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Abstract— In this paper, we consider the problem of choosing 

a least-cost path from a graph that is attributed with multiple 

fuzzy weights. The cost of a path is determined by multiple 

conflicting objectives that seek to minimize either the total or 

maximum values of each feature over the length of the path. We 

present a framework for evaluating paths with various agent 

preferences. Our method allows the agent to pick any Pareto 

optimal path and can be used within a larger framework to model 

decision-making behavior. Our approach is demonstrated on a 

hand-crafted example problem.  

Keywords—fuzzy decision-making, multiobjective optimization, 

shortest path problem, non-additive objective 

I. INTRODUCTION 

Pathfinding is a critical component of mobile autonomous 

agents. Given an environment space ℰ, the agent must decide 

how best to navigate from its current location to some 

destination or may even need to determine where to go in the 

first place. In practice, the representation of the environment 

plays an important factor in how well the agent can operate. 

Typically, the environment is treated as a graph 𝐺(ℰ), where 

vertices are valid locations and edges indicate the cost of travel. 

Agents with multiple objectives to satisfy may assign a vector 

of weights to each edge so that any path can be evaluated in 

terms of each objective. In crisp domains, this graph is known 

completely and can be used by the agent to construct a plan. 

However, when the environment is not known exactly, some 

uncertainty must be captured by the graph representation. 

Multi-attributed fuzzy weighted graphs can be used to describe 

these problems and find solutions that best satisfy the agent’s 

objectives. 

Consider the example problem given in Fig. 1, where an 

agent needs to choose a path through the environment graph 

from vertex 1 to 5. Each edge of the graph is annotated with a 

distance and slope attribute, described using linguistic terms 

and defined as triangular fuzzy numbers. The agent has two 

objectives: minimize both the total path distance and the 

maximum slope along any single edge. This is an instance of 

the multiobjective fuzzy least-cost path problem (MO-FLCPP), 

which can have different solutions depending on the agent’s 

preferences. We will present in this paper a method for 

modeling the agent’s preferences and choosing a solution path 

from the Pareto optimal set. 

This work is motivated by the desire to model various agent 

behaviors in fixed environments. For instance, in the example 

problem, one agent may prefer to take the shortest route even 

though it goes over a steep hill, while another agent might 

choose to take the longer but flatter path. By understanding how 

the agent evaluates and ranks each of the available options, we 

may begin to build predictive models of the agent’s behavior. 

This lets us answer questions such as, “how would this agent 

behave in a different environment?” To study these types of 

problems, we developed the computational mental map (CMM) 

framework [1], which implements the method presented here 

for evaluating MO-FLCPPs as part of the broader problem of 

developing agents that can demonstrate various behaviors and 

strategies in uncertain and partially observable environments. 

The CMM framework can generate a wide variety of 

benchmark problems such as the one shown in Fig. 2, and 

although there are various approaches to choosing a goal 

location and finding the best path to get there, our focus in this 

paper is on how the agent can evaluate various path options that 

have already been provided and choose among them. 

We begin in Section II by defining the representations for 

fuzzy numbers and fuzzy weighted graphs. Then Section III 

shows how multiobjective optimization methods can be applied 

to multi-attributed fuzzy weighted graphs. Section IV gives our 

conclusions and directions for future work. 

II. MULTI-ATTRIBUTED FUZZY WEIGHTED GRAPHS 

A. Fuzzy Numbers 

A fuzzy number 𝐴 ⊆ ℝ is a normalized convex fuzzy set 

with a membership function 𝜇𝐴: 𝐴 → [0, 1] that specifies the 

degree to which a real number 𝑥 ∈ ℝ is included in the set 𝐴. 

Fuzzy numbers provide a way to represent uncertainty in the 

true value of a number and to express linguistic approximations 

such as “about 3” or “nearly 10.” We use triangular fuzzy 

numbers throughout this work to demonstrate our approach, but 

other representations (such as trapezoids or alpha-cuts) could 

be used with minor modifications. A triangular fuzzy number 

𝐴 is defined by a 3-tuple Tri(𝑎, 𝑏, 𝑐), where the interval [𝑎, 𝑐] 



is the support for which 𝜇𝐴(𝑥) > 0 and 𝑏  is the single point 

where 𝜇𝐴(𝑥) = 1. 

The arithmetic operators ( + , – ,  ,  ), as well as other 

functions such as minimization and maximization, can be 

defined for fuzzy numbers using Zadeh’s extension principle. 

The result of a function 𝑓(𝐴, 𝐵)  operating on two fuzzy 

numbers 𝐴 and 𝐵 is given as 

 𝜇𝑓(𝐴,𝐵)(𝑧) = sup
𝑧=𝑓(𝑥,𝑦)

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)). (1) 

In this paper, we focus on the summation and maximization 

operators for triangular fuzzy numbers. The summation of two 

triangular fuzzy numbers is derived from (1) as 

 
Tri(𝑎1, 𝑏1, 𝑐1) + Tri(𝑎2, 𝑏2, 𝑐2)

=  Tri(𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2). 
(2) 

The summation of any two triangular fuzzy numbers will 

always result in a new triangular fuzzy number. However, 

because maximization is a nonlinear operator, the maximum of 

two triangular fuzzy numbers may not be triangular (see Fig. 3). 

To keep the practical computational requirements of our 

method simple, we seek to maintain a consistent representation 

for all fuzzy numbers. Therefore, we approximate the result of 

the maximization operator as a new triangular fuzzy number, 

 
max'(Tri(𝑎1, 𝑏1, 𝑐1), Tri(𝑎2, 𝑏2, 𝑐2))

=  Tri(max(𝑎1, 𝑎2) , max(𝑏1, 𝑏2) , max(𝑐1, 𝑐2)). 
(3) 

This approach maintains the true definition at the endpoints and 

peak of the fuzzy number but may produce different values at 

intermediate points. 

In a least-cost path problem, the goal is to find a solution path 

that minimizes some set of objectives. By representing the 

value of a solution as a fuzzy number, we can capture some of 

the uncertainty in a solution’s true value. However, this 

uncertainty makes it difficult to assess whether one solution is 

better than another (smaller aggregated path cost being better). 

While there is no universal definition for the ordering of fuzzy 

numbers that proves satisfactory in all cases (see for instance 

[2], [3]), we adopt the following intuitive definitions. Let 𝐴1 =
Tri(𝑎1, 𝑏1, 𝑐1) and 𝐴2 = Tri(𝑎2, 𝑏2, 𝑐2) be two triangular fuzzy 

 

Fig. 3.  The summation of two triangular fuzzy numbers 𝐴 = Tri(1, 2, 3) and 

𝐵 = Tri(0, 4, 5) is shown as Tri(1, 6, 8). The true maximum of 𝐴 and 𝐵 is not 

a triangular fuzzy number but can be approximated as Tri(1, 4, 5). 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 1.  An example fuzzy weighted graph (a) with two features per edge: 

distance (b) and slope (c), represented as triangular fuzzy numbers. There are 

five unique paths between the vertices 1 and 5, colored red, yellow, green, 

blue, and purple (described in Table I). 

 

Fig. 2.  Screenshot of a fuzzy weighted graph created within the CMM 

framework from a randomly generated simulated environment. The graph 

connects adjacent regions and is attributed with fuzzy features such as 

distance, type of terrain, and elevation. 



numbers. We say that 𝐴1 is less than or equal to 𝐴2 (𝐴1 ≤ 𝐴2) 

if and only if (𝑎1 ≤ 𝑎2 and 𝑏1 ≤ 𝑏2 and 𝑐1 ≤ 𝑐2). We say that 

𝐴1 is strictly less than 𝐴2 (𝐴1 < 𝐴2) if and only if 𝐴1 ≤ 𝐴2 and 

( 𝑎1 < 𝑎2  or 𝑏1 < 𝑏2  or 𝑐1 < 𝑐2 ). If 𝐴1 ≮ 𝐴2  and 𝐴2 ≮ 𝐴1 , 

then it is not clear which of the two fuzzy numbers should be 

preferred (assuming 𝐴1 ≠ 𝐴2). 

There may be many solutions for a given problem with no 

single solution that is less than all the others. When a decision-

maker is required to choose one of these, we employ a weighted 

centroid defuzzification scheme to produce a crisp value for 

each solution that can be ranked directly. The centroid of a 

fuzzy number 𝐴 is defined as 

 𝑥̅ =
∫ 𝑥𝜇𝐴(𝑥) 𝑑𝑥

∫ 𝜇𝐴(𝑥) 𝑑𝑥
. (4) 

For a triangular fuzzy number Tri(𝑎, 𝑏, 𝑐), this evaluates to 

 𝑥̅ =
1

3
(𝑎 + 𝑏 + 𝑐). (5) 

The weighted centroid is defined by a control parameter 

𝜉 ∈ [0, 1]  that specifies the optimism/pessimism of the 

decision-maker. A value of 𝜉 = 0 indicates extreme optimism, 

in which the fuzzy number is defuzzified to the smallest 

possible value, 𝑎. A value of 𝜉 = 1  indicates extreme 

pessimism, where defuzzification results in the largest possible 

value, 𝑐. A value of 𝜉 = 0.5 gives a balanced approach using 

the centroid, 𝑥̅. The crisp weighted centroid value is linearly 

interpolated between these points as 

 𝐶(𝐴|𝜉) = {
𝑎 + 2𝜉(𝑥̅ − 𝑎), 𝜉 ≤ 0.5

𝑥̅ + 2(𝜉 − 0.5)(𝑐 − 𝑥̅), 𝜉 > 0.5 .
 (6) 

Using a constant value for 𝜉, a decision-maker can defuzzify 

multiple fuzzy numbers using the weighted centroid approach 

and compare the resulting crisp values. Smaller values indicate 

better solutions (optimistic), whereas larger values are worse 

(pessimistic). If two fuzzy numbers result in the same crisp 

value when defuzzified, they are considered equivalent.  

B. Fuzzy Weighted Graphs 

A physical environment or problem space can be represented 

as a graph 𝐺  with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺) . Each 

vertex 𝑣 ∈ 𝑉(𝐺)  represents a location or state, and edges 

represent possible actions or movements between locations. In 

a directed graph, the edge set 𝐸(𝐺) ⊆ 𝑉(𝐺) × 𝑉(𝐺) consists of 

all ordered pairs of vertices (𝑣𝑠, 𝑣𝑡) that are connected by an 

edge. An edge 𝑒 ∈ 𝐸(𝐺)  has both a starting vertex 𝑣𝑠 =
START(𝑒) and an ending vertex 𝑣𝑡 = END(𝑒). A path 𝑝 through 

the graph is an 𝑛-tuple (𝑒1, … , 𝑒𝑛) ∈ (𝐸(𝐺))
𝑛

 where END(𝑒𝑖) =

START(𝑒𝑖+1)  for 𝑖 = 1, … , 𝑛 − 1 . The starting and ending 

vertices of the path are denoted as 𝑠 = START(𝑒1)  and 𝑡 =
END(𝑒𝑛)  respectively. 𝑃(𝑠, 𝑡)  is the set of all paths between 

vertices 𝑠 and 𝑡. 

In a fuzzy weighted graph, each edge 𝑒 is assigned a weight 

vector 𝑭(𝑒) = (𝐹1(𝑒), … , 𝐹𝑚(𝑒)), where each 𝐹𝑖(𝑒) is a fuzzy 

number representing a feature attribute of that edge. Features 

are defined as components of a multiobjective cost function that 

are intended to be minimized. For instance, a weight vector 

might have one feature that represents distance and another that 

represents slope or travel time. Each feature is assumed to be 

non-negative with zero being the minimum possible value. By 

using a vector of fuzzy numbers to represent edge weights, a 

fuzzy weighted graph can model different degrees of 

uncertainty for each component of the multiobjective cost 

function. 

A path 𝑝 = (𝑒1, … , 𝑒𝑛)  in a fuzzy weighted graph is a 

sequence of edges, each with an associated weight vector. We 

compute an aggregated cost vector 𝑨(𝑝) = (𝐴1(𝑝), … , 𝐴𝑚(𝑝)) 

for the path by either summing or taking the maximum value of 

the feature components of each edge. Let 𝜸 = (𝛾1, … , 𝛾𝑚) be an 

indicator vector where 𝛾𝑖 = 0 if feature 𝑖 should be aggregated 

by summation and 𝛾𝑖 = 1  if feature 𝑖  should be aggregated 

using maximization. For features where the decision-maker 

considers the total feature value (𝛾𝑖 = 0), the aggregated value 

of feature 𝑖 is 

 𝐴𝑖(𝑝) = ∑ 𝐹𝑖(𝑒𝑗)
𝑛

𝑗=1
. (7) 

For features where the decision-maker considers the maximum 

feature value (𝛾𝑖 = 1), the aggregated value of feature 𝑖 is 

 𝐴𝑖(𝑝) = max′
𝑗=1,…,𝑛

𝐹𝑖(𝑒𝑗). (8) 

Note that the aggregation method may be different for each 

feature. In the example in Fig. 1, the multiobjective cost 

function consists of a distance feature and a slope feature, 

where the decision-maker seeks to find a path with the shortest 

total distance and the smallest maximum slope. In this case, the 

distance feature is aggregated using summation, whereas the 

slope feature uses maximization. There are five unique paths 

between vertices 1 and 5 in the example graph. The aggregated 

feature values of the paths are given in Table I and are plotted 

in Fig. 4. 

Given a fuzzy weighted graph 𝐺  with a starting vertex 

𝑠 ∈ 𝑉(𝐺)  and an ending vertex 𝑡 ∈ 𝑉(𝐺)  where 𝑠 ≠ 𝑡 , the 

multiobjective fuzzy least-cost path problem (MO-FLCPP) is 

defined as finding a path 𝑝 ∈ 𝑃(𝑠, 𝑡)  that minimizes the 

TABLE I 
AGGREGATED FEATURE VALUES OF THE EXAMPLE GRAPH 

Path Color Total Distance Max Slope 

1-3-5 Red Tri(1, 3, 10) Tri(0.6, 1, 1) 

1-3-4-5 Yellow Tri(6, 16, 22) Tri(0.6, 1, 1) 

1-2-3-5 Green Tri(5, 14, 21) Tri(0.3, 0.6, 0.9) 

1-2-3-4-5 Blue Tri(10, 27, 33) Tri(0.1, 0.2, 0.4) 

1-2-4-5 Purple Tri(11, 21, 25) Tri(0, 0, 0.3) 

 



aggregated cost vector 𝑨(𝑝). When the summation operator is 

used for aggregation, this is called the shortest path problem 

[4]. When the max operator is used, it may be called the 

minimax path problem [5]. We use the term least-cost path to 

refer to the general case that may have mixed aggregation 

methods. The MO-FLCPP may not have a single solution that 

minimizes each cost component 𝐴𝑖(𝑝) simultaneously for 𝑖 =
1, … , 𝑚. Multiobjective optimization techniques should 

therefore be used to help the decision-maker choose a solution. 

III. MULTIOBJECTIVE OPTIMIZATION 

A. Pareto Optimal Paths 

A multiobjective optimization problem (MOP) deals in the 

simultaneous minimization of more than one objective [6]. 

Following the previous notation, a MO-FLCPP is defined as 

 minimize 𝑨(𝑝) = (𝐴1(𝑝), … , 𝐴𝑚(𝑝)) 

 subject to 𝑝 ∈ 𝑃(𝑠, 𝑡), 

where 𝑚 ≥ 2. Each component 𝐴𝑖(𝑝)  for 𝑖 = 1, … , 𝑚 

represents an objective that is to be minimized. The objectives 

are typically in conflict, such that the minimum value of one 

objective cannot be obtained without some tradeoff in the other 

objectives. Nevertheless, some solutions (paths) are clearly 

better than others. We say that a path 𝑝  dominates path 𝑝′ 

(𝑝 ≺ 𝑝′) if and only if 𝐴𝑖(𝑝) ≤ 𝐴𝑖(𝑝′) for all 𝑖 = 1, … , 𝑚 and 

there exists a 𝑗 ∈ {1, … , 𝑚} such that 𝐴𝑗(𝑝) < 𝐴𝑗(𝑝′). A path 

that dominates another path is at least as good as the other path 

in all objectives and is better in at least one objective. A path 

that is not dominated by any other known solution is said to be 

Pareto optimal. Formally, the Pareto optimal set 𝑃𝑆 is defined 

as 

 𝑃𝑆 = {𝑝 ∈ 𝑃(𝑠, 𝑡) | {𝑝′ ∈ 𝑃(𝑠, 𝑡) | 𝑝′ ≺ 𝑝} = ∅}. (9) 

The multiobjective cost vectors of the paths in 𝑃𝑆 define the 

Pareto front, 

 𝑃𝐹 = {𝑨(𝑝) | 𝑝 ∈ 𝑃𝑆}. (10) 

In the example graph, all paths except the yellow path (1-3-4-

5) are members of the Pareto optimal set. The yellow path is 

dominated by both the red (1-3-5) and green (1-2-3-5) paths. 

The native units of each objective may be incomparable, 

making it difficult to assess the relative value of each solution. 

To make the comparison between solutions meaningful, the 

original cost vectors are normalized into a unit hypercube. This 

ensures that each objective is treated equally. For instance, if 

the distance cost is measured in meters and the slope cost is 

measured as a percentage of some reference angle, the 

magnitudes of these two dimensions should be normalized 

before being compared. To normalize the vectors, the minimum 

value of each objective is defined as zero and the maximum 

value is defined by the reference point 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗ ). 

Determining the optimal value of 𝒛∗ is not a trivial task and the 

value that is chosen can greatly affect the resulting decision. 

Ideally, 𝒛∗  should be the nadir vector of the Pareto front, in 

which each 𝑧𝑖
∗ is defined as 

 𝑧𝑖
∗ = max

𝑝∈𝑃𝑆′
𝑐𝑖𝑝, (11) 

where 𝐴𝑖(𝑝) = Tri(𝑎𝑖𝑝 , 𝑏𝑖𝑝, 𝑐𝑖𝑝). Here, 𝑃𝑆′ is the current best 

approximation of the Pareto optimal set since the true set may 

be unknown. The normalized cost vectors are then computed as 

𝑨′(𝑝) = (𝐴1
′ (𝑝), … , 𝐴𝑚

′ (𝑝)), where 

 𝐴𝑖
′(𝑝) = Tri (

𝑎𝑖𝑝

𝑧𝑖
∗ ,

𝑏𝑖𝑝

𝑧𝑖
∗ ,

𝑐𝑖𝑝

𝑧𝑖
∗ ) (12) 

for each 𝑖 = 1, … , 𝑚. 

Since the example problem is small, the Pareto optimal set 

can be determined directly, and the reference point is evaluated 

as the nadir vector 𝒛∗ = (33, 1), as these are the largest possible 

 

Fig. 5.  The aggregated fuzzy cost vectors from Fig. 4 are normalized using 
the nadir vector and defuzzified using weighted centroid defuzzification. The 

black dotted lines show the Pareto fronts for different values of 𝜉. 

 

Fig. 4.  Plots of the two-dimensional aggregated fuzzy cost vectors for each 

path in the example graph from Fig. 1. 



values of the aggregated distance and slope features. Fig. 5 

shows each of the normalized cost vectors after applying 

weighted centroid defuzzification to each feature. (We typically 

wait until after scalarizing the cost vectors to apply 

defuzzification, but this example helps show the process.) The 

black dotted lines show the location of the Pareto front for 

different values of 𝜉. From this we can see that the yellow path 

is always dominated, whereas the blue path (1-2-3-4-5) is 

dominated by the purple path (1-2-4-5) when 𝜉 = 0.5  and 

𝜉 = 1. The blue path is only Pareto optimal when the decision-

maker is very optimistic (i.e. expects the true cost of each path 

segment to be small). 

B. Scalarization 

All solutions that are members of the Pareto optimal set 

would be rational choices for the decision-maker. Ultimately, 

however, a single solution must often be chosen. Typically, this 

is done using a scalarization function that reduces the 

multiobjective optimization problem into an optimization 

problem with a single objective. Given a multidimensional 

fuzzy cost vector 𝑿 = (𝑋1, … , 𝑋𝑚) where each 𝑋𝑖  is a fuzzy 

number, and an objective weight vector 𝝀 = (𝜆1, … , 𝜆𝑚) where 

𝜆𝑖 ≥ 0  and ∑ 𝜆𝑖𝑖 = 1  for 𝑖 = 1, … , 𝑚, the scalarization 

function 𝑔(𝑿|𝝀)  reduces the cost vector  𝑿 to a single fuzzy 

number. This value can then be used to rank and compare 

various alternatives, with smaller values being preferred. The 

scalarized MO-FLCPP is defined as 

 minimize 𝑔(𝑨′(𝑝)|𝝀) 

 subject to 𝑝 ∈ 𝑃(𝑠, 𝑡). 

The path 𝑝  that minimizes the scalarized value of the 

normalized aggregated cost vector 𝑨′(𝑝)  is chosen as the 

preferred solution. The objective weight vector 𝝀 represents the 

relative importance of each objective to the decision-maker, 

with more important objectives receiving higher weights. We 

consider three different scalarization functions: weighted sum, 

Tchebycheff, and ordered weighted average. 

One of the most common scalarization methods is the 

weighted sum, which maintains a linear relationship between 

the decision-maker’s preferences and the scalarized cost value. 

This is defined as 

 𝑔ws(𝑿|𝝀) = ∑ 𝜆𝑖𝑋𝑖

𝑚

𝑖=1

, (13) 

where the multiplication of a scalar 𝜆 and a triangular fuzzy 

number Tri(𝑎, 𝑏, 𝑐) is defined as Tri(𝜆𝑎, 𝜆𝑏, 𝜆𝑐). If the shape 

of the Pareto front is convex, then the weighted sum can be a 

good choice because every Pareto optimal solution can be made 

to have the lowest scalarized cost by changing the objective 

weight vector. However, if the shape of the Pareto front is non-

convex, then there will always be some Pareto optimal solution 

that can never be chosen. For a detailed discussion on why this 

is so, please see [6]. 

A simple alternative to the weighted sum approach is the 

Tchebycheff method, which can be parameterized with 

different objective weight vectors to make any Pareto optimal 

solution have the lowest scalarized cost. The Tchebycheff 

scalarization function is defined as 

 𝑔te(𝑿|𝝀) = max′ 
𝑖=1,…,𝑚

𝜆𝑖𝑋𝑖 . (14) 

This method evaluates the quality of a solution as the least 

satisfied weighted objective value. A single high cost for one 

objective can penalize an otherwise good solution. 

The last scalarization approach we consider is based on the 

ordered weighted average operator (OWA) proposed by Yager 

[7]. This method requires the definition of an additional scalar 

weight vector 𝜽 = (𝜃1, … , 𝜃𝑚) where 𝜃𝑖 ≥ 0 and ∑ 𝜃𝑖𝑖 = 1 for 

𝑖 = 1, … , 𝑚 . Each 𝜃𝑖  represents the weighted contribution of 

the 𝑖th largest scaled vector component. First, the cost vector 𝑿 

is scaled by the objective weight vector 𝜆 to give the scaled cost 

vector 𝒀 = (𝑌1, … , 𝑌𝑚), where 𝑌𝑖 = 𝜆𝑖𝑋𝑖 = Tri(𝑎𝑖
𝑌 , 𝑏𝑖

𝑌, 𝑐𝑖
𝑌) for 

𝑖 = 1, … , 𝑚. Next, we independently sort all the 𝑎𝑖
𝑌, 𝑏𝑖

𝑌, and 𝑐𝑖
𝑌 

values and define the lists (𝑎(1)
𝑌 , … , 𝑎(𝑚)

𝑌 ), (𝑏(1)
𝑌 , … , 𝑏(𝑚)

𝑌 ), and 

(𝑐(1)
𝑌 , … , 𝑐(𝑚)

𝑌 ) , where 𝑎(𝑖)
𝑌 , 𝑏(𝑖)

𝑌 , and 𝑐(𝑖)
𝑌 , are the 𝑖th  largest 

values in their respective lists. Once this is done, the OWA 

scalarization function is defined as 

 𝑔OWA(𝑿|𝝀, 𝜽) = ∑ 𝜃𝑖Tri(𝑎(𝑖)
𝑌 , 𝑏(𝑖)

𝑌 , 𝑐(𝑖)
𝑌 )

𝑚

𝑖=1

. (15) 

The OWA scalarization method can be made to represent 

many different functions by changing the weight vector 𝜽. For 

instance, the OWA operator behaves as the weighted sum when 

𝜃𝑖 =
1

𝑚
 for all 𝑖 = 1, … , 𝑚. (Although the ordering of solutions 

in this case is the same as the weighted sum, the actual values 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.  Examples of different scalarization methods applied to the aggregated 

fuzzy cost vectors given in Table I. Each method represents a decision-maker 

with different preferences. The scalarized fuzzy numbers shown in the plots 

are defuzzified (shown as a circle and vertical line) and the decision-maker 

chooses the path with the lowest defuzzified cost. 



may be different due to the additional scaling.) The 

Tchebycheff method is equivalent to setting 𝜃1 = 1 and 𝜃𝑖 = 0 

for all 𝑖 ≠ 1. We can implement a form of bounded rationality 

[8], [9] for the decision-maker by defining a weight vector of 

the form 𝜃𝑖 =
1

𝑞
 for 𝑖 = 1, … , 𝑞 and 𝜃𝑖 = 0 for all 𝑖 > 𝑞 . This 

represents the case where the decision-maker does not have the 

necessary computational resources to consider all objectives 

simultaneously and bases the decision on only the 𝑞  least 

satisfied objective values. 

To demonstrate the scalarization process, consider three 

different decision-makers that must choose a solution to the 

example problem. The first uses the weighted sum scalarization 

method with 𝝀 = (0.5, 0.5) and 𝜉 = 0.5. Applying 𝑔ws to each 

of the aggregated fuzzy path cost vectors in Table I gives the 

fuzzy values shown in Fig. 6a. The weighted centroid of each 

path is shown with a circle and a vertical line. The decision-

maker chooses the path with the smallest defuzzified cost, 

which is the purple path. A different decision-maker using the 

Tchebycheff method with 𝝀 = (0.25, 0.75)  and 𝜉 = 0 

computes the values shown in Fig. 6b. This is one of the few 

conditions where the blue path is evaluated as the lowest cost 

option. The last decision-maker shown in Fig. 6c uses the OWA 

scalarization method with 𝝀 = (0.9, 0.1),  𝜽 = (0.7, 0.3) and 

𝜉 = 1. This represents extreme pessimism with a strong bias 

towards minimizing the distance feature, which results in 

giving the red path the lowest cost. 

Table II shows the best paths found in the example graph for 

varying values of 𝝃, 𝝀, and 𝜽 using OWA scalarization. Paths 

are notated with the first letter of their color. The first column 

where 𝜽 = (1, 0)  is equivalent to Tchebycheff scalarization 

and the middle column where 𝜽 = (0.5, 0.5) is the same as the 

weighted sum method. The last column shows an edge case 

where 𝜽 = (0, 1) indicating that the decision-maker considers 

only the most satisfied objective. When one of the objective 

weights is also 0, this feature becomes the same over all paths 

and so there is no single best path (indicated by a “–”). 

IV. CONCLUSIONS AND FUTURE WORK 

Multiobjective problems such as the MO-FLCPP may not 

have a single optimal solution. Adding uncertainty in the form 

of fuzzy numbers further increases the number of ways a 

decision-making agent can choose a solution. In this paper, we 

presented a framework for modeling uncertain environment 

spaces as multi-attributed fuzzy weighted graphs and 

evaluating different path options. The agent is defined using 

several parameters which lead to unique solutions when varied. 

This shows the versatility of the model for capturing a wide 

range of agent behaviors. 

The aggregation framework can handle both summation and 

maximization objectives. The nonlinearity of the maximization 

operator is unsuitable for many algorithms that would search a 

graph for a shortest path. However, a method is presented in [1] 

that decomposes the MO-FLCPP into a single-objective, crisp 

shortest path problem that can be solved using Dijkstra’s 

algorithm. The resulting solution may be suboptimal but can be 

improved using a multiobjective evolutionary algorithm. 

The CMM framework can be used to generate many different 

types of problems for studying agent decision-making 

behavior. In addition to the MO-FLCPP, problems with 

multiple goal locations such as the traveling salesman problem 

can be created and used with partially observable environments 

as in [10]. The decision to only use triangular fuzzy numbers 

arose as a performance consideration for the simulation 

environment, but the methods presented here could be extended 

to handle general LR fuzzy numbers. 
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TABLE II 
BEST PATHS FOUND IN THE EXAMPLE GRAPH 

  𝜃1 = 1 0.75 0.5 0.25 0 

𝜉 𝝀  𝜃2 = 0 0.25 0.5 0.75 1 

0 (0, 1)  P P P P – 

 (0.25, 0.75)  B P P P P 

 (0.5, 0.5)  G P P P P 

 (0.75, 0.25)  G G R R P 

 (1, 0)  R R R R – 

        
0.5 (0, 1)  P P P P – 

 (0.25, 0.75)  P P P P R 

 (0.5, 0.5)  P P P P P 

 (0.75, 0.25)  R R R P P 

 (1, 0)  R R R R – 

        
1 (0, 1)  P P P P – 

 (0.25, 0.75)  P P P P R 

 (0.5, 0.5)  P P P P P 

 (0.75, 0.25)  R R R P P 

 (1, 0)  R R R R – 

 


