
Multicriteria Pathfinding in

 Uncertain Simulated Environments

Presented by
Andrew Buck

In Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy

Advisor: Dr. James Keller
Committee: Dr. Alina Zare, Dr. Marjorie Skubic, and Dr. Mihail Popescu

University of Missouri

May 9, 2018

Motivation

Suppose you had to plan a
route to some goal, and were
faced with multiple routes.

Each route has different
qualities that make it more or
less appealing.

Which route would you take?

How might you design an
autonomous agent to act in
your place?

2

Motivation

3

What happens if the environment is only partially observable?

How should the agent explore the environment?

How does the agent manage the uncertainty?

Motivation

4

A real-world environment has

various features representing

the ground-truth.

The agent has a simplified

version of the environment

used for planning.

As the agent explores, it

discovers new information and

updates its mental map.

What does the agent’s mental map look like?

Applications

In general, these are

Sequential Multicriteria Decision-making Problems with Uncertainty

Some more examples:
• Navigating through physical environments
• Optimal packet routing on computer networks with uncertain loads
• Making long-term business decisions based on variable market factors
• Designing optimal strategies for games with hidden information

5

Why Pathfinding?

We can represent these as pathfinding problems:
• Represent the problem space as a fuzzy weighted graph
• Choose a sequence of actions that leads to the “best” outcome

The pathfinding domain is ideal to study these types of problems.
• Simple to visualize and interpret
• Proxy problems for other domains

6

Why Simulated?

“Real” problems can be difficult to study.
• Example: Movement history with GPS tracker

– Data may be incomplete

– Don’t know agent’s goals or preferences

– Limited availability

7

Simulations give greater control.

• We can create problems that

investigate specific questions

• Easier to create a mental map of

what the agent knows

• Potential to create an unlimited

number of scenarios

The CMM Framework

The Computational Mental Map
(CMM) Framework was developed to
study these types of problems.

• Procedurally generated grid worlds

• Multiple attributes

– Terrain (categorical)

– Elevation (real-valued)

• Limited visibility

• Various problems represented as a
resource gathering game

8

CMM Framework Architecture

Two main components:

• Server
– Defines the problem
– Provides observations
– Implements actions

• Client (agent)
– Maintains a mental map

of the environment
– Decides where to go
– Provides actions to the

server

9

Create

Environment

Provide

Observation

Get

Observation

Update

Mental Map

Initialize

Mental Map

Decide

Action

Wait for

Action

Apply

Action

SERVER

CLIENT (AGENT)

Agent

Preferences

The Big Picture…

• Creating problem scenarios

• Managing the mental map

– Getting new observations

– Constructing the action graph

• Computing single-step features

– Clustering similar regions

– Building the region graph

• Aggregating fuzzy features

• Multiobjective Fuzzy Least-Cost Path Problems

– Pre-scalarized decomposition approach

– MOEA/D approach

– A greedy agent strategy

• Future work
10

Creating Problem Scenarios

The CMM framework uses grid worlds

to provide a finite action space.

We use several methods to create the

environments:

• Binary cellular automata

• Fashion-based cellular automata

• Fractal terrain
– Based on region partitioning

• Additional rules

11

Cellular Automata

Cave-like environments are represented as a binary
occupancy grid.

• Created using cellular automation (CA) rules
• Similar to Conway’s Game of Life

Step 1) Initialize a random occupancy grid with probability p0
Step 2) For k generations:

Step 2.1) Count the number of open and closed
 neighbors of each grid cell
Step 2.2) If an open cell has <rd open neighbors,
 it becomes closed
Step 2.3) If a closed cell has >rb open neighbors,
 it becomes open
Step 2.4) Clean up boarders

Step 3) Until open regions are connected:
Step 3.1) Find the smallest open region
Step 3.2) Either, dilate this region or expand it by a
 random grid cell
Step 3.3) Clean up boarders and diagonal artifacts

12

Example with rd=3 and rb=5

Cellular Automata Examples

13
Example using dilation Example using random expansion

Cavern Map Examples

14

 p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 4, rd = 3, p0 = 0.5, rb = 6, rd = 4, p0 = 0.5, rb = 6, rd = 4,

 k = 1, dilate k = 10, dilate k = 1, dilate k = 1, random

 p0 = 0.2, rb = 4, rd = 2, p0 = 0.2, rb = 4, rd = 2, p0 = 0.8, rb = 6, rd = 4, p0 = 0.8, rb = 5, rd = 3,

 k = 10, dilate k = 10, random k = 30, dilate k = 30, dilate

Figure Error! No text of specified style in document..1 Examples of cavern maps generated using Error!

Reference source not found.. A wide range of map types can be created by varying the input parameters.

These examples are 5050 grids with all locations set to be reachable.

Binary Terrain Environments

15

 p0 = 0.5, p0 = 0.5, p0 = 0.4, p0 = 0.5, p0 = 0.6,

 rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3, rb = 5, rd = 3,

 connected, dilate connected, random not connected not connected not connected

 p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.5, p0 = 0.6,

 rb = 4, rd = 3, rb = 4, rd = 3, rb = 4, rd = 3, rb = 5, rd = 3, rb = 5, rd = 4,

 connected, dilate connected, random not connected not connected not connected

Figure Error! No text of specified style in document..1 Examples of binary environments containing forest

and meadow terrain types. The top row shows the binary environments in grid worlds with a cave wall map

generated using parameters p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The bottom row

shows binary environments created without a cave wall map.

The CA algorithm can be
used to create binary
terrain environments.

Consider two types of
terrain:
• Meadow
• Forest

Additional options:
• Use cave walls
• Make meadow region

unconnected

Trinary Terrain Environments

16

 𝑃0 = 0.5, 0.3, 0.2 𝑃0 = 0.3, 0.4, 0.3 𝑃0 = 0.1, 0.8, 0.1 𝑃0 = 0.5, 0.3, 0.2

 𝑅 =
0.5 0.6 0.4
0.9 0.4 0
0 0.9 0.5

 𝑅 =
0.6 0.3 0.2
0.7 0.1 0.9
0.8 0.1 0.8

 𝑅 =
0.9 0.2 0.1
0.5 0.2 0.8
0.7 0.2 0.8

 𝑅 =
1 0.2 0.8

0.4 1 0.8
0.9 0.4 1

Figure Error! No text of specified style in document..1 Examples of the fashion-based cellular automata

algorithm for creating trinary terrain environments. The top row shows the results of Error! Reference

source not found. using a cave wall map generated using parameters p0=0.5, rb=4, rd=3, k=10, and the dilate

connection method. The bottom row shows trinary environments created without a cave wall map. The initial

distribution P0 and the rule matrix R are the same for each column.

Multiple terrain types can be
defined using fashion-based
cellular automata.
• Meadow, forest, & water

Let P0 be the starting
probability of each terrain
type.

Define a rule R to score the
compatibility of adjacent
terrain types.

Score all cells and assign
each cell the terrain label of
the highest scoring neighbor.

Repeat for k iterations.

Fractal Terrain

17

Figure Error! No text of specified style in document..1 A progression of the diamond-square algorithm

generating a fractal terrain.

Figure Error! No text of specified style in document..1 A progression of the diamond-square algorithm

generating a fractal terrain.

We use fractal noise to represent the heightmap of the elevation feature.

• Random noise at multiple scales is added together

• Larger scales get more weight, providing broad terrain features

• Smaller scales get less weight, adding fine details and texture

Region-Based Noise

18

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32

Figure Error! No text of specified style in document..1 Random noise images at different scales on a

5050 grid with no cave walls. (q = 3)

 s = 1 s = 2 s = 4 s = 8 s = 16 s = 32

Figure Error! No text of specified style in document..1 Random noise images at different scales on a

5050 grid with a provided cave wall map. (q = 3)

The noise functions at each scale are created by partitioning the environment

into distinct regions and assigning a random elevation value to each region.

Smoothing and Noise

19

Two parameters control the
blending of multiple noise scales:

• 𝑝 controls the weight
– Each noise scale 𝑠 is weighed

by 𝑠 ൗ1 𝑝

– Higher values result in a
rougher terrain

• 𝑞 controls the smoothing
– A mean filter is applied to each

noise image for 𝑞 iterations
– Larger values give smoother

edges

Full World Environments

20

Figure Error! No text of specified style in document..1 Examples of full world environments generated

using Error! Reference source not found.. The top row uses a cave wall map generated using parameters

p0=0.5, rb=4, rd=3, k=10, and the dilate connection method. The heightmap generation parameters are p=2

and q=3. The bottom row shows examples without any cave wall map.

We create full world
environments by
combining fashion-
based cellular automata
with elevation.

Five terrain types:
• Meadow
• Forest
• Water
• Rock
• Snow

Water is placed at the
lowest elevations.

Resource Placement

21

The agent is randomly placed
somewhere in the environment.

Different problem types can be created
based on how the resources are placed.

Shortest Path Problem
• One goal

– Placed randomly
– Maximum distance from the agent

Traveling Salesman Problem
• Multiple goals

– Placed in open areas
– Elevation extrema

Traveling Purchaser Problem
• Multiple resource types

– Different for each type of terrain
– Different distributions

Observing the Environment

22

In some scenarios, we
restrict what the agent
can observe.

The agent computes a
viewshed region from
its current location.

Visibility can be
obstructed by
• Walls
• Elevation (hills)
• Terrain (forests)

 (a) (b) (c) (d)

Figure Error! No text of specified style in document..1 Examples of observations in various environments

computed using Error! Reference source not found. and Error! Reference source not found.. The top

row shows the full environment ℰ and the bottom row shows the observation 𝒪 at the current agent location

(shown as a red dot). The environment values are observed within the visible region and hidden everywhere

else.

Walls Elevation Terrain All

E
n

v
ir
o

n
m

e
n
t

O
b

s
e

rv
a

ti
o

n

Checking Visibility

23

To check if a grid cell 𝑣 is visible from cell 𝑝,
• Draw a vector 𝑝𝑣 from 𝑝 to 𝑣
• Find all cells that intersect 𝑝𝑣
• Compute the elevation angle from 𝑝 to

each of these cells
• If the elevation angle from 𝑝 to 𝑣 is greater

than all other cells, then the cell is visible

To compute the viewshed mask,
• Compute the visibility of each cell, working

outward from the agent’s current location
• Continue processing in each direction until

encountering a wall or obstacle

Initializing the Mental Map

24

The agent starts with an empty mental map.
• Complete uncertainty

The mental map is initialized by the first observation.

Environment Mental Map

Updating the Mental Map

25

As the agent explores, new observations are integrated into the mental map.

All observed attributes are updated, including terrain and elevation.

Mental map before update New observation Mental map after update

Mental Map Heuristics

26

Filling-In Unreachable Areas

Fixing Diagonal Artifacts

The agent can use additional
heuristics to improve the
mental map.

Fill-in unreachable areas
• Unobserved regions that

are surrounded by walls
can’t be reached

• Replace with walls

Fix diagonal artifacts
• Diagonal passageways

are forbidden when
creating environments

• This can resolve certain
ambiguities

The Action Graph

27

The agent can move up,

down, left, and right.

The action graph covers

all the grid cells that are

traversable.

Each edge in the action

graph connects two

adjacent cells and is

attributed with multiple

features.

Observable Features

Consider two adjacent cells, 𝑐1 and
𝑐2 with terrain and height properties:

• Terrain types 𝑡1 and 𝑡2
• Heights ℎ1 and ℎ2

Features:

• 𝑓𝑑 Distance

• 𝑓𝑡 𝑖 Terrain type

• 𝑓𝑡 𝑖,𝑗 Terrain transition
 (symmetric)

• 𝑓𝑡 𝑖,𝑗 Terrain transition
 (directional)

• 𝑓ℎ Elevation difference
 (absolute)

• 𝑓ℎ↑, 𝑓ℎ↓ Elevation difference
 (directional)

28

Aggregating Path Features

29

Fuzzy Terrain Features

When one or both cells are
unobserved, we represent the
feature as a fuzzy number.

A triangular fuzzy number is
defined by three values:
• Minimum
• Mean (peak)
• Maximum

Assume a prior likelihood
𝑝 𝑖 for each terrain type.

The fuzzy feature represents
the range of possible crisp
feature values [min, max] and
the expected value (peak).

30

Fuzzy Terrain Type Features

Fuzzy Terrain Transition Features (symmetric)

Fuzzy Terrain Transition Features (directional)

Uncertain Elevation Features

31

Elevation Difference Features with First Cell Observed
Elevation Difference Features

with Both Cells Observed

ሚ𝑓ℎ
mean 𝑒 = න

0

1

න
0

1

𝑥 − y 𝑑𝑥 𝑑𝑦 =
1

3

ሚ𝑓ℎ↑
mean 𝑒 = න

0

1

න
0

𝑦

𝑦 − 𝑥 𝑑𝑥 𝑑𝑦 =
1

6

ሚ𝑓ℎ↓
mean 𝑒 = න

0

1

න
𝑦

1

𝑥 − 𝑦 𝑑𝑥 𝑑𝑦 =
1

6

Expected Elevation Difference with Both Cells Unobserved

Assumes all elevations are equally likely

Fuzzy Elevation Features

32

Features are crisp

when both cells are

observed

ሚ𝑓ℎ↑ range is [0, 0.6]
ሚ𝑓ℎ↓ range is [0, 0.4]

The mean of ሚ𝑓ℎ is higher

because it includes both

↑ and ↓ slopes

ሚ𝑓ℎ↓ is a crisp 0

All values of ሚ𝑓ℎ↑ and ሚ𝑓ℎ

are equally likely

Range of all features is [0, 1]

Mean of ሚ𝑓ℎ is 1/3

Mean of ሚ𝑓ℎ↑ and ሚ𝑓ℎ↓ is 1/6

The Region Graph

The action graph represents individual
movement actions.

We can summarize the action graph by
clustering similar regions and
constructing a new graph over the
regions.

The region graph
• Reduces the size of the search

space
• Helps with high-level planning
• Less precise than the action graph

Typically, we keep a small part of the
action graph around the agent to
facilitate the next immediate action.

33

Region Partitioning

SLIC Algorithm:

Step 1) Sample cluster centers with
separation distance r

Step 2) Adjust cluster centers to the
neighboring cell with the minimum
gradient

Step 3) For n iterations:

Step 3.1) Compute the elevation-
weighted distances between cells
and cluster centers

Step 3.2) Assign cells to the
closest clusters

Step 3.3) Update cluster centers
using the region centroids

Step 4) Fix any orphan cells
34

 r = 32 r = 16 r = 8 r = 4 r = 2

Figure Error! No text of specified style in document..1 Tabu sampling on a 5050 grid with different

values for the separation radius.

 r = 32 r = 16 r = 8 r = 4 r = 2

Figure Error! No text of specified style in document..1 Results of the region partitioning algorithm on a

5050 grid with different values for the separation radius.

Each observed terrain type and the unobserved regions are partitioned separately.

The SLIC algorithm clusters nearby cells into regions.

Fuzzy Region Features

35

Region features are computed between each pair of adjacent regions, 𝑅1 and 𝑅2.
• Fuzzy values represent the min, mean, and max cost of moving between regions.

Two computation methods:
• Boundary edge distance aggregation
• Opposing centroid distance approximation

Region 1 (meadow) to Region 2 (forest)

Showing Elevation Values Region 2 GraphRegion 1 Graph

Boundary Edges

Boundary Edge Distances

36

Region cost matrices 𝑈𝑑1
and 𝑈𝑑2 give the distances
from each cell to each
boundary edge 𝑘.

The overall cost matrix 𝐶𝑑
gives the minimum cost
required to go from any cell
𝑖 ∈ 𝑅1 to any cell 𝑗 ∈ 𝑅2.

𝐶𝑖𝑗
𝑑 = min

𝑘
𝑈𝑖𝑘

𝑑1 + 1 + 𝑈𝑘𝑗
𝑑2

The fuzzy region distance
feature is defined as the
min, mean, and max of the
values in 𝐶𝑑.

Boundary Edge Distances

k = 1 k = 2 k = 3

Region Terrain Features

37

Terrain type and transition
features can be computed
from 𝑈𝑑1, 𝑈𝑑2, and 𝐶𝑑.

If one or both regions are
unobserved, then use
terrain priors to evaluate
the likelihood of each
possible configuration.

The region distance
feature does not depend
on observability, only the
spatial layout.

X O X X

O O X X

X O X O

O O O O

O
b

s
e

rv
a

ti
o

n

Possible Configuration

1

1

1 1 1 1

2

2

2 2 2

–

–

– –

2

Region Elevation Features

38

S
u
m

k = 1 k = 2 k = 3

M
ax

The overall cost matrix is
computed as either

𝐶𝑖𝑗
sum = min

𝑘
𝑈𝑖𝑘

1 + 𝑢𝑘
bnd + 𝑈𝑘𝑗

2

𝐶𝑖𝑗
max = min

𝑘
max 𝑈𝑖𝑘

1 , 𝑢𝑘
bnd, 𝑈𝑘𝑗

2

where 𝑢𝑘
bnd is the cost of

boundary edge 𝑘.

Absolute Elevation Difference CostsTo compute the region elevation
features, distance is replaced by cost.

We use a grid-optimized version of the
Bellman-Ford algorithm to compute the
total and maximum elevation feature
costs to each boundary edge.

Unobserved Elevation Features

39

If a region is unobserved, the
elevation costs are unknown.

We assume all height values are
independent* and are uniformly
distributed between 0 and 1.

Minimum cost is the minimum of
the single-step boundary edge
costs.

Maximum cost is derived from the
max distance cost.

Expected cost for total elevation
change is 𝑈𝑑 times unobserved

single-step average
1

3
 or

1

6
.

Expected cost for max elevation
change is the expected max of 𝑈𝑑
randomly sampled feature costs.

a

ir

Expected Maximum Value of 𝒏 Elevation Feature Costs

Absolute Elevation Difference Directional Elevation Difference

Centroid Distance Approximation

40

The Bellman-Ford algorithm
can be computationally
expensive if applied multiple
times to each boundary edge.

The distance to the region
boundary can be
approximated from the
distance to the centroid of the
other region.

Single-step features can be
grouped into sets based on
distance from the region
boundary.

Approximate features based
on these sets can be much
faster to compute.

Updating the Region Graph

41

The region graph is updated when the agent moves.

The local region and region boundaries may change.

Features only need to be recomputed for regions that have changed.

Original regions Agent moves to the right and

gets a new observation

Identify cells that need to

be reclustered

Compute new region

boundaries. Update features

for regions that have changed.

The MO-FLCPP

42

The multiobjective fuzzy least-cost path problem (MO-FLCPP) finds
an optimal path between two vertices of a fuzzy weighted graph.

Consider this example:

Aggregated Path Cost

43

Path Color Total Distance Max Slope

1-3-5 Red Tri(1, 3, 10) Tri(0.6, 1, 1)

1-3-4-5 Yellow Tri(6, 16, 22) Tri(0.6, 1, 1)

1-2-3-5 Green Tri(5, 14, 21) Tri(0.3, 0.6, 0.9)

1-2-3-4-5 Blue Tri(10, 27, 33) Tri(0.1, 0.2, 0.4)

1-2-4-5 Purple Tri(11, 21, 25) Tri(0, 0, 0.3)

There are five paths
through the graph
from vertices 1 to 5.

By plotting the
aggregated path
costs, we can
determine which
solutions are Pareto
optimal.

A defuzzification
parameter 𝜉 indicates
the degree of
optimism/pessimism.

Choosing a Path

A scalarization function 𝑔 𝑿 𝝀 reduces the
multidimensional solution vector 𝑿 to a real
value using the weight vector 𝝀.

We consider three scalarization methods:

• Weighted sum

𝑔ws 𝑿 𝝀 =

𝑖=1

𝑚

𝜆𝑖𝑋𝑖

• Tchebycheff

𝑔te 𝑿 𝝀 = max
𝑖=1,…,𝑚

𝜆𝑖𝑋𝑖

• Ordered Weighted Average (OWA)

𝑔OWA 𝑿 𝝀, 𝜽 =

𝑖=1

𝑚

𝜃𝑖𝐵 𝑖

where 𝐵 𝑖 is the 𝑖𝑡ℎ largest 𝜆𝑖𝑋𝑖.
𝜽 is used to define different operators.

44

Finding a Path

Feature normalization:
• Initially features are normalized

by observed edge values
• As complete solutions are

discovered, features are
normalized by the range of the
Pareto front

Exponential scaling:
• To combine summation and

maximization objectives, scale
the maximization features
logarithmically

• This approximates a minimax
path as a shortest path

45

Uniform Transition Probability

Dijkstra’s Algorithm with Noise

Selection bias:
• Add a small amount of

random noise to
features to distinguish
equivalent paths

• Find a shortest path
using Dijkstra’s
algorithm

Pre-Scalarized Decomposition

A fast way to get a solution for the MO-FLCPP is
to reduce the multidimensional fuzzy edge
features to crisp scalar values and use standard
Dijkstra’s algorithm.

This method depends on
• The scalarization function 𝑔ws, 𝑔te, or 𝑔OWA

• The objective weight vector 𝝀
– and OWA weights 𝜽 if using OWA

• The defuzzification parameter 𝜉
• How the features are normalized

– Reference point 𝒛me, or 𝒛∗

Shortest paths for the example problem:
• 𝑝𝐷: Pre-scalarized using max edge

features, 𝒛me

• 𝑝𝑀: Scalarized after aggregating path costs
using 𝒛me

• 𝑝∗: Scalarized after aggregating using
Pareto optimal normalization, 𝒛∗

46

 Weighted Sum Tchebycheff

𝜉 𝝀 𝑝D 𝑝M 𝑝∗ 𝑝D 𝑝M 𝑝∗

0 (0, 1) P P P P P P

 (0.25, 0.75) B P P B G B

 (0.5, 0.5) G R P G G G

 (0.75, 0.25) R R R R R G

 (1, 0) R R R R R R

0.5 (0, 1) P P P P P P

 (0.25, 0.75) P P P P G P

 (0.5, 0.5) P R P P R P

 (0.75, 0.25) P R R P R R

 (1, 0) R R R R R R

1 (0, 1) P P P P P P

 (0.25, 0.75) P P P P P P

 (0.5, 0.5) P R P P R P

 (0.75, 0.25) P R R P R R

 (1, 0) R R R R R R

MOEA/D for the MO-FLCPP

Better solutions can be found by normalizing to the set of Pareto
optimal solutions.

MOEA/D is a multiobjective evolutionary algorithm based on
decomposing a problem into single-objective subproblems.

MOEA/D Algorithm:

Step 1) Initialization

Step 1.1) Initialize a population of 𝑁 pre-scalarized solutions
using different objective weight vectors 𝝀

Step 1.2) Initialize the external population 𝐸𝑃 containing the
non-dominated solutions

Step 2) Until stopping criteria is met:

For each weight vector 𝑖:
Step 2.1) Create a new solution with a neighboring path

using crossover and mutation
Step 2.1) Replace outperformed solutions with the new path
Step 2.3) Update 𝐸𝑃

Step 3) Return 𝐸𝑃 as the set of Pareto optimal solutions. The
agent can scalarize these and choose the solution that
best satisfies the agent’s original preferences.

47

Two neighboring paths Crossover Mutation

Binary Shortest Paths (WS)

48

No region clustering Region size = 3 Region size = 10We use the
MOEA/D
algorithm to find
all Pareto optimal
shortest paths in
a binary terrain
environment.

Features:
• 𝑓𝑡 1 : Distance

in meadow
• 𝑓𝑡 2 : Distance

in forest

Using weighted

sum scalarization.

Binary Shortest Paths (TE)

49

No region clustering Region size = 3 Region size = 10We use the
MOEA/D
algorithm to find
all Pareto optimal
shortest paths in
a binary terrain
environment.

Features:
• 𝑓𝑡 1 : Distance

in meadow
• 𝑓𝑡 2 : Distance

in forest

Using Tchebycheff

scalarization.

Binary Shortest Paths (OWA)

50

No region clustering Region size = 3 Region size = 10We use the
MOEA/D
algorithm to find
all Pareto optimal
shortest paths in
a binary terrain
environment.

Features:
• 𝑓𝑡 1 : Distance

in meadow
• 𝑓𝑡 2 : Distance

in forest

Using Ordered

Weighted Average

scalarization.

Distance and Elevation

These examples show

how summation and

maximization features can

be combined.

Features:

• 𝑓𝑑: Total distance

• 𝑓ℎ_max: Maximum slope

Using Ordered Weighted

Average scalarization.

51

Many Objectives

52

Terrain transition features allow for
additional agent behaviors.
• Binary terrain

– Red agent favors forest
– Blue agent favors meadow
– Yellow agent favors the edge

• Trinary terrain
– Red agent prefers the order

meadow, water, forest
– Blue agent prefers the order

meadow, forest, water

Visualizing the objective space with
more than 2 or 3 objectives is
challenging.

Paths are colored based on objective
weight similarity.

MOEA/D Improvement

We designed an experiment
to compare solutions found
using the pre-scalarized
decomposition method and
MOEA/D.

• 10 problem types
• 30 test environments of

each type
• Define 10 × 𝑁 weight

vectors for each
problem, where 𝑁 is the
number of objectives

• Find solutions for each
weight vector using both
approaches

• Measure the percent
improvement of MOEA/D
over pre-scalarization

53

Prob.

of

Sum

Obj.

of

Max

Obj.

Avg.

Nodes

Avg.

Edges

 𝜉 = 0 𝜉 = 0.5 𝜉 = 1

 WS OWA TE WS OWA TE WS OWA TE

1 2 0 103 507 0.00 1.39 8.49 0.00 1.67 9.30 0.00 1.78 9.94

2 1 1 66 318 5.35 7.10 13.12 5.27 5.08 5.44 5.57 5.75 7.02

3 0 2 64 300 12.43 12.01 12.94 5.71 5.87 6.55 0.93 0.79 1.17

4 3 0 65 311 -0.02 0.83 5.03 0.00 0.14 0.67 0.00 0.09 0.56

5 2 1 92 447 9.64 13.73 20.53 7.93 7.08 8.51 9.80 8.55 9.27

6 5 1 93 454 17.02 21.75 30.27 5.32 5.93 11.00 5.46 5.17 9.91

7 6 0 109 545 -0.47 2.32 8.87 -0.15 2.39 9.82 -0.15 3.06 12.35

8 15 0 93 454 -0.08 1.64 8.02 -0.03 1.53 8.00 -0.04 2.02 11.73

9 15 2 91 445 26.31 31.75 42.06 7.14 9.14 16.35 4.36 5.38 12.22

10 26 3 93 450 15.68 21.66 29.27 6.34 8.01 13.46 4.55 5.85 11.46

Average percent improvement of MOEA/D over pre-scalarization

Greedy Agent Example

54

No region clustering

Region clustering without

local region memory

Region clustering with

local region memory

Region clustering only

for unobserved regions

We define a greedy agent strategy that can solve generic problems in the CMM framework.

Greedy Agent Strategy:

• After updating the region graph, determine the next target location:
– Closest required resource, if visible
– Otherwise, closest unobserved region

• Plan and follow a least-cost route to the target location

Future Work

The full potential of the CMM
framework extends beyond
this work.

Advanced agent strategies:
• Ant Colony Optimization
• Monte Carlo Tree Search

Anticipatory analysis:
• Generate synthetic

trajectories for a particular
agent profile

• Predict how the agent will
behave in a new
environment

55

Conclusion

The CMM framework is a useful tool for studying sequential

multicriteria decision-making problems with uncertainty.

The pathfinding problem is a versatile problem domain that

can be configured in many different ways.

The set of Pareto optimal solutions gives a broad overview of

the options available to a decision-maker.

There’s still lots of opportunity for future work!

56

Thank You

Thanks to my advisor, Dr. Keller,

To my committee, Dr. Popescu, Dr. Skubic, and Dr. Zare,

To NGA and ARO/NVESC for supporting me during this work,

And to my parents, friends, family, and everyone else.

57

	Slide 1: Multicriteria Pathfinding in Uncertain Simulated Environments
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Applications
	Slide 6: Why Pathfinding?
	Slide 7: Why Simulated?
	Slide 8: The CMM Framework
	Slide 9: CMM Framework Architecture
	Slide 10: The Big Picture…
	Slide 11: Creating Problem Scenarios
	Slide 12: Cellular Automata
	Slide 13: Cellular Automata Examples
	Slide 14: Cavern Map Examples
	Slide 15: Binary Terrain Environments
	Slide 16: Trinary Terrain Environments
	Slide 17: Fractal Terrain
	Slide 18: Region-Based Noise
	Slide 19: Smoothing and Noise
	Slide 20: Full World Environments
	Slide 21: Resource Placement
	Slide 22: Observing the Environment
	Slide 23: Checking Visibility
	Slide 24: Initializing the Mental Map
	Slide 25: Updating the Mental Map
	Slide 26: Mental Map Heuristics
	Slide 27: The Action Graph
	Slide 28: Observable Features
	Slide 29: Aggregating Path Features
	Slide 30: Fuzzy Terrain Features
	Slide 31: Uncertain Elevation Features
	Slide 32: Fuzzy Elevation Features
	Slide 33: The Region Graph
	Slide 34: Region Partitioning
	Slide 35: Fuzzy Region Features
	Slide 36: Boundary Edge Distances
	Slide 37: Region Terrain Features
	Slide 38: Region Elevation Features
	Slide 39: Unobserved Elevation Features
	Slide 40: Centroid Distance Approximation
	Slide 41: Updating the Region Graph
	Slide 42: The MO-FLCPP
	Slide 43: Aggregated Path Cost
	Slide 44: Choosing a Path
	Slide 45: Finding a Path
	Slide 46: Pre-Scalarized Decomposition
	Slide 47: MOEA/D for the MO-FLCPP
	Slide 48: Binary Shortest Paths (WS)
	Slide 49: Binary Shortest Paths (TE)
	Slide 50: Binary Shortest Paths (OWA)
	Slide 51: Distance and Elevation
	Slide 52: Many Objectives
	Slide 53: MOEA/D Improvement
	Slide 54: Greedy Agent Example
	Slide 55: Future Work
	Slide 56: Conclusion
	Slide 57: Thank You

