. This is
a relatively compact data structure that encodes the spatial
relationships between any pair of objects determined to be
within 35 meters of each other. The node representing the
pedestrian has many edges, but only those leading to lamp
post objects need to be evaluated for this query. Immediately,
we are left with just five objects to consider.

For each of these five lamp post objects, we compute the
similarity of the distance from the pedestrian to the query
distance of Tri(0, 5, 10). Fig. 9a shows that only the two
closest objects have a non-zero distance score.

We then compute the directional similarity of each lamp
post object to the query vector û = [0.707, 0.707, 0] with
ξ = 1. Fig. 9b shows that four of the objects have non-
zero directional similarity scores. Interestingly, objects that
are farther away have higher scores than nearby objects. This
can be attributed to the uncertainty that arises from assessing
the primary direction between two nearby objects with spatial
extent. As the distance between the objects increases, they
appear more like points and there is less uncertainty in the
direction, leading to greater similarity to the query vector.

Finally, we combine the distance and direction scores using
the minimum operator. The results are shown in Fig. 9c, where
only one lamp post object has a non-zero score. This would
be the object selected by the agent for this example query.

B. Example 2: Choosing a Exploration Target

In this example, we imagine that the pedestrian in the
previous example represents a robotic actor that seeks to
continue exploring using its current model of the environment.
This could be a UAS that is tasked with building a 3D model
of the scene. We would like to select an object of interest in
some under-explored area of the map to study in more detail.
Presumably the agent can navigate to this location using its
own independent planning algorithm. Our criteria are that the
new target object is not too far away, in front of the agent,
and near the edge of the explored map.

The first two criteria are similar to the previous example.
In this case, we have chosen to only consider objects within
30 meters (ξ = 0.5) of the agent. Figs 10a and 10b show the
evaluation scores for the query distance Tri(10, 20, 30) and the
direction û = [1, 0, 0] with ξ = 1. To select objects near the
edge of the map, we count the number of edge connections
for each node in the SRG with a threshold of 10 meters and
ξ = 0.25. Objects with fewer connections are likely to be near
the edge of the map, whereas objects with many connections
tend to be surrounded by other objects. The inverse of this
count, normalized over the whole graph gives a frontier score
for each object as an additional criteria, shown in Fig. 10c.
Objects with greater frontier scores appear near the edge of the
map. Combining all three of these criteria with the minimum
operator gives the final assessment for each object, shown in
Fig. 10d. The highest scoring objects in this example are across
the street from the agent, near the edge of the explored area,
suggesting that one of these might be an appropriate target to
investigate next.

V. CONCLUSION

The spatial relationship graph proposed in this article can be
used to reduce a segmented point cloud into a lightweight form
with many potential applications. We demonstrated how the
graph could be queried to find objects that satisfy certain dis-
tance and directional constraints in a multi-criteria framework.
This approach is suitable for real-time scenarios that require
low computational overhead and can tolerate a high degree of
imprecision. High levels of uncertainty are bound to be present
in real-world settings, where an object may not be completely
observed. The bounding box and centroid method presented
here captures both the average spatial relationships between
objects, as well as the maximum and minimum extents.

The distance and direction relationships between bounding
boxes as defined here use an axis-aligned representation, which
is most appropriate for global queries. Objects that do not
align well with the world axes may suffer an increase in
imprecision from this choice of coordinate frame. An oriented
bounding box representation may be able to provide increased
accuracy, but with other trade-offs, such as increased storage
requirements and a more complicated spatial relationship
computation. We have limited our discussion here to the axis-
aligned approach for simplicity, but extensions and limitations
of this method are subjects for future work.

REFERENCES

[1] A. Dhawale, X. Yang, and N. Michael, “Reactive col-
lision avoidance using real-time local gaussian mixture
model maps,” in Proceedings of (IROS) IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
October 2018, pp. 3545 – 3550.

[2] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convo-
lutional networks on 3D point clouds,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.



(a) (b) (c)

Fig. 9. Example showing a combined distance and directional query to identify a lamp post that is “near” and “to the front-left” of a pedestrian (shown in
red). (a) Distance query for the query distance Tri(0, 5, 10). (b) Directional query for the vector û = [0.707, 0.707, 0] and ξ = 1. (c) Combined query using
the minimum operator. Zoom in to see full detail.

(a) (b) (c) (d)

Fig. 10. Example showing how an egocentric agent might select an object of interest to move towards and inspect more closely. Only objects with a max
distance of 30 meters (ξ = 0.5) from the agent (represented by a pedestrian in the scene) are considered as neighbors. (a) Distance query for the query
distance Tri(10, 20, 30). (b) Directional query for the vector û = [1, 0, 0] and ξ = 1. (c) Frontier score (objects with fewer neighbors score higher). (d)
Combined query using the minimum operator. Zoom in to see full detail.

[3] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui,
F. Goulette, and L. J. Guibas, “KPConv: Flexible and
deformable convolution for point clouds,” in Proceedings
of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[4] X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-
Lille-3D: A large and high-quality ground-truth urban
point cloud dataset for automatic segmentation and clas-
sification,” The International Journal of Robotics Re-
search, vol. 37, no. 6, pp. 545–557, 2018.

[5] G. Chronis and M. Skubic, “Sketch-based navigation for
mobile robots,” in The 12th IEEE International Confer-
ence on Fuzzy Systems, 2003. FUZZ ’03., vol. 1, 2003,
pp. 284–289 vol.1.

[6] M. Skubic, P. Matsakis, B. Forrester, and G. Chronis,
“Extracting navigation states from a hand-drawn map,”
in Proceedings 2001 ICRA. IEEE International Confer-
ence on Robotics and Automation (Cat. No.01CH37164),
vol. 1, 2001, pp. 259–264 vol.1.

[7] M. Haldekar, A. Ganesan, and T. Oates, “Identifying
spatial relations in images using convolutional neural
networks,” 2017.

[8] P. Matsakis, J. M. Keller, L. Wendling, J. Marjamaa,
and O. Sjahputera, “Linguistic description of relative
positions in images,” IEEE Trans. Syst. Man Cybern.
Part B, vol. 31, no. 4, pp. 573–588, 2001. [Online].

Available: https://doi.org/10.1109/3477.938261
[9] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa,

“The use of force histograms for affine-invariant relative
position description,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 1, pp. 1–18, 2004.

[10] J. Reed., M. Naeem., and P. Matsakis., “A first algorithm
to calculate force histograms in the case of 3D vector
objects,” in Proceedings of the 3rd International Confer-
ence on Pattern Recognition Applications and Methods -
ICPRAM,, INSTICC. SciTePress, 2014, pp. 104–112.

[11] J. L. Schonberger and J.-M. Frahm, “Structure-from-
motion revisited,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[12] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow,
“Digging into self-supervised monocular depth estima-
tion,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[13] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Upper Saddle River, NJ:
Prentice Hall, 1995.


