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Motivation

Suppose you had to plan a 
route to some goal, and were 
faced with multiple routes.

Each route has different 
qualities that make it more or 
less appealing.

Which route would you take?

How might you design an 
autonomous agent to act in 
your place?
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Motivation
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What happens if the environment is only partially observable?

How should the agent explore the environment?

How does the agent manage the uncertainty?



Motivation
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A real-world environment has 

various features representing 

the ground-truth.

The agent has a simplified 

version of the environment 

used for planning.

As the agent explores, it 

discovers new information and 

updates its mental map.

What does the agent’s mental map look like?



Applications

In general, these are 

Sequential Multicriteria Decision-making Problems with Uncertainty

Some more examples:
• Navigating through physical environments
• Optimal packet routing on computer networks with uncertain loads
• Making long-term business decisions based on variable market factors
• Designing optimal strategies for games with hidden information
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Why Pathfinding?

We can represent these as pathfinding problems:
• Represent the problem space as a fuzzy weighted graph
• Choose a sequence of actions that leads to the “best” outcome

The pathfinding domain is ideal to study these types of problems.
• Simple to visualize and interpret
• Proxy problems for other domains
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Why Simulated?

“Real” problems can be difficult to study.
• Example: Movement history with GPS tracker

– Data may be incomplete

– Don’t know agent’s goals or preferences

– Limited availability
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Simulations give greater control.

• We can create problems that 

investigate specific questions

• Easier to create a mental map of 

what the agent knows

• Potential to create an unlimited 

number of scenarios



The CMM Framework

The Computational Mental Map 
(CMM) Framework was developed to 
study these types of problems.

• Procedurally generated grid worlds

• Multiple attributes

– Terrain (categorical)

– Elevation (real-valued)

• Limited visibility

• Various problems represented as a 
resource gathering game
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CMM Framework Architecture

Two main components:

• Server
– Defines the problem
– Provides observations
– Implements actions

• Client (agent)
– Maintains a mental map 

of the environment
– Decides where to go
– Provides actions to the 

server
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The Big Picture…

• Creating problem scenarios

• Managing the mental map

– Getting new observations

– Constructing the action graph

• Computing single-step features

– Clustering similar regions

– Building the region graph

• Aggregating fuzzy features

• Multiobjective Fuzzy Least-Cost Path Problems

– Pre-scalarized decomposition approach

– MOEA/D approach

– A greedy agent strategy

• Future work
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Creating Problem Scenarios

The CMM framework uses grid worlds 

to provide a finite action space.

We use several methods to create the 

environments:

• Binary cellular automata

• Fashion-based cellular automata

• Fractal terrain
– Based on region partitioning

• Additional rules
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Cellular Automata

Cave-like environments are represented as a binary 
occupancy grid.

• Created using cellular automation (CA) rules
• Similar to Conway’s Game of Life

Step 1) Initialize a random occupancy grid with probability p0 
Step 2) For k generations:

Step 2.1) Count the number of open and closed  
  neighbors of each grid cell
Step 2.2) If an open cell has <rd open neighbors, 
  it becomes closed
Step 2.3) If a closed cell has >rb open neighbors, 
  it becomes open
Step 2.4) Clean up boarders

Step 3) Until open regions are connected:
Step 3.1) Find the smallest open region
Step 3.2) Either, dilate this region or expand it by a 
  random grid cell
Step 3.3) Clean up boarders and diagonal artifacts
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Example with rd=3 and rb=5 



Cellular Automata Examples
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Example using dilation Example using random expansion



Cavern Map Examples
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 p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 6, rd = 4, p0 = 0.5, rb = 6, rd = 4, 

 k = 1, dilate k = 10, dilate k = 1, dilate k = 1, random 

 

     
 p0 = 0.2, rb = 4, rd = 2, p0 = 0.2, rb = 4, rd = 2, p0 = 0.8, rb = 6, rd = 4, p0 = 0.8, rb = 5, rd = 3, 

 k = 10, dilate k = 10, random k = 30, dilate k = 30, dilate 

Figure Error! No text of specified style in document..1  Examples of cavern maps generated using Error! 

Reference source not found.. A wide range of map types can be created by varying the input parameters. 

These examples are 5050 grids with all locations set to be reachable. 



Binary Terrain Environments
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 p0 = 0.5, p0 = 0.5, p0 = 0.4, p0 = 0.5, p0 = 0.6, 

 rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, 

 connected, dilate connected, random not connected not connected not connected 

     
 p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.6, 

 rb = 4, rd = 3, rb = 4, rd = 3, rb = 4, rd = 3, rb = 5, rd = 3, rb = 5, rd = 4, 

 connected, dilate connected, random not connected not connected not connected 

Figure Error! No text of specified style in document..1  Examples of binary environments containing forest 

and meadow terrain types. The top row shows the binary environments in grid worlds with a cave wall map 

generated using parameters p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The bottom row 

shows binary environments created without a cave wall map. 

The CA algorithm can be 
used to create binary 
terrain environments.

Consider two types of 
terrain:
• Meadow
• Forest

Additional options:
• Use cave walls
• Make meadow region 

unconnected



Trinary Terrain Environments
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 𝑃0 =  0.5, 0.3, 0.2  𝑃0 =  0.3, 0.4, 0.3  𝑃0 =  0.1, 0.8, 0.1  𝑃0 =  0.5, 0.3, 0.2  

 𝑅 =  
0.5 0.6 0.4
0.9 0.4 0
0 0.9 0.5

  𝑅 =  
0.6 0.3 0.2
0.7 0.1 0.9
0.8 0.1 0.8

  𝑅 =  
0.9 0.2 0.1
0.5 0.2 0.8
0.7 0.2 0.8

  𝑅 =  
1 0.2 0.8

0.4 1 0.8
0.9 0.4 1

  

Figure Error! No text of specified style in document..1  Examples of the fashion-based cellular automata 

algorithm for creating trinary terrain environments. The top row shows the results of Error! Reference 

source not found. using a cave wall map generated using parameters p0=0.5, rb=4, rd=3, k=10, and the dilate 

connection method. The bottom row shows trinary environments created without a cave wall map. The initial 

distribution P0 and the rule matrix R are the same for each column. 

Multiple terrain types can be 
defined using fashion-based 
cellular automata.
• Meadow, forest, & water

Let P0 be the starting 
probability of each terrain 
type.

Define a rule R to score the 
compatibility of adjacent 
terrain types.

Score all cells and assign 
each cell the terrain label of 
the highest scoring neighbor.

Repeat for k iterations.



Fractal Terrain
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Figure Error! No text of specified style in document..1  A progression of the diamond-square algorithm 

generating a fractal terrain. 

 

     

     

Figure Error! No text of specified style in document..1  A progression of the diamond-square algorithm 

generating a fractal terrain. 

We use fractal noise to represent the heightmap of the elevation feature.

• Random noise at multiple scales is added together

• Larger scales get more weight, providing broad terrain features

• Smaller scales get less weight, adding fine details and texture



Region-Based Noise
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 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32 

Figure Error! No text of specified style in document..1  Random noise images at different scales on a 

5050 grid with no cave walls. (q = 3) 

 

      

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32 

Figure Error! No text of specified style in document..1  Random noise images at different scales on a 

5050 grid with a provided cave wall map. (q = 3) 

The noise functions at each scale are created by partitioning the environment 

into distinct regions and assigning a random elevation value to each region.



Smoothing and Noise
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Two parameters control the 
blending of multiple noise scales:

• 𝑝 controls the weight
– Each noise scale 𝑠 is weighed 

by 𝑠 ൗ1 𝑝

– Higher values result in a 
rougher terrain

• 𝑞 controls the smoothing
– A mean filter is applied to each 

noise image for 𝑞 iterations
– Larger values give smoother 

edges 



Full World Environments
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Figure Error! No text of specified style in document..1  Examples of full world environments generated 

using Error! Reference source not found.. The top row uses a cave wall map generated using parameters 

p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The heightmap generation parameters are p=2 

and q=3. The bottom row shows examples without any cave wall map. 

We create full world 
environments by 
combining fashion-
based cellular automata 
with elevation.

Five terrain types:
• Meadow
• Forest
• Water
• Rock
• Snow

Water is placed at the 
lowest elevations.



Resource Placement
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The agent is randomly placed 
somewhere in the environment.

Different problem types can be created 
based on how the resources are placed.

Shortest Path Problem
• One goal

– Placed randomly
– Maximum distance from the agent

Traveling Salesman Problem
• Multiple goals

– Placed in open areas
– Elevation extrema

Traveling Purchaser Problem
• Multiple resource types

– Different for each type of terrain
– Different distributions



Observing the Environment
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In some scenarios, we 
restrict what the agent 
can observe.

The agent computes a 
viewshed region from 
its current location.

Visibility can be 
obstructed by
• Walls
• Elevation (hills)
• Terrain (forests)

 

      

     

 (a) (b) (c) (d) 

Figure Error! No text of specified style in document..1  Examples of observations in various environments 

computed using Error! Reference source not found. and Error! Reference source not found.. The top 

row shows the full environment ℰ and the bottom row shows the observation 𝒪 at the current agent location 

(shown as a red dot). The environment values are observed within the visible region and hidden everywhere 

else. 
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Checking Visibility
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To check if a grid cell 𝑣 is visible from cell 𝑝,
• Draw a vector 𝑝𝑣 from 𝑝 to 𝑣
• Find all cells that intersect 𝑝𝑣
• Compute the elevation angle from 𝑝 to 

each of these cells
• If the elevation angle from 𝑝 to 𝑣 is greater 

than all other cells, then the cell is visible

To compute the viewshed mask,
• Compute the visibility of each cell, working 

outward from the agent’s current location
• Continue processing in each direction until 

encountering a wall or obstacle



Initializing the Mental Map
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The agent starts with an empty mental map.
• Complete uncertainty

The mental map is initialized by the first observation.

Environment Mental Map



Updating the Mental Map
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As the agent explores, new observations are integrated into the mental map.

All observed attributes are updated, including terrain and elevation.

Mental map before update New observation Mental map after update



Mental Map Heuristics
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Filling-In Unreachable Areas

Fixing Diagonal Artifacts

The agent can use additional 
heuristics to improve the 
mental map.

Fill-in unreachable areas
• Unobserved regions that 

are surrounded by walls 
can’t be reached

• Replace with walls

Fix diagonal artifacts
• Diagonal passageways 

are forbidden when 
creating environments

• This can resolve certain 
ambiguities



The Action Graph
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The agent can move up, 

down, left, and right.

The action graph covers 

all the grid cells that are 

traversable.

Each edge in the action 

graph connects two 

adjacent cells and is 

attributed with multiple 

features.



Observable Features

Consider two adjacent cells, 𝑐1 and 
𝑐2 with terrain and height properties:

• Terrain types 𝑡1 and 𝑡2
• Heights ℎ1 and ℎ2

Features:

• 𝑓𝑑 Distance 

• 𝑓𝑡 𝑖  Terrain type

• 𝑓𝑡 𝑖,𝑗  Terrain transition  
 (symmetric)

• 𝑓𝑡 𝑖,𝑗  Terrain transition  
 (directional)

• 𝑓ℎ Elevation difference 
 (absolute)

• 𝑓ℎ↑, 𝑓ℎ↓ Elevation difference 
 (directional)
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Aggregating Path Features
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Fuzzy Terrain Features

When one or both cells are 
unobserved, we represent the 
feature as a fuzzy number.

A triangular fuzzy number is 
defined by three values:
• Minimum
• Mean (peak)
• Maximum

Assume a prior likelihood 
𝑝 𝑖  for each terrain type.

The fuzzy feature represents 
the range of possible crisp 
feature values [min, max] and 
the expected value (peak).
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Fuzzy Terrain Type Features

Fuzzy Terrain Transition Features (symmetric)

Fuzzy Terrain Transition Features (directional)



Uncertain Elevation Features
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Elevation Difference Features with First Cell Observed
Elevation Difference Features

with Both Cells Observed

ሚ𝑓ℎ
mean 𝑒 = න

0

1

න
0
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𝑥 − y 𝑑𝑥 𝑑𝑦 =
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𝑦
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1

6
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0

1

න
𝑦

1

𝑥 − 𝑦 𝑑𝑥 𝑑𝑦 =
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6

Expected Elevation Difference with Both Cells Unobserved

Assumes all elevations are equally likely



Fuzzy Elevation Features
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Features are crisp 

when both cells are 

observed

ሚ𝑓ℎ↑ range is [0, 0.6]
ሚ𝑓ℎ↓ range is [0, 0.4]

The mean of ሚ𝑓ℎ is higher 

because it includes both 

↑ and ↓ slopes

ሚ𝑓ℎ↓ is a crisp 0

All values of ሚ𝑓ℎ↑ and ሚ𝑓ℎ 

are equally likely

Range of all features is [0, 1]

Mean of ሚ𝑓ℎ is 1/3

Mean of ሚ𝑓ℎ↑ and ሚ𝑓ℎ↓ is 1/6



The Region Graph

The action graph represents individual 
movement actions.

We can summarize the action graph by 
clustering similar regions and 
constructing a new graph over the 
regions.

The region graph
• Reduces the size of the search 

space
• Helps with high-level planning
• Less precise than the action graph

Typically, we keep a small part of the 
action graph around the agent to 
facilitate the next immediate action.
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Region Partitioning

SLIC Algorithm:

Step 1) Sample cluster centers with 
separation distance r

Step 2) Adjust cluster centers to the 
neighboring cell with the minimum 
gradient

Step 3) For n iterations:

Step 3.1) Compute the elevation-
weighted distances between cells 
and cluster centers

Step 3.2) Assign cells to the 
closest clusters

Step 3.3) Update cluster centers 
using the region centroids

Step 4) Fix any orphan cells
34

 

     

 r = 32 r = 16 r = 8 r = 4 r = 2 

Figure Error! No text of specified style in document..1  Tabu sampling on a 5050 grid with different 

values for the separation radius. 

 

     

 r = 32 r = 16 r = 8 r = 4 r = 2 

Figure Error! No text of specified style in document..1  Results of the region partitioning algorithm on a 

5050 grid with different values for the separation radius. 

Each observed terrain type and the unobserved regions are partitioned separately.

The SLIC algorithm clusters nearby cells into regions.



Fuzzy Region Features
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Region features are computed between each pair of adjacent regions, 𝑅1 and 𝑅2.
• Fuzzy values represent the min, mean, and max cost of moving between regions.

Two computation methods:
• Boundary edge distance aggregation
• Opposing centroid distance approximation

Region 1 (meadow) to Region 2 (forest)

Showing Elevation Values Region 2 GraphRegion 1 Graph

Boundary Edges



Boundary Edge Distances
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Region cost matrices 𝑈𝑑1 
and 𝑈𝑑2 give the distances 
from each cell to each 
boundary edge 𝑘.

The overall cost matrix 𝐶𝑑 
gives the minimum cost 
required to go from any cell 
𝑖 ∈ 𝑅1 to any cell 𝑗 ∈ 𝑅2.

𝐶𝑖𝑗
𝑑 = min

𝑘
𝑈𝑖𝑘

𝑑1 + 1 + 𝑈𝑘𝑗
𝑑2

The fuzzy region distance 
feature is defined as the 
min, mean, and max of the 
values in 𝐶𝑑.

Boundary Edge Distances

k = 1 k = 2 k = 3



Region Terrain Features
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Terrain type and transition 
features can be computed 
from 𝑈𝑑1, 𝑈𝑑2, and 𝐶𝑑.

If one or both regions are 
unobserved, then use 
terrain priors to evaluate 
the likelihood of each 
possible configuration.

The region distance 
feature does not depend 
on observability, only the 
spatial layout.
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Region Elevation Features
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S
u
m

k = 1 k = 2 k = 3

M
ax

The overall cost matrix is 
computed as either

𝐶𝑖𝑗
sum = min

𝑘
𝑈𝑖𝑘

1 + 𝑢𝑘
bnd + 𝑈𝑘𝑗

2

𝐶𝑖𝑗
max = min

𝑘
max 𝑈𝑖𝑘

1 , 𝑢𝑘
bnd, 𝑈𝑘𝑗

2

where 𝑢𝑘
bnd is the cost of 

boundary edge 𝑘.

Absolute Elevation Difference CostsTo compute the region elevation 
features, distance is replaced by cost.

We use a grid-optimized version of the 
Bellman-Ford algorithm to compute the 
total and maximum elevation feature 
costs to each boundary edge.



Unobserved Elevation Features
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If a region is unobserved, the 
elevation costs are unknown.

We assume all height values are 
independent* and are uniformly 
distributed between 0 and 1.

Minimum cost is the minimum of 
the single-step boundary edge 
costs.

Maximum cost is derived from the 
max distance cost.

Expected cost for total elevation 
change is 𝑈𝑑 times unobserved 

single-step average 
1

3
 or

1

6
.

Expected cost for max elevation 
change is the expected max of 𝑈𝑑 
randomly sampled feature costs.

 
  
a 

 

 
  
 
ir

Expected Maximum Value of 𝒏 Elevation Feature Costs

Absolute Elevation Difference Directional Elevation Difference



Centroid Distance Approximation
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The Bellman-Ford algorithm 
can be computationally 
expensive if applied multiple 
times to each boundary edge.

The distance to the region 
boundary can be 
approximated from the 
distance to the centroid of the 
other region.

Single-step features can be 
grouped into sets based on 
distance from the region 
boundary.

Approximate features based 
on these sets can be much 
faster to compute.



Updating the Region Graph
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The region graph is updated when the agent moves.

The local region and region boundaries may change.

Features only need to be recomputed for regions that have changed.

Original regions Agent moves to the right and 

gets a new observation

Identify cells that need to 

be reclustered

Compute new region 

boundaries. Update features 

for regions that have changed.



The MO-FLCPP
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The multiobjective fuzzy least-cost path problem (MO-FLCPP) finds 
an optimal path between two vertices of a fuzzy weighted graph.

Consider this example:



Aggregated Path Cost
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Path Color Total Distance Max Slope 

1-3-5 Red Tri(1, 3, 10) Tri(0.6, 1, 1) 

1-3-4-5 Yellow Tri(6, 16, 22) Tri(0.6, 1, 1) 

1-2-3-5 Green Tri(5, 14, 21) Tri(0.3, 0.6, 0.9) 

1-2-3-4-5 Blue Tri(10, 27, 33) Tri(0.1, 0.2, 0.4) 

1-2-4-5 Purple Tri(11, 21, 25) Tri(0, 0, 0.3) 

 

There are five paths 
through the graph 
from vertices 1 to 5.

By plotting the 
aggregated path 
costs, we can 
determine which 
solutions are Pareto 
optimal.

A defuzzification 
parameter 𝜉 indicates 
the degree of 
optimism/pessimism.



Choosing a Path

A scalarization function 𝑔 𝑿 𝝀  reduces the 
multidimensional solution vector 𝑿 to a real 
value using the weight vector 𝝀.

We consider three scalarization methods:

• Weighted sum

𝑔ws 𝑿 𝝀 = ෍

𝑖=1

𝑚

𝜆𝑖𝑋𝑖

• Tchebycheff

𝑔te 𝑿 𝝀 = max 
𝑖=1,…,𝑚

𝜆𝑖𝑋𝑖

• Ordered Weighted Average (OWA)

𝑔OWA 𝑿 𝝀, 𝜽 = ෍

𝑖=1

𝑚

𝜃𝑖𝐵 𝑖

where 𝐵 𝑖  is the 𝑖𝑡ℎ largest 𝜆𝑖𝑋𝑖. 
𝜽 is used to define different operators.
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Finding a Path

Feature normalization:
• Initially features are normalized 

by observed edge values
• As complete solutions are 

discovered, features are 
normalized by the range of the 
Pareto front

Exponential scaling:
• To combine summation and 

maximization objectives, scale 
the maximization features 
logarithmically

• This approximates a minimax 
path as a shortest path

45

Uniform Transition Probability

Dijkstra’s Algorithm with Noise

Selection bias:
• Add a small amount of 

random noise to 
features to distinguish 
equivalent paths

• Find a shortest path 
using Dijkstra’s 
algorithm



Pre-Scalarized Decomposition

A fast way to get a solution for the MO-FLCPP is 
to reduce the multidimensional fuzzy edge 
features to crisp scalar values and use standard 
Dijkstra’s algorithm.

This method depends on
• The scalarization function 𝑔ws, 𝑔te, or 𝑔OWA

• The objective weight vector 𝝀
– and OWA weights 𝜽 if using OWA

• The defuzzification parameter 𝜉
• How the features are normalized

– Reference point 𝒛me, or 𝒛∗

Shortest paths for the example problem:
• 𝑝𝐷: Pre-scalarized using max edge 

features, 𝒛me

• 𝑝𝑀: Scalarized after aggregating path costs 
using 𝒛me

• 𝑝∗: Scalarized after aggregating using 
Pareto optimal normalization, 𝒛∗

46

   Weighted Sum  Tchebycheff 

𝜉 𝝀   𝑝D  𝑝M  𝑝∗  𝑝D  𝑝M  𝑝∗ 

0 (0, 1)  P P P  P P P 

 (0.25, 0.75)  B P P  B G B 

 (0.5, 0.5)  G R P  G G G 

 (0.75, 0.25)  R R R  R R G 

 (1, 0)  R R R  R R R 

          
0.5 (0, 1)  P P P  P P P 

 (0.25, 0.75)  P P P  P G P 

 (0.5, 0.5)  P R P  P R P 

 (0.75, 0.25)  P R R  P R R 

 (1, 0)  R R R  R R R 

          
1 (0, 1)  P P P  P P P 

 (0.25, 0.75)  P P P  P P P 

 (0.5, 0.5)  P R P  P R P 

 (0.75, 0.25)  P R R  P R R 

 (1, 0)  R R R  R R R 

 



MOEA/D for the MO-FLCPP

Better solutions can be found by normalizing to the set of Pareto 
optimal solutions.

MOEA/D is a multiobjective evolutionary algorithm based on 
decomposing a problem into single-objective subproblems.

MOEA/D Algorithm:

Step 1) Initialization

Step 1.1) Initialize a population of 𝑁 pre-scalarized solutions 
using different objective weight vectors 𝝀

Step 1.2) Initialize the external population 𝐸𝑃 containing the 
non-dominated solutions

Step 2) Until stopping criteria is met:

For each weight vector 𝑖:
Step 2.1) Create a new solution with a neighboring path 

using crossover and mutation
Step 2.1) Replace outperformed solutions with the new path
Step 2.3) Update 𝐸𝑃

Step 3) Return 𝐸𝑃 as the set of Pareto optimal solutions. The 
agent can scalarize these and choose the solution that 
best satisfies the agent’s original preferences.
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Binary Shortest Paths (WS)
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No region clustering Region size = 3 Region size = 10We use the 
MOEA/D 
algorithm to find 
all Pareto optimal 
shortest paths in 
a binary terrain 
environment.

Features:
• 𝑓𝑡 1 : Distance 

in meadow
• 𝑓𝑡 2 : Distance 

in forest

Using weighted 

sum scalarization.



Binary Shortest Paths (TE)

49

No region clustering Region size = 3 Region size = 10We use the 
MOEA/D 
algorithm to find 
all Pareto optimal 
shortest paths in 
a binary terrain 
environment.

Features:
• 𝑓𝑡 1 : Distance 

in meadow
• 𝑓𝑡 2 : Distance 

in forest

Using Tchebycheff 

scalarization.



Binary Shortest Paths (OWA)
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No region clustering Region size = 3 Region size = 10We use the 
MOEA/D 
algorithm to find 
all Pareto optimal 
shortest paths in 
a binary terrain 
environment.

Features:
• 𝑓𝑡 1 : Distance 

in meadow
• 𝑓𝑡 2 : Distance 

in forest

Using Ordered 

Weighted Average 

scalarization.



Distance and Elevation

These examples show 

how summation and 

maximization features can 

be combined.

Features:

• 𝑓𝑑: Total distance

• 𝑓ℎ_max: Maximum slope

Using Ordered Weighted 

Average scalarization.
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Many Objectives
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Terrain transition features allow for 
additional agent behaviors.
• Binary terrain

– Red agent favors forest
– Blue agent favors meadow
– Yellow agent favors the edge

• Trinary terrain
– Red agent prefers the order 

meadow, water, forest
– Blue agent prefers the order 

meadow, forest, water

Visualizing the objective space with 
more than 2 or 3 objectives is 
challenging.

Paths are colored based on objective 
weight similarity.



MOEA/D Improvement

We designed an experiment 
to compare solutions found 
using the pre-scalarized 
decomposition method and 
MOEA/D.

• 10 problem types
• 30 test environments of 

each type
• Define 10 × 𝑁 weight 

vectors for each 
problem, where 𝑁 is the 
number of objectives

• Find solutions for each 
weight vector using both 
approaches

• Measure the percent 
improvement of MOEA/D 
over pre-scalarization
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Prob. 

# 

# of 

Sum 

Obj. 

# of 

Max 

Obj. 

Avg. 

Nodes 

Avg. 

Edges 

  𝜉 = 0  𝜉 = 0.5  𝜉 = 1 

  WS OWA TE  WS OWA TE  WS OWA TE 

1 2 0 103 507   0.00 1.39 8.49  0.00 1.67 9.30  0.00 1.78 9.94 

2 1 1 66 318   5.35 7.10 13.12  5.27 5.08 5.44  5.57 5.75 7.02 

3 0 2 64 300   12.43 12.01 12.94  5.71 5.87 6.55  0.93 0.79 1.17 

4 3 0 65 311   -0.02 0.83 5.03  0.00 0.14 0.67  0.00 0.09 0.56 

5 2 1 92 447   9.64 13.73 20.53  7.93 7.08 8.51  9.80 8.55 9.27 

6 5 1 93 454   17.02 21.75 30.27  5.32 5.93 11.00  5.46 5.17 9.91 

7 6 0 109 545   -0.47 2.32 8.87  -0.15 2.39 9.82  -0.15 3.06 12.35 

8 15 0 93 454   -0.08 1.64 8.02  -0.03 1.53 8.00  -0.04 2.02 11.73 

9 15 2 91 445   26.31 31.75 42.06  7.14 9.14 16.35  4.36 5.38 12.22 

10 26 3 93 450   15.68 21.66 29.27  6.34 8.01 13.46  4.55 5.85 11.46 

 

Average percent improvement of MOEA/D over pre-scalarization



Greedy Agent Example
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No region clustering

Region clustering without 

local region memory

Region clustering with 

local region memory

Region clustering only 

for unobserved regions

We define a greedy agent strategy that can solve generic problems in the CMM framework.

Greedy Agent Strategy:

• After updating the region graph, determine the next target location:
– Closest required resource, if visible
– Otherwise, closest unobserved region

• Plan and follow a least-cost route to the target location



Future Work

The full potential of the CMM 
framework extends beyond 
this work.

Advanced agent strategies:
• Ant Colony Optimization
• Monte Carlo Tree Search

Anticipatory analysis:
• Generate synthetic 

trajectories for a particular 
agent profile

• Predict how the agent will 
behave in a new 
environment 
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Conclusion

The CMM framework is a useful tool for studying sequential 

multicriteria decision-making problems with uncertainty.

The pathfinding problem is a versatile problem domain that 

can be configured in many different ways.

The set of Pareto optimal solutions gives a broad overview of 

the options available to a decision-maker.

There’s still lots of opportunity for future work!
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Thank You
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