
Distribution Statement A: Approved for public release. Distribution is unlimited

Extending Deep Learning to New Classes without Retraining

Jeffrey Schulza, Charlie Veala, Andrew Bucka, Derek Andersona, James Kellera, Mihail

Popescua, Grant Scotta, Dominic K. C. Hoa, and Timothy Wilkinb

aDepartment of Electrical Engineering and Computer Science, University of Missouri,

Columbia MO, USA
bSchool of Information Technology, Deakin University, Geelong, Victoria, AU

ABSTRACT

The focus of this article is extending classifiers from N classes to N+1 classes without retraining for tasks like
explosive hazard detection (EHD) and automatic target recognition (ATR). In recent years, deep learning has
become state-of-the-art across domains. However, algorithms like convolutional neural networks (CNNs) suffer
from the assumption of a closed-world model. That is, once a model is learned, a new class cannot usually be
added without changes in the architecture and retraining. Herein, we put forth a way to extend a number of
deep learning algorithms while keeping their features in a locked state; i.e., features are not retrained for the
new N+1 class. Different feature transformations, metrics, and classifiers are explored to assess the degree to
which a new sample belongs to one of the N classes and a decision rule is used for classification. Whereas this
extends a deep learner, it does not tell us if a network with locked features has the potential to be extended.
Therefore, we put forth a new method based on visually assessing cluster tendency to assess the degree to which
a deep learner can be extended (or not). Lastly, while we are primarily focused on tasks like aerial EHD and
ATR, experiments herein are for benchmark community data sets for sake of reproducible research.

Keywords: convolutional neural network, explosive hazard detection, EHD, automatic target recognition, ATR,
possibilistic K nearest-neighbor, PKNN, clustering, clustering in ordered dissimilarity data, CLODD

1. INTRODUCTION

Our modern era of computational intelligence, machine learning, artificial intelligence, and related, is focused
intensely on highly specialized domain/task specific learners. A well-known example is the convolutional neural
network (CNN) and deep learning. While leaps in performance have been made via deep learning, a drawback is
that they generally abide by a “closed world” assumption, meaning the network was trained to regress or predict
a certain finite number of factors or classes that were present in the training data. However, what happens if a
user desires to add a new class/object, e.g., new target in automatic target recognition (ATR)? Current practice
is to retrain a network from scratch—which is generally an offline and resource expensive operation—or the
feature extraction layers can be retained and the classification layers retrained (a type of transfer learning). The
point is, we need a more elegant way to extend models like a CNN to class “N+1” without requiring extensive and
expensive offline retraining. Furthermore, most CNNs utilize a normalization strategy like soft max. Whereas
this often helps during training (and perhaps testing), it turns a network into a one of N classifier. The point
it, machines should possess a sufficient way to say “I don’t know what this is”.

Herein, we focus on two challenges. The first is how to efficiently extend modern deep learning to class N+1
to support tasks like explosive hazard detection (EHD) and ATR—see Figure 1. To this end, we investigate
different classifiers from computational intelligence, namely fuzzy set theoretic methods, versus the conventional
CNN approach of using a multi layer perceptron (MLP). Specific classifiers explored herein include the fuzzy
K nearest neighbor (FKNN) and the possibilistic K nearest neighbor (PKNN). We explore the performance of

Send correspondence to Jeffrey Schulz
Jeffrey Schulz: E-mail: jtsmbb@mail.missouri.edu

Table 1: Acronyms and Notation

KNN K nearest neighbor
PKNN Possibilistic KNN

CLODD Clustering in ordered dissimilarity data
K Number of neighbors for evaluation

K̂ Number of neighbors to fit in PKNN
xi ∈ X Train dataset of N samples and M dimension

fi ∈ ℜM̂ Neural feature encoding
[D]ij = D(i, j) Dissimilarity of xi and xj

Figure 1: High-level illustration of how we extend a deep learner to class N+1. First, a network, e.g., CNN, is
trained. Second, we strip off the classification layers (the MLP). As a result, each input is presented to a CNN
for feature extraction. These features are then passed to a classifier like the KNN, FKNN, or PKNN. Based on
the resultant typicalities, a sample is classified into a known class or the system reports “I don’t know”.

these classifiers and their ability to say “I don’t know”. To this end, we propose a way to learn the bandwidth
(the mechanism by which we say “I don’t know”) in the PKNN. Next, we investigate the challenge of predicting
our models ability to go to N+1—see Figure 2. The reality is, a CNN is generally at least two parts, feature
extraction and classification. What features did the network learn? Instead of assuming that we can just add
”N+1”, we propose an approach based on cluster validity assessment to measure the degree, in [0, 1], to which
we can add class N+1 (or not).

The remainder of this article is organized as follows. First, in Section 2 we discuss features and feature
extraction, in Section 3 we discuss our PKNN implementation and how to learn the PKNN from data, Section 4
discusses our method of assessing if a deep learning model can be extended to class N+1, and Section 5 discusses
our experiments and results.

2. FEATURE EXTRACTION AND DIMENSIONALITY REDUCTION

To no surprise, artificial intelligence, machine learning, pattern recognition, etc., are only as good as the infor-
mation (e.g., data and associated features) they are provided. For decades our research community has exerted
significant effort in manually identifying “manual or hand crafted features”. In signal, and specifically image,
processing, this typically equates to information like color, texture, and shape. An array of features have been
proposed to date, from Gabor filters to histogram of gradients, fractals, Harris, etc. However, the last decade
has witnessed a shift from hand crafted features to “machine learned” features.

In the context of neural networks, specifically CNNs, the story is that they learn basic shape, color, and/or tex-
ture features in lower layers, deeper layers are associated with more complicated and compound shapes/objects,
followed eventually by higher-level relationships and semantic information. Regardless of what is learned, the
fact is that CNNs consist of layers of filters, which when presented with data provide a response field. Consider
the popular Resnet51. If one removes the “classification layers” of Resnet51, then they obtain a final response

Figure 2: Illustration of our procedure for measuring the degree to which a model can be extended to class N+1.
We start with known classes that the model has been trained to recognize. Next, a set of instances from class
N+1 is provided. A dissimilarity matrix is constructed, which we can visually assess to determine how well the
model can extend. Furthermore, aspects of the CLODD algorithm are used to formally extract a number, or the
[0, 1] degree to which the network is extendable.

field of 2, 048 features. Specifically, the standard Resnet51 has a 7x7 response field per feature, which means
that Resnet51 has a dimensionality of 2, 048 ∗ 7 ∗ 7. Herein, in our pursuit of extending our models to class
N + 1, we investigate nearest neighbors versus an MLP classifier layer. This presents a dilemma as we have to
compute, and use, distances between samples in high dimensional spaces. The reader can refer to1 for a discourse
on the challenges of assessing proximity in high dimensional spaces. Herein, in an effort to combat the curse of
dimensionality, we explore a few reduction strategies to empirically assess if they help classification.

2.1 Reduction Strategy 1: Pooling

The first strategy that we explore is pooling. In the context of a CNN, pooling helps us combat a number of
factors, from dimensionality reduction to combating scale and even noise. The output feature vector for Resnet51
is of size 2, 048 ∗ 7 ∗ 7. In an attempt to side step affine transformations that we are not concerned with, we pool
within each feature map. Herein, we use max pooling, i.e., we take the largest response per feature (response
field). A demonstration of max pooling across a 4x4 response field is

0.2 0.1 0 0.6
0.1 0.3 0.4 0.5
0.7 0.6 0.8 0.5
0.4 0.3 0.4 0.2

→ 0.8.

Whereas we use max pooling, the reader can engage in a variety of aggregation operations for pooling, i.e., min,
median, or more complicated and unique operators like the ordered weighted average2 or fuzzy integral.3,4 Max,
a generalized union operator, is an appropriate fit for our task as it captures the idea of what was our strongest
response per feature. In summary, for a CNN like Resnet51, pooling is a simple procedure that helps us reduce
dimensionality from 2, 048x7x7 to 2, 048, at the expense of where in the spatial domain the feature occurred and
how many instances of that feature were observed.

2.2 Reduction Strategy 2: Principal Component Analysis

A second, yet simple, dimensional reduction technique explored herein is principal component analysis (PCA).
PCA is an unsupervised method that is a linear transformation whose basis vectors are identified on the premises

of maximizing variance. We perform an eigen decomposition, which results in D eigenvectors with corresponding
eigenvalues for a D dimensional space. Herein, we select the fewest number of eigenvectors whose eigenvalue sum
corresponds to more than %99 of the overall data variation. However, PCA is a linear transformation and there
is no guarantee that patterns or clusters in the original high dimensional space are preserved in the reduced low
dimensional space. For additional methods, the reader can refer to additional unsupervised methods like random
projections or supervised methods like Fishers linear discriminate analysis.

3. CLASSIFICATION: POSSIBILISTIC KNN

Next, we discuss our strategy for taking neural features and realizing a classifier that can help extend to N + 1
and say “I don’t know”. To this end, the PKNN improves the KNN by improving the semantics of the nearest
neighbor memberships and enabling outlier detection. A membership value can be calculated from the KNN via

µi
knn(x) =

1

K

K
∑

k=1

1i(yk), (1)

1i(yk) =

{

1 if sample yk belongs to class i
0 otherwise.

(2)

Clearly, µi
knn(x) ∈ [0, 1] is the number of points in class i relative to all of the nearest neighbors (K). In,5 Keller

et al. proposed an extension to the KNN, the fuzzy KNN (FKNN),

µi
fknn(x) =

∑K
j=1 µ̃

i(yj)

(

1

||x−yj ||
2

m−1

)

∑K
j=1

(

1

||x−yj ||
2

m−1

) , (3)

which is a membership weighted and inverse distance ratio of the K nearest neighbors. For each training sample
data point, a fuzzy membership is computed offline,

µ̃i(x) =

{

0.51 + (ni

K)× 0.49, if x belongs to class i
(ni

K)× 0.49, otherwise,
(4)

where 1 ≤ ni ≤ K is the number of neighbors that belong to class i. Thus, a membership degree is computed
per data point and per class relative to its local K nearest neighbors. If the sample point (x) belongs to class
i, then a reward of 0.51 is added to start, plus the ratio of K points in class i. Otherwise, the membership
is restricted to 0 ≤ µ̃i(x) ≤ 0.49. Imagine a sample surrounded by data points from the opposing class. The
assumption here is that our sample (that belongs to class i) is not noise. The resultant membership degree (i.e.,
µ̃i(x)) is 0.51, whereas it would have little-to-no voice in the KNN. In general, one expects the FKNN to be the
most beneficial in overlapping regions. During test time, we calculate µi

fknn(x), which exploits these membership
degrees. Consider a scenario in which a test sample has one retrieval from class i and the other nearest neighbors
belong to a different class. In the KNN, we would not select class i. However, in the FKNN, depending on the
proximity of x to the sample in class i, it is possible to generate µi

fknn(x) = 1 when x is sufficiently close to the
ith sample. This is one story. There are clearly other FKNN benefits that are more complicated, e.g., related to
memberships and relative neighbor distances.

In,6 Frigui and et al. created the possibilistic KNN (PKNN), an extension of the FKNN and KNN,

µi
pknn1

(x) =
1

K

K
∑

j=1

µ̃i(yj)w
p(x,yj), (5)

where µi
pknn1

(x) is the typicality–e.g., degree of similarity–of a test sample to a known class. Equation 5 sums
over K neighbors the product of the training data fuzzy memberships and the possibilistic score wp (explained
below). Herein, we also explore an unweighted version of the PKNN,

µi
pknn2

(x) =
1

K

K
∑

j=1

wp(x,yj). (6)

The possibilistic score, wp(·), is where the PKNN truly differs from the FKNN and KNN. The PKNN uses a
bandwidth factor, η, to take into account the distance of the test case to the prototypes. If a data point is within
the bandwidth, then the membership value is 1. Otherwise, the membership value decays, allowing points to
have low-to-no membership. The possibilistic scoring is

wp(x,yj) =
1

1 + [max(0, ‖x− yj‖ − η)]2/(m−1)
. (7)

In,6 Frigui et al. derived η from data. Specifically, Frigui let η = η1

η2
, where η1 is the mean µ of the distances of

the K closest neighbors in the training data and η2 is three times the standard deviation of the same set.

3.1 Bandwidth Parameter Optimization

Not all data and patterns are created equal, which poses problems for the η parameter presented in Equation 7.
Whereas the parameter estimation method proposed by Frigui et al. led to improvement for their explosive hazard
detection task, it does not necessarily generalize. In our experiments, datasets like ImageNet have relatively large
standard deviations which result in tiny η values. This required us to scale Frigui’s η to produce positive results.
While this is useful, it increased the amount of hand-picking and fine tuning required to get a PKNN classifier
running. To combat this problem, we propose to learn the bandwidths from data. To this end, we formulate
a cost function, J(wp, η, α), and a genetic algorithm is used for optimization as the equation does not have a
nicely differential or analytical solution. The cost function explored herein is

J(wp, η, α) = (1−
w

p
i,i

C
) +

w
p
i,j

C
+ α

C
∑

i=1

|ηi| , (8)

where wp is the typicalities of our validation samples, wp
i,i is the sum of true-positive typicalities (where only

the typicalities belonging to the correct class are totaled), and w
p
i,j is the sum of false-positive typicalities

(where only the typicalities belonging to incorrect classes are totaled). The cost function is rounded out with
a summation factor, scaled by α (a user defined parameter), meant to punish larger bandwidths. This factor
prevents bandwidths from ballooning farther than they need to be, increasing the chance for future N +1 classes
to fall outside of η in feature space.

4. ASSESSING EXTENDING TO CLASS N+1 AND SAYING “I DON’T KNOW”

The goal of this section is two fold. First, we desire a visual way to see and understand the quality of different
deep learning algorithms and models with respect to the N classes it was trained on and new unknown classes.
Second, we desire a way to move this qualitative process into a quantitative procedure. The following section
outlines these two approaches.

4.1 Qualitative: Visualizing Architectures, Models, and Features

First, we focus on qualitative assessment. If we, as humans, can determine separability between the features of
known and unknown classes when displayed in certain data visualization strategies, then it might be good news
for our deep learning models. In order to qualitatively determine if a model is able to separate the features of a
new class from an existing class, we will use an ordered dissimilarity matrix (ODM). ODMs are matrices built
from our data set by computing a distance function, e.g., lp norm, between all possible pairings of image feature
vectors. For sake of description, assume we have N classes. Furthermore, assume, without loss of generality
that there is an equal number of samples per class. In the ideal case, all samples in a class are similar and have
a low distance. Conversely, samples in a class are dissimilar to samples from other classes. As a result, when
one “looks” at an ODM they will see “dark blocks” along the diagonal per class and “white rectangles” in the
opposing classes. Whereas all distances are positive, in order to draw an ODM one can engage in a strategy
like range compressing the ODM between the min and max value for visual display. A dissimilarity matrix (not
ordered), like what we will use in this paper, is shown in Figure 3.

In the context of clustering (unsupervised learning), one typically uses a procedure like VAT or iVAT,7 for
ordering the samples and enhancing the visual structure of an ODM. Herein, we have class labels, we are doing

(a) No Dimensionality Reduction (b) Max-Pooling Reduction

Figure 3: ODM displaying 50 images per class of Monkeys, Tigers, Cheetahs, and Horses (the N+1 class). The
displayed data is the feature activation from ResNet101 max-pooled to size 1x2048. For this class balanced
example, the best case scenario is four dark diagonal squares with white in the off diagonals.

supervised learning. While we could reorder samples in each class via VAT/iVAT, one can regardless make out
the structure and class separation in Figure 3. However, for larger sets of samples, we recommend running VAT
per class and the enhancement step of iVAT on the permuted VAT ODM/image. As Figure 3 shows, our N+1
class, horses, has a distinguishable dark box, indicating similarity to itself and dissimilarity to the rest of the
data set (aka other classes). As a result, it suggests that even though the network was not trained on horses, it
learned visual features to recognize and distinguish horses. This is a positive indicator that the model can be
extended, i.e., the network might not need to be retrained.

4.2 Quantitative: Numerical Value Indicating “Goodness”

In order to rank models according to their ability to extend to N+1, we need to establish a measure that
somehow determines the separability of the N+1 class features to known class features. This takes the human
out of the loop and it enables automating the ranking for large numbers of trained models. Herein, we leverage
the measure component of the Clustering in Ordered Dissimilarity Data (CLODD)8 algorithm, which is a method
to automatically discover the number of clusters in a VAT/iVAT image. The equation for CLODD is

Eα(U ;D∗) = αEsq(U ;D∗) + (1− α)Eedge(U ;D∗); 0 ≤ α ≤ 1, (9)

where Eα(U ;D∗) is the weighted score between the “edginess” Eedge(U ;D∗) of the clusters and the “squaredness”
Esq(U ;D∗) of the clusters. The weight, a user defined parameter, of the “edginess” and “squaredness” factors
are determined by the mixing factor α. The equation for squaredness in CLODD is

Esq(U ;D∗) =

(

∑c
i=1

∑

s∈i,t/∈i d
∗
st

∑c
i=1(n− ni)ni

)

−

(

∑c
i=1

∑

s,t∈i,s 6=t d
∗
st

∑c
i=1(n

2
i − ni)

)

, (10)

where the average dissimilarity within dark regions is subtracted from the average dissimilarity between dark and
non-dark regions. In the first factor, dissimilarity between classes and all other classes (d∗s∈i,t/∈i) is averaged. In

the second factor, dissimilarity between classes and themselves (d∗s,t∈i,s 6=t) is averaged. The equation for edginess
in CLODD is

Eedge(U ;D∗) =
1

c− 1

c−1
∑

j=1

∑mj

i=mj−1

∣

∣

∣
d∗i,mj

− d∗i,mj+1

∣

∣

∣
+
∑mj+1

i=mj+1

∣

∣

∣
d∗i,mj

− d∗i,mj+1

∣

∣

∣

nj + nj+1
, (11)

Figure 4: Our Imperfect Dataset consists of oranges, bananas, and donuts. Oranges and bananas are pulled from
ImageNet and donuts are pulled from Food101.

where the dissimilarity between one cluster and the next is summed up over all clusters, averaged over the
number of samples. Equations 10 and 11 are combined to create Equation 9, which is maximized in the CLODD
algorithm to find good clusters.

Herein, we have a slightly different problem than CLODD. Specifically, we are not working with unlabeled
data and we do not permute the dissimilarity matrix with respect to underlying cluster structure. Instead, the
dissimilarity matrix is organized according to know class labels, which alters the semantics of edginess. As such,
two procedures are explored herein.

In Method 1, only squaredness is calculated, not edginess, with respect to class N+1. The idea is to subtract
the average of the class N+1 to not N+1 classes from the average of the class N+1 to class N+1 instances.
However, we first normalize the dissimilarity matrix by subtracting its minimum and then dividing by the
maximum. This normalization is performed for sake of interpretability, i.e., a value of one is best and negative
one is the worst possible outcome. In Method 2, we compute Equation 10, just squardness on the entire matrix.
The difference between Method 1 and Method 2 is, Method 1 says “how well can we separate class N+1 from
the other classes”, and Method 2 says that plut “how well does the not N+1 classes separate from one another”.
It might be important to consider both, as the goal would be an ODM with all dark blocks across the diagonal,
indicating that class N+1 can be detected and discriminated, but it does not come at the expense of any of the
existing classes. This nuance is subtle and elaborated on via example in the results section.

5. EXPERIMENTS AND RESULTS

In this section, we investigate three questions: what is our classification accuracy relative to different models
and projections; does optimal bandwidth parameter selection lead to performance gain; and is it possible to rank
order approaches based on our predictive metric. While our primarily goal is detection relative to aerial EHD
and ATR, our experiments are performed on benchmark community data sets for sake of reproducible research.
Figures 4 and 5 show samples of the data used for each class.

5.1 PKNN-Based Classification

In this subsection, we focus on two data sets with varying levels of complexity, noise, and class similarity.

Figure 5: A simpler dataset consists of monkeys, cheetahs, tigers, and horses. Monkeys, cheetahs, and tigers are
pulled from ImageNet and horses are hand-picked.

5.1.1 Experiment 1: Visually Challenging Classes and Imperfect Dataset

In Experiment 1 (see Figure 6), we demonstrate the classification accuracy of the PKNN on a three class dataset;
Oranges, Bananas, and Donuts. Oranges and Bananas are from ImageNet but Donuts (the “class N+1” here)
are from the Food101 dataset. The Food101 dataset has noisy labels, at an estimated level of twenty percent.
The model under test is ResNet101, pretrained on ImageNet. Since the model is pretrained on ImageNet and
ImageNet does not include donuts, presumably our model has not seen class N+1 and it may not be equipped with
features to recognize donuts. The weight factor α, from the cost function 8 is 0.001 and the typicality threshold
for classficiation is 0.34. Optimized bounds are found using a DEAP genetic algorithm in 10 generations with
100 individuals, a 0.5 cross-over rate, and 0.2 mutation rate. In the case of PCA, the data is reduced to 1x200
per sample. When reducing the max-pooled data with PCA, the data is reduced to 1x180.

Experiment 1 tells the following story. First, when no dimensionality reduction is performed, donuts worsen
banana classification. For sake of page count, we do not focus on why these miss-classifications occur—e.g.,
shape, background versus foreground object features, etc.—the reader can refer to methods like GradCAM or
convolution matrix transpose (e.g., “deconvolution”) for visual explainable AI if desired. PCA is the worst
performer and the best solution is max pooling with PCA. That is, the best answer is to reduce dimensionality
after performing an optimistic pooling step per feature map. The reader should recall that Food101 has noisy
labels and complex backgrounds (aka, image content that is not our class of interest). This is a major reason
for selecting these datasets versus a dataset like MNIST; which consists of foreground digits with no background
complexity. Furthermore, we determined that it was important to start with a relatively hard visual task, e.g.,
distinguishing foods, versus something simpler like different animals (Experiment 2).

(a) No Dimensional Reduction (b) Max-Pooling

(c) PCA (d) Max-Pooling & PCA

Figure 6: Confusion matrices of test data after bandwidth parameter estimation using the raw (high dimensional)
data, max-pooled, PCA, and max-pooled data reduced with PCA.

5.1.2 Experiment 2: More Relevant, Albeit Simpler Dataset

In Experiment 2 (Figure 7), we demonstrate the PKNN on a four animal class dataset; Monkeys, Tigers, Cheetahs,
and Horses. Monkeys, Tigers, and Cheetahs are from ImageNet, whereas Horses are not, their reference imagery
were handpicked by us. The model under test is ResNet101, pretrained on ImageNet. Since the model is
pretrained on ImageNet and ImageNet does not include horses, the question is, did our model learn features
that can help detect and distinguish horses. The weight factor α, from the cost function 8 is 0.001 and the
typicality threshold for classficiation is 0.34. Optimized bounds are found using a DEAP genetic algorithm in 10
generations with 100 individuals, 0.5 cross-over rate, and 0.2 mutation rate. When reduced via PCA, the data
is reduced to 1x300 per sample and the max-pooled data with PCA is reduced to 1x264.

A limitation of only reporting classification rates and confusion matrices is that the reader cannot see the
typicality degrees. For example, a confusion matrix is built with respect to which class has the highest typicality.
In Figure 7, we show the classification rates, confusion matrices, and stem plots of the typicalities. The PCA
stem plot paints a picture where the machine is almost always certain about the known classes, but class N+1
has many high typicalities. On the other hand, max-pooling shows varying confidences in the class examples

(a) PCA (b) Max-Pooling

(c) Stem Plot - PCA (d) Stem Plot - Max-Pooling

Figure 7: Confusion matrices and corresponding typicality stem plots for test data after bandwidth estimation.

with little-to-no typicalities in the class N+1. The reader can see that max-pooling reduction led to an accuracy
of 82%, while PCA led to a drop of 9%.

Furthermore, we would like to stress that just because the model does not have a class does not mean
that a model has not seen, and possibly built features for class N+1. For example, two unrelated objects
can share features and learning features across classes can lead to discriminatory potential. Furthermore, even
though ImageNet does not have a class for Horses, it does have a synset for “horse-cart” and other horse-drawn
vehicles. We discovered this after identifying and running this experiment. Hence, our success with respect to
this experiment—i.e., our ability to add and discriminate class N+1—could be due to the fact that a model
pretrained on ImageNet learned/remembers features for horses, even though the specific class is not an option
for classification in a traditional CNN pretrained on ImageNet. It is an interesting tidbit and something that
the reader should be aware of.

5.1.3 Experiment 3: Bandwidth Optimization

In Experiment 3, we demonstrate that it is important to individually optimize bandwidths for each class as the
Frigui et al.6 method of calculating η based on class statistics does not hold for every dataset. The results of the
originally proposed η are shown in Figure 8, with respect to the same setup as outlined in Experiment 2, except
the data was max-pooled then reduced with PCA to 1x264.

(a) η = µ/(3 ∗ σ) Parameters (b) GA Optimized η

(c) Stem Plot: η = µ/(3 ∗ σ) (d) Stem Plot: GA Optimized η

Figure 8: Visualization of the confusion matrices and typicality stem plots for the two bandwidth estimation pro-
cedures. Figures (a) and (c) show that the data-derived bandwidths are too small, resulting in total classification
of “none”. The optimized bandwidths for this dataset are clearly higher, as shown in (b) and (d).

Clearly, the bandwidths calculated from class statistics are too small. While they lead to perfect classification
for class N+1, they are so tiny that they do not generate any high typicalities for the known N classes. While
this selection scheme worked for the explosive hazard detection problem and set of features that Frigui et al.
investigated, it does not hold across datasets. This is not alarming as we did expect the optimized bandwidths
to perform better, as it has the ability to adapt to the underlying data/needs.

We want to make sure that the following is clear. The bandwidth optimization achieves a score of 92%, at
the expense of mistaking some tigers as horses. While horses are almost perfectly classified, same with cheetahs

and monkeys, the neural network has not learn enough features to properly distinguish all of its classes. We can
optimize the bandwidth parameters all we like, but we cannot overcome this limitation with the features.

5.2 Predicting a Models Ability to Extend to Class N+1

In this subsection we switch gears and we explore both qualitative and quantitative ways to assess if its possible
to extend a model to class N+1. The above subsection approached this challenge with respect to the PKNN and
classification accuracy. The aim of this subsection is to weaken our assumptions. We desire to determine if it is
possible to take an ODM and directly predict a networks extension potential.

5.2.1 Experiment 4: Dimensionality Reduction Technique Assessment

In Experiment 4, we use squaredness (Equation 10) on the full ODM (Method 1) and only the N+1 rows (Method
2) to assess the different dimensionality reduction techniques explored herein. That is, we desire to observe if
its advantageous to retain the full set of original features or their reduced and more efficient counterparts; the
latter being our intuition. For this experiment, we use features from ResNet101 on the animal dataset from
Experiment 2. The results for both measures are reported in Table 2 and Figure 9.

Table 2: Dimensionality reduction techniques on ResNet101 features.
Model Squaredness, Full Matrix Squaredness, Sub Matrix
No reduction 0.1106 0.1523
Max-pooling 0.1652 0.4253
PCA 0.2889 0.2344
Max-pooling & PCA 0.2257 0.6732

Figure 9 and Table 2 tell the following story. Overall, max-pooling with PCA is the best. However, PCA
achieves a better score with respect to Method 1, Equation 10 for just class N+1. That is, PCA alone does the
best job rejecting class N+1 samples. However, it does the such at the expense of the other N classes. As the
overall squaredness tells us, max-pooling does a better job discriminating between the N classes and with class
N+1. We included this example to illustrate the fact that only listening to rejecting unknown samples is not
enough, it cannot come at the expense of the N classes.

5.2.2 Experiment 5: Assessing Different Architectures and Models

In Experiment 5, we use our squaredness measure to compare and rank various models with respect to their
ability to extend to class N+1. For this experiment, we max-pool the features coming out of the network on the
animal dataset from Experiment 2. The results for each of the models are reported in Table 3 and Figure 10.

Table 3: Experiment 5 results.
Model Squaredness, Full Matrix Squaredness, Sub Matrix Ranking Num Features
ResNet101 0.1652 0.2565 1 2048
AlexNet 0.0992 0.0733 4 256
VGG19 0.1237 0.1511 3 512
DenseNet201 0.1333 0.1992 2 1920

Table 3 and Figure 10 tell the following story. First, the measure scores align with how we visually would rank
the four architectures. Namely, ResNet101 was best, followed by DenseNet201, VGG19, then AlexNet. While
this is reinforcing, there is a trend. Namely, the rank ordering of our models align with the number of features
in the respective architectures. This might lead one to believe, in general, that the more features the better.
However, we are not able to deduce such a conclusion based on such a simple basis; set of experiments. What
Table 3 really highlights is the fact that this experiment is apples-2-oranges. That is, each model has a different
number of features and as such they are challenging to compare. Again, our results are nice in the respect that
they help support the validity of our qualitative and quantitative processes, however the reader would benefit
from using the proposed measure across a wider range of models or perhaps apples-2-apples experiments, e.g., like
architectures trained on different data, different initializations, etc. All we can logically extract from Experiment

(a) None (b) Max-pooling

(c) PCA (d) Max-pooling & PCA

Figure 9: Dissimilarity matrices (normalized to [0, 1]) for Experiment 4.

5 is that our measure lines up with what a human would assess and that more features, up to some limiting or
diminishing point, possibly result in a richer visual vocabulary that help with extending to class N+1.

6. SUMMARY AND FUTURE WORK

Herein, we explore how to extend artificial neural networks to class N+1 (aka a new class that the network has
not been trained on). To this end, we investigate different dimensionality reduction methods to remediate the
impact of undesired affine transformations and the curse of dimensionality relative to the proposed possibilistic k
nearest neighbor classifier (PKNN). As the PKNN depends on bandwidth parameters, we optimize them using a
genetic algorithm. We couple these methods with the generation of ordered dissimilarity matrices and automatic
scoring based on the notion of squaredness in CLODD. Our experiments show that the combination of max
pooling and PCA lead to the best classification accuracy, typicalities, and ordered dissimilarity matrices. All of
the above results were observed on community benchmark datasets for sake of reproducible research versus some
underlying EHD or ATR dataset that cannot be shared. The particular experiments were selected to highlight
classes of varying visual complexity.

In future work, we will investigate the following. First, we will explore how to extend the notion of edginess

(a) ResNet101 (b) AlexNet

(c) VGG19 (d) DenseNet201

Figure 10: Dissimilarity matrices of max-pooled feature activations from each CNN, normalized to [0, 1].

in a supervised context. Second, while the PKNN is useful for rejecting outliers, the mechanism (equation)
needs improvement, beyond parameter (bandwidth) optimization. Next, our procedures, e.g., the PKNN and
bandwidth selection, are learned independent of the neural network, which is merely performing feature ex-
traction. Ideally, these would be learned in conjunction—parallel or simultaneously—with one another. From
an experimental standpoint, a deeper and more thorough analysis is needed across existing architectures and
models. Last, this article focuses on detection. A next step will be assessing how to extend the proposed ideas
to detection and localization. In summary, we are excited about the preliminary results but more work is needed
before a robust real-time solution is in hand.

ACKNOWLEDGMENTS

This work is partially funded by the Army Research Office (ARO) grants numbered W911NF-18-1-0153 and
W911NF-19-1-0181 to support the U.S. Army RDECOM CERDEC NVESD.

REFERENCES

[1] Charu C. Aggarwal, A. H. and Keim, D. A., “On the surprising behavior of distance metrics in high dimen-
sional space,” (2001).

[2] Pagola, M., Forcen, J. I., Barrenechea, E., Lopez-Molina, C., and Bustince, H., “Use of owa operators
for feature aggregation in image classification,” in [2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE)], 1–6 (July 2017).

[3] Dias, C., Bueno, J., Borges, E., Botelho, S., Dimuro, G., Giancarlo, L., Fernandez, J., Sola, H., and Drews-Jr,
P., [Using the Choquet Integral in the Pooling Layer in Deep Learning Networks], 144–154 (07 2018).

[4] Price, S. R., Price, S. R., and Anderson, D. T., “Introducing fuzzy layers for deep learning,” in [2019 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE)], 1–6 (June 2019).

[5] James M. Keller, Michael R. Gray, J. A. G., “A fuzzy k-nearest neighbor algorithm,” (1985).

[6] Hichem Frigui, P. G., “Detection and discrimination of land mines in ground-penetrating radar based on
edge histogram descriptors and a possibilistic k-nearest neighbor classifier,” (2008).

[7] Wang, L., Nguyen, U. T. V., Bezdek, J. C., Leckie, C., and Ramamohanarao, K., “ivat and avat: Enhanced
visual analysis for cluster tendency assessment,” in [PAKDD], (2010).

[8] Timothy C. Havens, James C. Bezdek, J. M. K. M. P., “Clustering in ordered dissimilarity data,” (2009).

	INTRODUCTION
	FEATURE EXTRACTION AND DIMENSIONALITY REDUCTION
	Reduction Strategy 1: Pooling
	Reduction Strategy 2: Principal Component Analysis

	Classification: Possibilistic KNN
	Bandwidth Parameter Optimization

	ASSESSING EXTENDING TO CLASS N+1 AND SAYING ``I DON'T KNOW''
	Qualitative: Visualizing Architectures, Models, and Features
	Quantitative: Numerical Value Indicating ``Goodness''

	Experiments and Results
	PKNN-Based Classification
	Experiment 1: Visually Challenging Classes and Imperfect Dataset
	Experiment 2: More Relevant, Albeit Simpler Dataset
	Experiment 3: Bandwidth Optimization

	Predicting a Models Ability to Extend to Class N+1
	Experiment 4: Dimensionality Reduction Technique Assessment
	Experiment 5: Assessing Different Architectures and Models

	Summary and Future Work

