

A Weighted Matrix Visualization for Fuzzy Measures and Integrals

Andrew R. Buck, Derek T. Anderson, James M. Keller, Timothy Wilkin, and Muhammad Aminul Islam

SPONSORS:

IEEE Computational Intelligence Society

Outline

- Background
 - Fuzzy measures and the Choquet integral
 - Shapley value and interaction index
- Visualizing fuzzy measures
 - Weighted matrix diagram
 - Showing data coverage
- Examples
 - OWA operators
 - MCDM
 - Information fusion
- Conclusion

IEEE

for Humanity

Advancing Technology

IEEE Computational

Intelligence

Societ

THE INTERNATIONAL NEURAL NETWORK

SOCIETY

(INNS)

FPS

Programmir

Fuzzy Measure

- Given a finite set $X = \{x_1, \dots, x_n\}$
- A fuzzy measure is a function $g: \mathcal{P}(X) \to \mathbb{R}^+$ which satisfies
 - (i) $g(\emptyset) = 0$
 - (ii) $A \subseteq B \subseteq X$ implies $g(A) \leq g(B)$
- Usually we define g(X) = 1.
- $\mathcal{P}(X)$ is the power set of X.
 - E.g. for $X = \{x_1, x_2, x_3\}, \mathcal{P}(X) = \{\emptyset, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}\}.$
- We can think of g(A) as representing the value or utility of the subset $A \subseteq X$.

Shapley Value

• The Shapley value of a fuzzy measure g is defined as the vector $[s_1, ..., s_n]$ where

$$s_{i} = \sum_{K \subseteq X \setminus i} \frac{(n - |K| - 1)! |K|!}{n!} [g(K \cup i) - g(K)], \quad \text{with } n = |X|$$

- The vector is normalized such that $\sum_{i=1}^{n} x_i = g(X)$.
- Each s_i represents the average contribution that x_i makes to the worth of the set when added to an existing subset.

Interaction Index

- The Shapley value can be generalized to extend to arbitrary subsets of X.
- The interaction index of a subset $A \subseteq X$ for a fuzzy measure g is defined as

$$I(A) = \sum_{B \subseteq X \setminus A} \frac{(n - |B| - |A|)! |B|!}{(n - |A| + 1)!} \sum_{C \subseteq A} (-1)^{|A \setminus C|} g(C \cup B), \quad \text{with } n = |X|$$

- *I(A)* gives a sense of the worth of the set *A* in the context of the fuzzy measure.
- When I(A) > 0, there is positive synergy between the elements.
- When I(A) < 0, the elements are redundant.

Fuzzy Integral

- Let $h: X \to [0, 1]$ be a function that specifies the value of a single element $x_i \in X$.
- Given h and g, the discrete Choquet integral is defined as

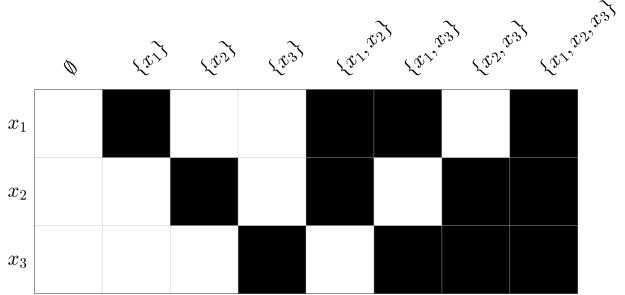
$$C_g(h) = \int_C h \circ g = \sum_{i=1}^n h(x_{\pi(i)})[g(A_i) - g(A_{i-1})]$$

where π is a permutation of X such that $h(x_{\pi(1)}) \ge h(x_{\pi(2)}) \ge \cdots \ge h(x_{\pi(n)})$ and $A_i = \{x_{\pi(1)}, \dots, x_{\pi(i)}\}$ with $g(A_0) = 0$.

A single data sample h produces an output C_g(h) that uses only n of the 2ⁿ possible subsets of X, implying that data coverage may be important in learning a good measure.

Visualizing a Fuzzy Measure (1)

- Suppose we have a fuzzy measure g defined over a set $X = \{x_1, x_2, x_3\}$.
- Begin by constructing a binary indicator matrix.



A	g(A)
Ø	0
$\{x_1\}$	0.3
$\{x_2\}$	0.2
$\{x_3\}$	0.4
$\{x_1, x_2\}$	0.7
$\{x_1, x_3\}$	0.8
$\{x_2, x_3\}$	0.4
$\{x_1, x_2, x_3\}$	1

IEEE Computational

Intelligence

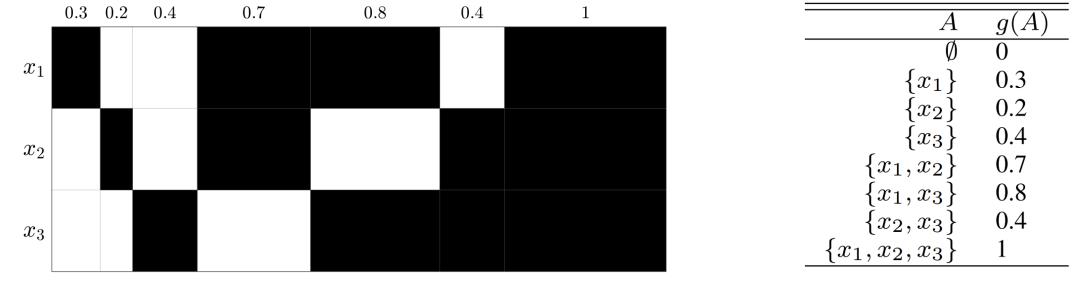
The Internationa Neural Network

SOCIETY

(INNS)

Visualizing a Fuzzy Measure (2)

- Next, adjust the width of each column subset A to be proportional to g(A).
- Since $g(\phi) = 0$, the first column is not shown.



SPONSORS:

FFF

for Humanity

Advancing Technology

IEEE Computational

Intelligence

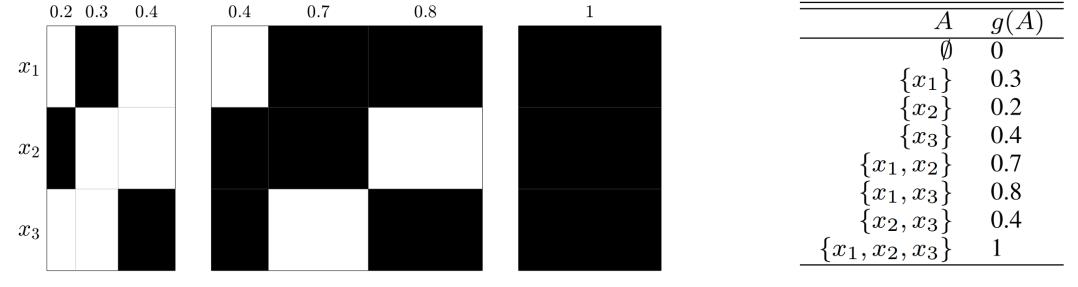
Society

THE INTERNATIONAL NEURAL NETWORK

SOCIETY (INNS)

Visualizing a Fuzzy Measure (3)

• Then, separate the cardinality sets and sort the columns by increasing value within each set.



University of Missouri

SPONSORS:

IFFF

for Humanity

Advancing Technology

IEEE Computational

Intelligence

Society

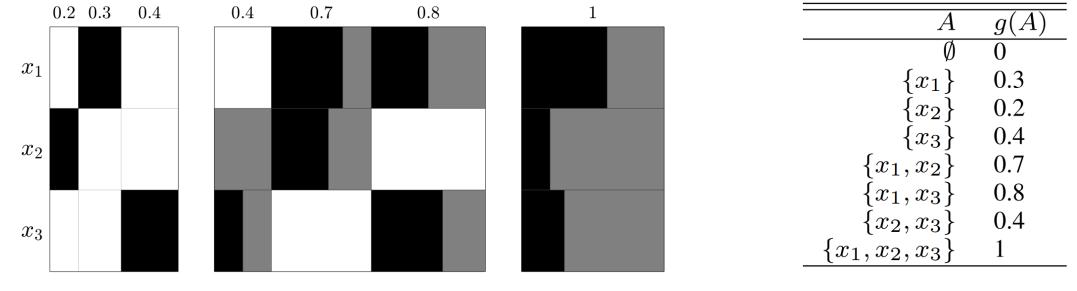
THE INTERNATIONAL NEURAL NETWORK

Programmin

SOCIETY (INNS)

Visualizing a Fuzzy Measure (4)

- The incremental contribution of source *i* in subset A_j is $\Delta g_{ij} = g(A_j) g(A_j \setminus i)$.
- These are shown as horizontal black bars and the indicator matrix becomes gray.



University of Missouri

SPONSORS:

Advancing Technology

THE INTERNATIONAL NEURAL NETWORK

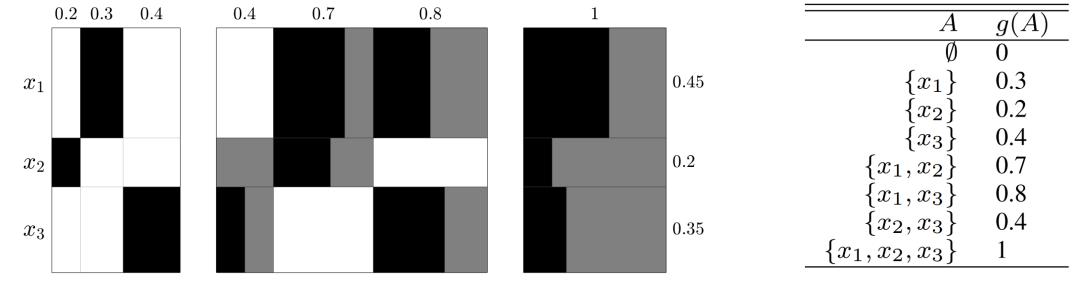
Society (INNS)

IEEE Computational

Intelligence

Visualizing a Fuzzy Measure (5)

- The row heights are scaled proportionally to the Shapley index of each source.
- Wider rows indicate more important sources.



University of Missouri

SPONSORS:

Advancing Technology for Humanity IEEE Computational

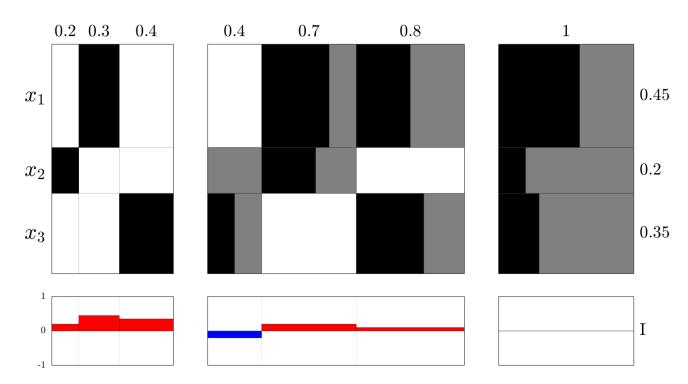
Intelligence

THE INTERNATIONAL NEURAL NETWORK

SOCIETY

(INNS)

Visualizing a Fuzzy Measure (6)



- Finally, we can show the interaction indices for each subset as a bar graph below the diagram.
- The interaction index *I(A)* for singletons is equal to the Shapley value.
- Positive values (red) show synergy and negative values (blue) show redundancy.

IEEE Computational

Intelligence

THE INTERNATIONAL NEURAL NETWORK

SOCIETY

(INNS)

SPONSORS:

EEE

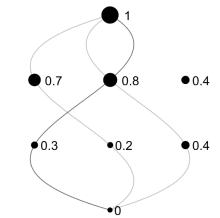
Advancing Technology for Humanitv

Learning a FM from Data

- A FM lattice visualization can show which variables are supported by data [1].
- Each data sample is shown as a walk through the lattice.
- We can see unsupported subsets, but it can be difficult to identify the corresponding source elements.

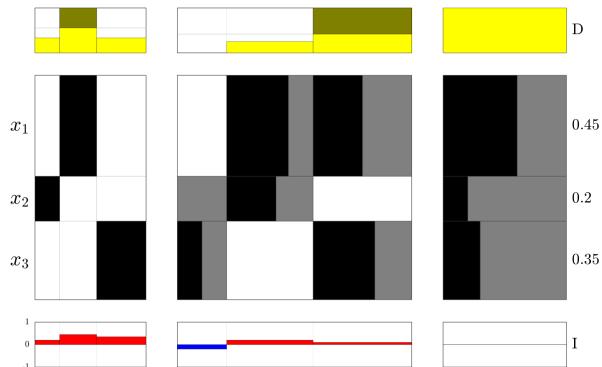
TABLE I: Fuzzy	Measure
A	g(A)
Ø	0
$\{x_1\}$	0.3
$\{x_2\}$	0.2
$\{x_3\}$	0.4
$\{x_1, x_2\}$	0.7
$\{x_1, x_3\}$	0.8
$\{x_2, x_3\}$	0.4
$\{x_1, x_2, x_3\}$	1

TABLE II: Example Data						
$h(x_1)$	$h(x_2)$	$h(x_3)$	$\pi_{(1)}$	$\pi_{(2)}$	$\pi_{(3)}$	
0.74	0.13	0.14	1	3	2	
0.94	0.09	0.74	1	3	2	
0.97	0.13	0.75	1	3	2	
0.92	0.96	0.74	2	1	3	
0.91	0.20	0.92	3	1	2	



[1] A. J. Pinar, T. C. Havens, M. A. Islam, and D. T. Anderson, "Visualization and learning of the Choquet integral with limited training data," in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, July 2017.

Looking at Data Coverage



- Add a data coverage histogram above the diagram and normalize within each cardinality set.
- A horizontal line shows the mean visitation value and bars that extend above this are darkened.

-						
-	$h(x_1)$	$h(x_2)$	$h(x_3)$	$\pi_{(1)}$	$\pi_{(2)}$	$\pi_{(3)}$
-	0.74	0.13	0.14	1	3	2
	0.94	0.09	0.74	1	3	2
	0.97	0.13	0.75	1	3	2
	0.92	0.96	0.74	2	1	3
	0.91	0.20	0.92	3	1	2

University of Missouri

Advancina Technoloav

Examples: Min & Max

- A fuzzy measure defines how the Choquet integral behaves.
- The min operator only gives value to the last element added in the sort.
- The max operator gives full value to the first element.



SPONSORS:

Advancina Technoloav

for Humanity

The Internationa Neural Network

SOCIETY

(INNS)

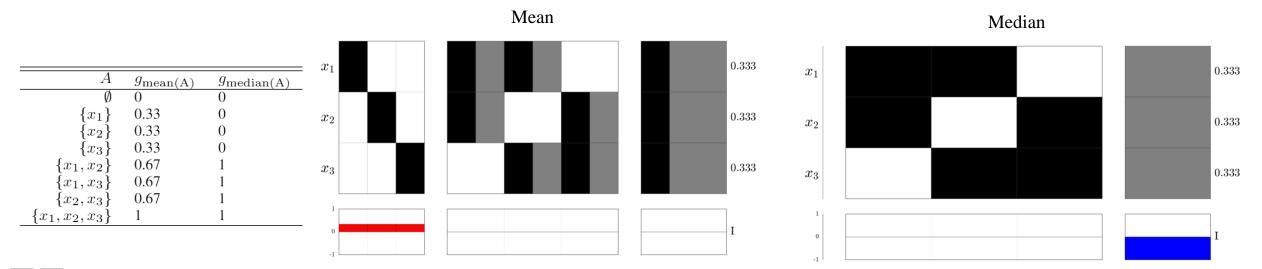
IEEE Computational

Intelligence

Societ

Examples: Mean & Median

- The mean operator shows uniform black bar sizes and a vertical striping pattern.
- The median operator gives all value to the middle cardinality set.



333

for Humanity

Advancing Technology

IEEE Computational

Intelligence

Societ

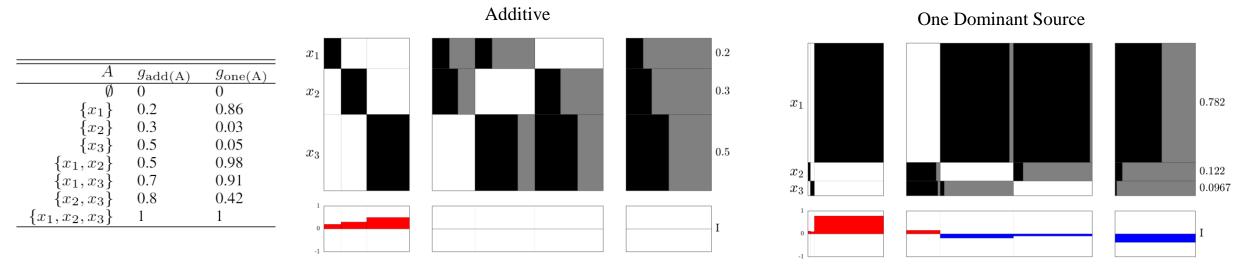
THE INTERNATIONAL NEURAL NETWORK

SOCIETY

(INNS)

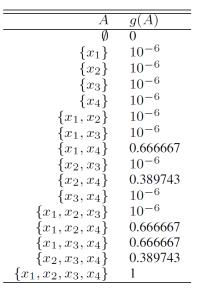
More 3-Source Examples

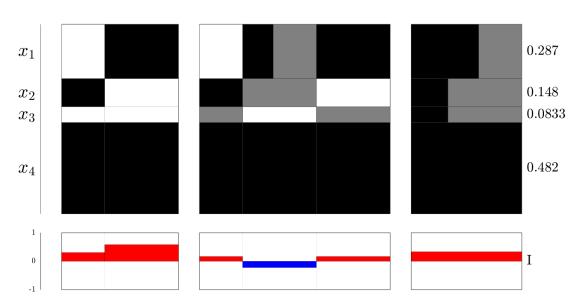
- In the additive FM, $g(A \cup B) = g(A) + g(B)$, and there are no interactions.
- When one source is dominant, it has a wider row and more black area.



MCDM Example

- Fuzzy integrals can also be used for multicriteria decision-making.
- This example from [2] is used to score individuals on four judging criteria, x_1 to x_4 .





[2] M. Grabisch and M. Roubens, "Application of the Choquet integral in multicriteria decision making," *Fuzzy Measures and Integrals: Theory and Applications*, pp. 348–374, 2000.

Advancing Technology

for Humanity

THE INTERNATIONAL NEURAL NETWORK

Programmin

SOCIETY

(INNS)

IEEE Computational

Intelligence

Society

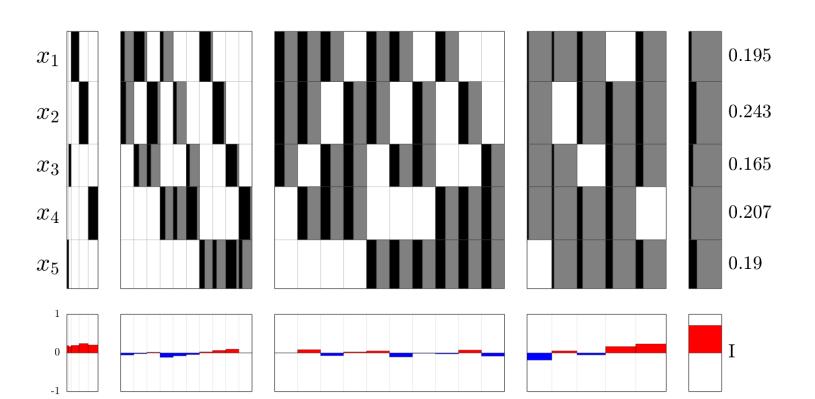
Embedded OWA Operators

- A fuzzy measure can have a embedded OWA operator.
- In this example,

$$g(A) = \begin{cases} 0 & A = \emptyset \\ U(0, 0.4) & |A| = 1 \\ 0.4 & |A| = 2 \\ 0.7 & |A| = 3 \\ U(0.7, 1) & |A| = 4 \\ 1 & A = X \end{cases}$$

 Vertical striping can be observed in the cardinality 3 and 4 sets.

University of Missouri



IEEE Computational

Intelligence

Society

THE INTERNATIONAL NEURAL NETWORK SOCIETY

(INNS)

EPS

Programming Society

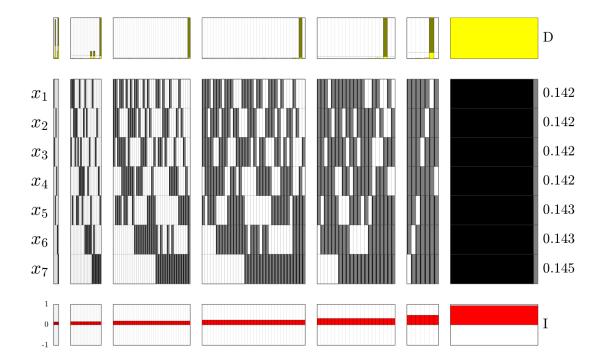
SPONSORS:

for Humanity

Advancing Technology

Measures Learned from Data

- In [3], a fuzzy measure is learned to aggregate the output of 7 neural networks.
- The diagram shows this FM acts mainly as a min operator and could be represented as an OWA.
- All sources are roughly equal in importance.
- The data visitation histogram shows almost all the data used a single walk.





THE INTERNATIONAL NEURAL NETWORK

SOCIETY (INNS)

[3] M. A. Islam, D. T. Anderson, A. J. Pinar, T. C. Havens, G. Scott, and J. M. Keller, "Enabling explainable fusion in deep learning with fuzzy integral neural networks," *IEEE Transactions on Fuzzy Systems (accepted)*, 2019, arXiv: 1905.04394.

Advancing Technology for Humanity IEEE Computational Intelligence

Conclusion

- We presented a weighted matrix visualization for understanding fuzzy measures.
- This technique provides detail into the interactions between sources and can help determine if the full expressive power of the full fuzzy integral is required.
- Although it's possible to use an arbitrary number of sources, interpretability decreases with many sources.
- An interactive version that renormalizes subsets may be useful for large problems.
- Code is available on Code Ocean at https://codeocean.com/capsule/6663959.

