Multicriteria Pathfinoling in Uncertain Simulated Environments

Presented by Andrew Buck In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

Advisor: Dr. James Keller
Committee: Dr. Alina Zare, Dr. Marjorie Skubic, and Dr. Mihail Popescu
University of Missouri May 9, 2018

Motivation

Suppose you had to plan a route to some goal, and were faced with multiple routes.

Each route has different qualities that make it more or less appealing.

Which route would you take?
How might you design an autonomous agent to act in your place?

Motivation

What happens if the environment is only partially observable?
How should the agent explore the environment?
How does the agent manage the uncertainty?

Motivation

What does the agent's mental map look like?

A real-world environment has various features representing the ground-truth.

The agent has a simplified version of the environment used for planning.

As the agent explores, it discovers new information and updates its mental map.

Applications

In general, these are

Sequential Multicriteria Decision-making Problems with Uncertainty

Some more examples:

- Navigating through physical environments
- Optimal packet routing on computer networks with uncertain loads
- Making long-term business decisions based on variable market factors
- Designing optimal strategies for games with hidden information

Why Pathfinding?

We can represent these as pathfinding problems:

- Represent the problem space as a fuzzy weighted graph
- Choose a sequence of actions that leads to the "best" outcome

The pathfinding domain is ideal to study these types of problems.

- Simple to visualize and interpret
- Proxy problems for other domains

Why Simulated?

"Real" problems can be difficult to study.

- Example: Movement history with GPS tracker
- Data may be incomplete
- Don't know agent's goals or preferences
- Limited availability

Simulations give greater control.

- We can create problems that investigate specific questions
- Easier to create a mental map of what the agent knows
- Potential to create an unlimited number of scenarios

The Computational Mental Map (CMM) Framework was developed to study these types of problems.

- Procedurally generated grid worlds
- Multiple attributes
- Terrain (categorical)

- Elevation (real-valued)
- Limited visibility
- Various problems represented as a resource gathering game

CMM Framework Architecture

Two main components:

- Server
- Defines the problem
- Provides observations
- Implements actions
- Client (agent)
- Maintains a mental map of the environment
- Decides where to go
- Provides actions to the server

The Big Picture...

- Creating problem scenarios
- Managing the mental map
- Getting new observations
- Constructing the action graph
- Computing single-step features
- Clustering similar regions
- Building the region graph
- Aggregating fuzzy features
- Multiobjective Fuzzy Least-Cost Path Problems
- Pre-scalarized decomposition approach
- MOEA/D approach
- A greedy agent strategy
- Future work

M
 Creating Problem Scenarios

The CMM framework uses grid worlds to provide a finite action space.

We use several methods to create the environments:

- Binary cellular automata
- Fashion-based cellular automata
- Fractal terrain
- Based on region partitioning
- Additional rules

Cave-like environments are represented as a binary occupancy grid.

- Created using cellular automation (CA) rules
- Similar to Conway's Game of Life

Step 1) Initialize a random occupancy grid with probability p_{0} Step 2) For k generations:

Step 2.1) Count the number of open and closed neighbors of each grid cell
Step 2.2) If an open cell has < r_{d} open neighbors, it becomes closed
Step 2.3) If a closed cell has $>r_{b}$ open neighbors,
Step 2.4) Clean up boarders
Example with $r_{d}=3$ and $r_{b}=5$

Step 3) Until open regions are connected:
Step 3.1) Find the smallest open region
Step 3.2) Either, dilate this region or expand it by a random grid cell
Step 3.3) Clean up boarders and diagonal artifacts

Cellular Automata Examples

Example using dilation

Example using random expansion

Cavern Map Examples

$p_{0}=0.5, r_{b}=4, r_{d}=3$, $k=1$, dilate

$p_{0}=0.5, r_{b}=6, r_{d}=4$,
$k=1$, dilate

$$
p_{0}=0.8, r_{b}=6, r_{d}=4,
$$

$k=30$, dilate

$$
p_{0}=0.2, r_{b}=4, r_{d}=2,
$$

$k=10$, dilate

$p_{0}=0.5, r_{b}=4, r_{d}=3$,
$k=10$, dilate

$p_{0}=0.2, r_{b}=4, r_{d}=2$,
$k=10$, random
艮

$p_{0}=0.5, r_{b}=6, r_{d}=4$,
$k=1$, random

The CA algorithm can be used to create binary terrain environments.

Consider two types of terrain:

- Meadow
- Forest

Additional options:

- Use cave walls
- Make meadow region unconnected

$p_{0}=0.5$,
$r_{b}=5, r_{d}=3$,
connected, dilate

$p_{0}=0.5$,
$r_{b}=4, r_{d}=3$,
connected, dilate

$p_{0}=0.5$,
$r_{b}=5, r_{d}=3$,
connected, random

$$
p_{0}=0.5
$$

$$
r_{b}=4, r_{d}=3
$$

connected, random

$p_{0}=0.4$,
$r_{b}=5, r_{d}=3$,
not connected

$p_{0}=0.5$,
$r_{b}=4, r_{d}=3$,
not connected

$p_{0}=0.5$,
$r_{b}=5, r_{d}=3$,
not connected

$p_{0}=0.6$, $r_{b}=5, r_{d}=3$,
not connected

$p_{0}=0.5$,
$r_{b}=5, r_{d}=3$,
not connected

$p_{0}=0.6$, $r_{b}=5, r_{d}=4$, not connected

Multiple terrain types can be defined using fashion-based cellular automata.

- Meadow, forest, \& water

Let P_{0} be the starting probability of each terrain type.

Define a rule R to score the compatibility of adjacent terrain types.

Score all cells and assign each cell the terrain label of the highest scoring neighbor.

Repeat for k iterations.

$$
\begin{aligned}
& P_{0}=[0.5,0.3,0.2] \\
& R=\left[\begin{array}{ccc}
0.5 & 0.6 & 0.4 \\
0.9 & 0.4 & 0 \\
0 & 0.9 & 0.5
\end{array}\right]
\end{aligned}
$$

$P_{0}=[0.3,0.4,0.3]$
$P_{0}=[0.1,0.8,0.1]$
$P_{0}=[0.5,0.3,0.2]$
$R=\left[\begin{array}{lll}0.6 & 0.3 & 0.2 \\ 0.7 & 0.1 & 0.9 \\ 0.8 & 0.1 & 0.8\end{array}\right]$
$R=\left[\begin{array}{lll}0.9 & 0.2 & 0.1 \\ 0.5 & 0.2 & 0.8 \\ 0.7 & 0.2 & 0.8\end{array}\right]$
$R=\left[\begin{array}{ccc}1 & 0.2 & 0.8 \\ 0.4 & 1 & 0.8 \\ 0.9 & 0.4 & 1\end{array}\right]$

Fractal Terrain

We use fractal noise to represent the heightmap of the elevation feature.

- Random noise at multiple scales is added together
- Larger scales get more weight, providing broad terrain features
- Smaller scales get less weight, adding fine details and texture

-

Region-Based Noise

The noise functions at each scale are created by partitioning the environment into distinct regions and assigning a random elevation value to each region.

$s=1$

$s=1$

$s=2$

$s=2$

$s=4$

$s=4$

$s=8$

$s=8$

$s=16$

$s=16$

$s=32$

$s=32$

Smoothing and Noise

Two parameters control the blending of multiple noise scales:

- p controls the weight
- Each noise scale s is weighed by $s^{1 / p}$
- Higher values result in a rougher terrain
- $\quad q$ controls the smoothing
- A mean filter is applied to each noise image for q iterations
- Larger values give smoother edges

Full World Environments

We create full world environments by combining fashionbased cellular automata with elevation.

Five terrain types:

- Meadow
- Forest

- Water
- Rock
- Snow

Water is placed at the lowest elevations.

The agent is randomly placed somewhere in the environment.

Different problem types can be created based on how the resources are placed.

Shortest Path Problem

- One goal
- Placed randomly
- Maximum distance from the agent

Traveling Salesman Problem

- Multiple goals
- Placed in open areas
- Elevation extrema

Traveling Purchaser Problem

- Multiple resource types
- Different for each type of terrain
- Different distributions

Observing the Environment

In some scenarios, we restrict what the agent can observe.

The agent computes a viewshed region from its current location.

Visibility can be obstructed by

- Walls
- Elevation (hills)
- Terrain (forests)

To check if a grid cell v is visible from cell p, - Draw a vector $\overrightarrow{p v}$ from p to v

- Find all cells that intersect $\overrightarrow{p v}$
- Compute the elevation angle from p to each of these cells
- If the elevation angle from p to v is greater than all other cells, then the cell is visible

To compute the viewshed mask,

- Compute the visibility of each cell, working outward from the agent's current location
- Continue processing in each direction until encountering a wall or obstacle

Initializing the Mental Map

The agent starts with an empty mental map.

- Complete uncertainty

The mental map is initialized by the first observation.

Environment

Mental Map

Updating the Mental Map

As the agent explores, new observations are integrated into the mental map.
All observed attributes are updated, including terrain and elevation.

Mental map before update

New observation

Mental map after update

Mental Map Heuristics

The agent can use additional heuristics to improve the mental map.

Fill-in unreachable areas

- Unobserved regions that are surrounded by walls can't be reached

- Replace with walls

Fixing Diagonal Artifacts

The Action Graph

The agent can move up, down, left, and right.

The action graph covers all the grid cells that are traversable.

Each edge in the action graph connects two adjacent cells and is attributed with multiple features.

Observable Features

Consider two adjacent cells, c_{1} and c_{2} with terrain and height properties:

- Terrain types t_{1} and t_{2}
- Heights h_{1} and h_{2}

Features:

- f_{d}

Distance

- $f_{t(i)}$

Terrain type

- $f_{t\{i, j\}}$

Terrain transition (symmetric)

- $f_{t\langle i, j\rangle}$ Terrain transition (directional)
- f_{h} Elevation difference (absolute)
- $f_{h \uparrow}, f_{h \downarrow}$ Elevation difference (directional)

$$
\begin{aligned}
& t_{1}=2 \\
& t_{2}=1 \\
& h_{1}=1 \\
& h_{2}=0 \\
& f_{d}=1 \\
& f_{t(1)}=0.5 \\
& f_{t(2)}=0.5 \\
& f_{t\{1,1\}}=0 \\
& f_{t\{1,2\}}=1 \\
& f_{t\{2,2\}}=0 \\
& f_{t\langle 1,1\rangle}=0 \\
& f_{t(1,2\rangle}=0 \\
& f_{t\langle 2,1\rangle}=1 \\
& f_{t\langle 2,2\rangle}=0 \\
& f_{h}=1 \\
& f_{h \uparrow}=0 \\
& f_{h \downarrow}=1 \\
& t_{1}=2 \\
& t_{2}=2 \\
& h_{1}=0.2 \\
& h_{2}=0.6 \\
& f_{d}=1 \\
& f_{t(1)}=0 \\
& f_{t(2)}=1 \\
& f_{t\{1,1\}}=0 \\
& f_{t\{1,2\}}=0 \\
& f_{t\{2,2\}}=1 \\
& f_{t(1,1)}=0 \\
& f_{t\langle 1,2\rangle}=0 \\
& f_{t\langle 2,1\rangle}=0 \\
& f_{t\langle 2,2\rangle}=1 \\
& f_{h}=0.4 \\
& f_{h \uparrow}=0.4 \\
& f_{h \downarrow}=0
\end{aligned}
$$

Aggregating Path Features

Terrain 1

Terrain 2

	Distance	Terrain Type		Terrain Transition (symmetric)			Terrain Transition (directional)				Total Slope (absolute)	Total Slope (directional)		Max Slope (absolute)$f_{h}^{\max }$	Max Slope (directional)	
		$f_{t(1)}^{\text {sum }}$	$f_{t(2)}^{\text {sum }}$	$f_{t\{1,1\}}^{\text {sum }}$	$f_{t\{1,2\}}^{\text {sum }}$	$f_{t\{2,2\}}^{\text {sum }}$	$f_{t\langle 1,1\rangle}^{\text {sum }}$	$f_{t(1,2)}^{\text {sum }}$	$f_{t\langle 2,1\rangle}^{\operatorname{sum}}$	$f_{t(2,2)}^{\text {sum }}$		$f_{h \uparrow}^{\text {sum }}$	$f_{h \downarrow}^{\text {sum }}$		$f_{h \uparrow}^{\max }$	$f_{h \downarrow}^{\text {max }}$
p_{1}	4	2	2	0	4	0	0	2	2	0	1	1	0	0.3	0.3	0
p_{2}	6	1	5	0	2	4	0	1	1	4	1	1	0	0.2	0.2	0
p_{3}	8	8	0	8	0	0	8	0	0	0	1.4	1.2	0.2	0.2	0.2	0.1

Fuzzy Terrain Features

When one or both cells are unobserved, we represent the feature as a fuzzy number.

A triangular fuzzy number is defined by three values:

- Minimum

e. $t_{1}=1$
e. $t_{2}=2$
e. $o_{1}=1$
e. $o_{2}=1$
$p(1)=0.5$
$p(2)=0.5$

e. $t_{1}=1$
e. $t_{2}=$ NIL

$$
\begin{aligned}
& \text { e. } t_{1}=\mathrm{NI}
\end{aligned}
$$

$$
\text { e. } t_{2}=2
$$

e. $o_{1}=1$
e. $o_{2}=0$
$p(1)=0.5$
$p(2)=0.5$
Fuzzy Terrain Type Features
e. $o_{1}=0$
e. $o_{2}=1$
$p(2)=0.2$
$p(1)=0.8$

e. $t_{1}=$ NIL
e. $t_{2}=$ NIL
e. $o_{1}=0$
e. $o_{2}=0$
$p(1)=0.6$
$p(2)=0.4$

\qquad
$\square \quad \begin{aligned} & \tilde{f}_{t(1)}(e) \\ & \tilde{f}_{t(2)}(e)\end{aligned}$ -— $\tilde{f}_{t(2)}(e)$

Fuzzy Terrain Transition Features (symmetric)

-_ $\tilde{f}_{t\{1,1\}}(e)$ $\bar{f}_{t\{1,2\}}(e)$ $-\quad \tilde{f}_{t\{[1,2\}}(e)$

Fuzzy Terrain Transition Features (directional)

-_ $\tilde{f}_{\mathrm{t}(1,1)}(e)$
$--\tilde{f}_{t(1,2)}(e)$
$--f_{t(1,2)}(e)$
$-\quad \tilde{f}_{t(2,1\rangle, 2\rangle}(e)$

Uncertain Elevation Features

Elevation Difference Features with Both Cells Observed

$h_{1}=0$

$h_{1}=0.5$

Expected Elevation Difference with First Cell Observed

Assumes all elevations are equally likely

Expected Elevation Difference with Both Cells Unobserved

$$
\begin{aligned}
& \tilde{f}_{h}^{\text {mean }}(e)=\int_{0}^{1} \int_{0}^{1}|x-y| d x d y=\frac{1}{3} \\
& \tilde{f}_{h \uparrow}^{\text {mean }}(e)=\int_{0}^{1} \int_{0}^{y}(y-x) d x d y=\frac{1}{6} \\
& \tilde{f}_{h \downarrow}^{\text {mean }}(e)=\int_{0}^{1} \int_{y}^{1}(x-y) d x d y=\frac{1}{6}
\end{aligned}
$$

Fuzzy Elevation Features

e. $h_{1}=0.5$
e. $h_{2}=0.7$
e. $o_{1}=1$
e. $o_{2}=1$

e. $h_{1}=0.4$
e. $h_{2}=\mathrm{NIL}$
e. $o_{1}=1$
e. $o_{2}=0$

e. $h_{1}=\mathrm{NIL}$
e. $h_{2}=0$
e. $o_{1}=0$
e. $o_{2}=1$

$e . h_{1}=\mathrm{NIL}$
e. $h_{2}=\mathrm{NIL}$
e. $o_{1}=0$
e. $o_{2}=0$

Features are crisp when both cells are observed

$\tilde{f}_{h \uparrow}$ range is $[0,0.6]$ $\tilde{f}_{h \downarrow}$ range is [0, 0.4]

The mean of \tilde{f}_{h} is higher because it includes both
\uparrow and \downarrow slopes

$\tilde{f}_{h \downarrow}$ is a crisp 0

All values of $\tilde{f}_{h \uparrow}$ and \tilde{f}_{h} are equally likely

Range of all features is $[0,1]$
Mean of \tilde{f}_{h} is $1 / 3$
Mean of $\tilde{f}_{h \uparrow}$ and $\tilde{f}_{h \downarrow}$ is $1 / 6$

The Region Graph

The action graph represents individual movement actions.

We can summarize the action graph by clustering similar regions and constructing a new graph over the regions.

The region graph

- Reduces the size of the search space
- Helps with high-level planning
- Less precise than the action graph

Typically, we keep a small part of the action graph around the agent to facilitate the next immediate action.

Region Partitioning

Each observed terrain type and the unobserved regions are partitioned separately.
The SLIC algorithm clusters nearby cells into regions.

SLIC Algorithm:

Step 1) Sample cluster centers with separation distance r
Step 2) Adjust cluster centers to the neighboring cell with the minimum gradient
Step 3) For n iterations:
Step 3.1) Compute the elevationweighted distances between cells and cluster centers
Step 3.2) Assign cells to the closest clusters
Step 3.3) Update cluster centers using the region centroids
Step 4) Fix any orphan cells

$r=32$
$r=32$

$r=16$

$r=16$

$r=8$

$r=8$
$r=4$

$r=4$
$r=2$

$=2$

$r=2$

Fuzzy Region Features

Region features are computed between each pair of adjacent regions, R_{1} and R_{2}.

- Fuzzy values represent the min, mean, and max cost of moving between regions.

Two computation methods:

- Boundary edge distance aggregation
- Opposing centroid distance approximation

Region 1 (meadow) to Region 2 (forest)
Showing Elevation Values

Region 1 Graph
 Boundary Edge Distances

Region cost matrices $U^{d 1}$ and $U^{d 2}$ give the distances from each cell to each boundary edge k.

The overall cost matrix C^{d} gives the minimum cost required to go from any cell

Boundary Edge Distances

 $i \in R_{1}$ to any cell $j \in R_{2}$.

$$
C_{i j}^{d}=\min _{k}\left\{U_{i k}^{d 1}+1+U_{k j}^{d 2}\right\}
$$

The fuzzy region distance feature is defined as the min, mean, and max of the values in C^{d}.

$$
U^{d 1}=\left[\begin{array}{ccc}
4 & 4 & 4 \\
5 & 3 & 3 \\
6 & 4 & 4 \\
2 & 4 & 4 \\
3 & 3 & 3 \\
4 & 2 & 2 \\
1 & 3 & 3 \\
2 & 2 & 2 \\
3 & 1 & 1 \\
0 & 4 & 4 \\
4 & 0 & 0
\end{array}\right] \quad U^{d 2}=\left[\begin{array}{lll}
4 & 2 & 0 \\
0 & 2 & 4 \\
1 & 1 & 3 \\
2 & 0 & 2 \\
3 & 1 & 1 \\
2 & 2 & 4 \\
3 & 1 & 3 \\
4 & 2 & 2 \\
4 & 4 & 6 \\
3 & 3 & 5 \\
4 & 2 & 4 \\
4 & 4 & 6
\end{array}\right]
$$

$$
C^{d}=\left[\begin{array}{llllllllllll}
5 & 5 & 6 & 5 & 6 & 7 & 6 & 7 & 9 & 8 & 7 & 9 \\
4 & 6 & 5 & 4 & 5 & 6 & 5 & 6 & 8 & 7 & 6 & 8 \\
5 & 7 & 6 & 5 & 6 & 7 & 6 & 7 & 9 & 8 & 7 & 9 \\
5 & 3 & 4 & 5 & 6 & 5 & 6 & 7 & 7 & 6 & 7 & 7 \\
4 & 4 & 5 & 4 & 5 & 6 & 5 & 6 & 8 & 7 & 6 & 8 \\
3 & 5 & 4 & 3 & 4 & 5 & 4 & 5 & 7 & 6 & 5 & 7 \\
4 & 2 & 3 & 4 & 5 & 4 & 5 & 6 & 6 & 5 & 6 & 6 \\
3 & 3 & 4 & 3 & 4 & 5 & 4 & 5 & 7 & 6 & 5 & 7 \\
2 & 4 & 3 & 2 & 3 & 4 & 3 & 4 & 6 & 5 & 4 & 6 \\
5 & 1 & 2 & 3 & 4 & 3 & 4 & 5 & 5 & 4 & 5 & 5 \\
1 & 3 & 2 & 1 & 2 & 3 & 2 & 3 & 5 & 4 & 3 & 5
\end{array}\right]
$$

Region Terrain Features

Terrain type and transition features can be computed from $U^{d 1}, U^{d 2}$, and C^{d}.

If one or both regions are unobserved, then use terrain priors to evaluate the likelihood of each possible configuration.

The region distance feature does not depend on observability, only the spatial layout.

Region Elevation Features

To compute the region elevation features, distance is replaced by cost.

We use a grid-optimized version of the Bellman-Ford algorithm to compute the total and maximum elevation feature costs to each boundary edge.

Absolute Elevation Difference Costs

The overall cost matrix is computed as either

$$
\begin{gathered}
C_{i j}^{\text {sum }}=\min _{k}\left\{U_{i k}^{1}+u_{k}^{\text {bnd }}+U_{k j}^{2}\right\} \\
C_{i j}^{\max }=\min _{k}\left\{\max \left(U_{i k}^{1}, u_{k}^{\text {bnd }}, U_{k j}^{2}\right)\right\}
\end{gathered}
$$

where $u_{k}^{\text {bnd }}$ is the cost of boundary edge k.

Unobserved Elevation Features

If a region is unobserved, the elevation costs are unknown.

We assume all height values are independent* and are uniformly distributed between 0 and 1 .

Minimum cost is the minimum of the single-step boundary edge costs.

Maximum cost is derived from the max distance cost.

Expected cost for total elevation change is U^{d} times unobserved single-step average $\left(\frac{1}{3}\right.$ or $\left.\frac{1}{6}\right)$.

Expected cost for max elevation change is the expected max of U^{d} randomly sampled feature costs.

Expected Maximum Value of n Elevation Feature Costs

\mathbb{A}

Centroid Distance Approximation

The Bellman-Ford algorithm can be computationally expensive if applied multiple times to each boundary edge.

The distance to the region boundary can be approximated from the distance to the centroid of the other region.

Single-step features can be grouped into sets based on distance from the region boundary.

Approximate features based on these sets can be much faster to compute.

Updating the Region Graph

The region graph is updated when the agent moves.
The local region and region boundaries may change.
Features only need to be recomputed for regions that have changed.

Original regions

Agent moves to the right and gets a new observation

Identify cells that need to be reclustered

Compute new region boundaries. Update features for regions that have changed.

The MO-FLCPP

The multiobjective fuzzy least-cost path problem (MO-FLCPP) finds an optimal path between two vertices of a fuzzy weighted graph.

Consider this example:

Aggregated Path Cost

There are five paths through the graph from vertices 1 to 5 .

By plotting the aggregated path costs, we can determine which solutions are Pareto optimal.

A defuzzification parameter ξ indicates the degree of optimism/pessimism.

Path	Color	Total Distance	Max Slope
$1-3-5$	Red	$\operatorname{Tri}(1,3,10)$	$\operatorname{Tri}(0.6,1,1)$
$1-3-4-5$	Yellow	$\operatorname{Tri}(6,16,22)$	$\operatorname{Tri}(0.6,1,1)$
$1-2-3-5$	Green	$\operatorname{Tri}(5,14,21)$	$\operatorname{Tri}(0.3,0.6,0.9)$
$1-2-3-4-5$	Blue	$\operatorname{Tri}(10,27,33)$	$\operatorname{Tri}(0.1,0.2,0.4)$
$1-2-4-5$	Purple	$\operatorname{Tri}(11,21,25)$	$\operatorname{Tri}(0,0,0.3)$

Aggregated Fuzzy Path Costs

A scalarization function $g(\boldsymbol{X} \mid \boldsymbol{\lambda})$ reduces the multidimensional solution vector \boldsymbol{X} to a real value using the weight vector λ.

We consider three scalarization methods:

- Weighted sum

$$
g^{\mathrm{ws}}(\boldsymbol{X} \mid \lambda)=\sum_{i=1}^{m} \lambda_{i} X_{i}
$$

- Tchebycheff

$$
g^{\mathrm{te}}(\boldsymbol{X} \mid \boldsymbol{\lambda})=\max _{i=1, \ldots, m} \lambda_{i} X_{i}
$$

- Ordered Weighted Average (OWA)

$$
g^{\mathrm{oWA}}(\boldsymbol{X} \mid \boldsymbol{\lambda}, \boldsymbol{\theta})=\sum_{i=1}^{m} \theta_{i} B_{(i)}
$$

where $B_{(i)}$ is the $i^{\text {th }}$ largest $\lambda_{i} X_{i}$. $\boldsymbol{\theta}$ is used to define different operators.

Weighted Sum Scalarization; $\lambda=(0.5,0.5) ; \xi=0.5$

Tchebycheff Scalarization; $\lambda=(0.25,0.75) ; \xi=0$

OWA Scalarization; $\lambda=(0.9,0.1) ; \theta=(0.7,0.3) ; \xi=1$

Finding a Path

Feature normalization:

- Initially features are normalized by observed edge values
- As complete solutions are discovered, features are normalized by the range of the Pareto front

Exponential scaling:

- To combine summation and maximization objectives, scale the maximization features logarithmically
- This approximates a minimax path as a shortest path

Selection bias:

- Add a small amount of random noise to features to distinguish equivalent paths
- Find a shortest path using Dijkstra's algorithm

Uniform Transition Probability

Dijkstra's Algorithm with Noise

Pre-Scalarized Decomposition

A fast way to get a solution for the MO-FLCPP is to reduce the multidimensional fuzzy edge features to crisp scalar values and use standard Dijkstra's algorithm.

This method depends on

- The scalarization function $g^{\text {ws }}, g^{\text {te }}$, or $g^{\text {OWA }}$
- The objective weight vector λ
- and OWA weights $\boldsymbol{\theta}$ if using OWA
- The defuzzification parameter ξ
- How the features are normalized
- Reference point $\boldsymbol{z}^{\text {me }}$, or \boldsymbol{z}^{*}

Shortest paths for the example problem:

- $\quad p^{D}$: Pre-scalarized using max edge features, $\mathbf{z}^{\text {me }}$
- $\quad p^{M}$: Scalarized after aggregating path costs using $z^{\text {me }}$
- $\quad p^{*}$: Scalarized after aggregating using

Pareto optimal normalization, \mathbf{z}^{*}

ξ	λ	Weighted Sum			Tchebycheff		
		$p^{\text {D }}$	$p^{\text {M }}$	p^{*}	$p^{\text {D }}$	$p^{\text {M }}$	p^{*}
0	$(0,1)$	P	P	P	P	P	P
	(0.25, 0.75)	B	P	P	B	G	B
	(0.5, 0.5)	G	R	P	G	G	G
	(0.75, 0.25)	R	R	R	R	R	G
	$(1,0)$	R	R	R	R	R	R
0.5	$(0,1)$	P	P	P	P	P	P
	(0.25, 0.75)	P	P	P	P	G	P
	(0.5, 0.5)	P	R	P	P	R	P
	(0.75, 0.25)	P	R	R	P	R	R
	$(1,0)$	R	R	R	R	R	R
1	$(0,1)$	P	P	P	P	P	P
	(0.25, 0.75)	P	P	P	P	P	P
	(0.5, 0.5)	P	R	P	P	R	P
	(0.75, 0.25)	P	R	R	P	R	R
	$(1,0)$	R	R	R	R	R	R

Better solutions can be found by normalizing to the set of Pareto optimal solutions.

MOEA/D is a multiobjective evolutionary algorithm based on decomposing a problem into single-objective subproblems.

MOEA/D Algorithm:

Step 1) Initialization
Step 1.1) Initialize a population of N pre-scalarized solutions using different objective weight vectors λ
Step 1.2) Initialize the external population $E P$ containing the non-dominated solutions
Step 2) Until stopping criteria is met:
For each weight vector i :
Step 2.1) Create a new solution with a neighboring path using crossover and mutation
Step 2.1) Replace outperformed solutions with the new path Step 2.3) Update $E P$
Step 3) Return $E P$ as the set of Pareto optimal solutions. The agent can scalarize these and choose the solution that

Mutation
 best satisfies the agent's original preferences.

Binary Shortest Paths (WS)

We use the MOEA/D algorithm to find all Pareto optimal shortest paths in a binary terrain environment.

Features:

- $f_{t(1)}$: Distance in meadow
- $f_{t(2)}$: Distance in forest

Using weighted sum scalarization.

No region clustering

Region size $=3$

Region size = 10

Binary Shortest Paths (TE)

We use the MOEA/D algorithm to find all Pareto optimal shortest paths in a binary terrain environment.

Features:

- $f_{t(1)}$: Distance in meadow
- $f_{t(2)}$: Distance in forest

Using Tchebycheff scalarization.

No region clustering

Region size $=3$

Region size $=10$

Binary Shortest Paths (OWA)

We use the MOEA/D algorithm to find all Pareto optimal shortest paths in a binary terrain environment.

Features:

- $f_{t(1)}$: Distance in meadow
- $f_{t(2)}$: Distance in forest

Using Ordered Weighted Average scalarization.

No region clustering

Region size $=3$

Region size $=10$

These examples show how summation and maximization features can be combined.

Features:

- f_{d} : Total distance
- $f_{h_{-} \text {max }}$: Maximum slope

Using Ordered Weighted Average scalarization.

Terrain transition features allow for additional agent behaviors.

- Binary terrain
- Red agent favors forest
- Blue agent favors meadow
- Yellow agent favors the edge
- Trinary terrain
- Red agent prefers the order meadow, water, forest
- Blue agent prefers the order meadow, forest, water

Visualizing the objective space with more than 2 or 3 objectives is challenging.

Paths are colored based on objective weight similarity.

We designed an experiment to compare solutions found using the pre-scalarized decomposition method and MOEA/D.

- 10 problem types
- 30 test environments of each type
- Define $10 \times N$ weight vectors for each problem, where N is the number of objectives
- Find solutions for each weight vector using both approaches
- Measure the percent improvement of MOEA/D over pre-scalarization

Average percent improvement of MOEA/D over pre-scalarization

Prob. \#	$\begin{aligned} & \text { \# of } \\ & \text { Sum } \\ & \text { Obj. } \end{aligned}$	\# of Max Obj.	Avg. Nodes	Avg. Edges	$\xi=0$			$\xi=0.5$			$\xi=1$		
					WS	OWA	TE	WS	OWA	TE	WS	OWA	TE
1	2	0	103	507	0.00	1.39	8.49	0.00	1.67	9.30	0.00	1.78	9.94
2	1	1	66	318	5.35	7.10	13.12	5.27	5.08	5.44	5.57	5.75	7.02
3	0	2	64	300	12.43	12.01	12.94	5.71	5.87	6.55	0.93	0.79	1.17
4	3	0	65	311	-0.02	0.83	5.03	0.00	0.14	0.67	0.00	0.09	0.56
5	2	1	92	447	9.64	13.73	20.53	7.93	7.08	8.51	9.80	8.55	9.27
6	5	1	93	454	17.02	21.75	30.27	5.32	5.93	11.00	5.46	5.17	9.91
7	6	0	109	545	-0.47	2.32	8.87	-0.15	2.39	9.82	-0.15	3.06	12.35
8	15	0	93	454	-0.08	1.64	8.02	-0.03	1.53	8.00	-0.04	2.02	11.73
9	15	2	91	445	26.31	31.75	42.06	7.14	9.14	16.35	4.36	5.38	12.22
10	26	3	93	450	15.68	21.66	29.27	6.34	8.01	13.46	4.55	5.85	11.46

Greedy Agent Example

We define a greedy agent strategy that can solve generic problems in the CMM framework.

Greedy Agent Strategy:

- After updating the region graph, determine the next target location:
- Closest required resource, if visible
- Otherwise, closest unobserved region
- Plan and follow a least-cost route to the target location

Region clustering without local region memory

Region clustering with local region memory

Region clustering only for unobserved regions

Future Work

The full potential of the CMM framework extends beyond this work.

Advanced agent strategies:

- Ant Colony Optimization
- Monte Carlo Tree Search

Anticipatory analysis:

- Generate synthetic
trajectories for a particular agent profile
- Predict how the agent will behave in a new environment

Conclusion

The CMM framework is a useful tool for studying sequential multicriteria decision-making problems with uncertainty.

The pathfinding problem is a versatile problem domain that can be configured in many different ways.

The set of Pareto optimal solutions gives a broad overview of the options available to a decision-maker.

There's still lots of opportunity for future work!

Thank You

Thanks to my advisor, Dr. Keller, To my committee, Dr. Popescu, Dr. Skubic, and Dr. Zare, To NGA and ARO/NVESC for supporting me during this work, And to my parents, friends, family, and everyone else.

