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Multi-objective Optimization

A multi-objective optimization problem (MOP) is of the form

     
minimize 𝑓1 x , … , 𝑓𝑘 x
subject to x ∈ 𝑆

Where

• 𝑓𝑖: ℝ𝑛 → ℝ is an objective function

• 𝑘 (≥ 2) is the number of (conflicting) objective functions

• x = 𝑥1, … , 𝑥𝑛  is a decision vector

• 𝒛 = 𝑓 x = 𝑓1 x , … , 𝑓𝑘 x = 𝑧1, … , 𝑧𝑘  is an objective vector

• 𝑆 is the feasible region formed by constraints

• 𝑍 (= 𝑓 𝑆 ) is the feasible objective region of the objective space
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A maximization objective 

𝑓𝑖 x  can be converted to a 

minimization objective 𝑓𝑖
′ x  

by setting 𝑓𝑖
′ x = −𝑓𝑖 x .
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Pareto Dominance
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Objective Space

A solution vector 𝐱 dominates another solution vector 𝐲 if and only if:

• 𝑓𝑖(𝐱) is not worse than 𝑓𝑖 𝐲 , ∀ 𝑖 = 1, 2, … , 𝑘
• 𝑓𝑗(𝐱) is better than 𝑓𝑗(𝐲) for at least one 𝑗 = 1, 2, … , 𝑘

Obviously, an ideal solution to a MOP should not be dominated by any other 

solution.
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Pareto optimal 

decision vector

Pareto Optimality

A decision vector x∗ is Pareto optimal if and only if there does not exist 

another decision vector x ∈ 𝑆 such that 𝑓𝑖 x ≤ 𝑓𝑖 x∗  for all 𝑖 = 1, … , 𝑘 and 

𝑓𝑗 x < 𝑓𝑗 x∗  for at least one index 𝑗.

An objective vector z∗ = 𝑓 x∗  is Pareto optimal if and only if there does not 

exist another objective vector 𝐳 ∈ 𝑍 such that 𝑧𝑖 ≤ 𝑧𝑖
∗ for all 𝑖 = 1, … , 𝑘 and 

𝑧𝑗
∗ < 𝑧𝑗 for at least one index 𝑗.
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The Pareto Optimal Set

The set of Pareto optimal solutions forms the Pareto optimal (PO) set.
• In objective space, the PO set is called the Pareto front.
• There may be many (infinite) solutions within the PO set.
• Computing all solutions within the PO set may be infeasible.

The ideal objective vector z⋆ ∈ ℝ𝑘 represents the best possible solution, obtained 
by minimizing each objective independently.
• The ideal objective vector is typically not in the feasible objective region.

The nadir objective vector znad is formed from the upper bounds of the PO set.
• The nadir objective vector may or may not be in the feasible objective region.
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Finding the Pareto Optimal Set

• Multi-objective evolutionary algorithms (MOEAs) are well-suited 

for solving MOPs.

• The goal of a MOEA is to return a set of solutions that is a good 

approximation of the true PO set:
– Close to the theoretical true Pareto front.

– Well distributed over the entire theoretical true Pareto front.
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𝑍

Considerations:

• No longer a single optimal 

solution
– How to assign fitness, perform 

selection, and do crossover and 

mutation?

• Need to maintain population 

diversity
– Don’t let the population 

converge to a single point.



Performance Metrics

• Given a set of solutions, how well does it approximate the true 
Pareto optimal set?

• 5 broad categories of performance metrics:
– Methods that assess the number of Pareto optimal solutions in the set

• Example: Ratio of Nondominated Individuals (RNI)
– Measures the proportion of nondominated solutions to population size

– Methods that measure how close solutions are to the theoretical true 
Pareto front

• Example: Inverted Generational Distance (IGD)
– Measures the distance between solutions on the true Pareto front and their closest 

neighbors on the approximate Pareto front

– Methods that quantify the distribution of the set
• Example: How evenly are the solutions distributed?

– Methods that are concerned with the spread of the set
• Example: Maximum Spread (MS)

– Measures how well the true Pareto front is covered by the approximation set

– Methods that consider both closeness to the theoretical true Pareto front 
and solution diversity simultaneously

• Example: Hypervolume (S-metric)
– Calculates the volume or area of the region covered by the approximation set with 

respect to a given reference point
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Performance Metrics
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• Two common metrics are compared in this paper:
– Inverted Generational Distance (IGD) measures the average distance between points 

on the true Pareto front and the closest point in the approximation set.

– Hypervolume (S-metric) measures the volume covered by the set with respect to a 

given reference point.

Approximation Set

True Pareto Front



Shape of the Pareto Front
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Convex Linear Concave

There are three basic shapes of Pareto fronts: convex, linear, and concave. 

The shape is determined by the feasible objective region of the problem.

The Pareto front can also consist of a mixed front, which is a combination of 

the three basic types, or be discontinuous. 



Why Does Shape Matter?

• The shape of the Pareto front can affect how well an optimization 

algorithm performs.

• Consider the common strategy of choosing a weight vector to reduce the 

multi-objective problem to a single objective:
– Given a weight vector 𝐰 = 𝑤1, … , 𝑤𝑘 , pick the solution 𝐳 ∈ 𝑍 that minimizes σ𝑖=1

𝑘 𝑤𝑖𝑧𝑖 

• If the Pareto front is concave, linear weighting will only produce solutions 

at the edges.
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Generalized Weighted Metric
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• Different solutions can be obtained by using a weighted 𝐿𝑝 metric:

– Pick the solution 𝐳 ∈ 𝑍 that minimizes σ𝑖=1
𝑘 𝑤𝑖 𝑧𝑖 − 𝑧𝑖

⋆ 𝑝
1

𝑝

• The 𝐿∞ metric is also called the Tchebycheff metric:

– Pick the solution 𝐳 ∈ 𝑍 that minimizes max
𝑖=1,…,𝑘

𝑤𝑖 𝑧𝑖 − 𝑧𝑖
⋆



Many-Objective Optimization

• If 𝑘 ≥ 4, the problem is considered a many-objective optimization 

problem (MaOP).
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• Difficulties in handling many objectives:
– A large fraction of the population is 

nondominated
• It becomes difficult for a solution to be the best in 

all objectives

– Evaluation of diversity measure becomes 

computationally expensive
• Need to find neighbors in 𝑘-dimensional space

– Recombination operation may be inefficient
• Children may be very far from parents

– Representation of trade-off surface is difficult
• Exponentially more points are required

– Performance metrics are computationally 

expensive to compute
• Example: calculating hypervolume has exponential 

complexity with respect to number of dimensions

– Visualization is difficult
• Hard to display >3 dimensional space

What proportion of randomly 

distributed individuals are 

nondominated in high-

dimensional spaces?



MaOEAs

Many-Objective Evolutionary Algorithms (MaOEAs) are 
optimized for solving problems with many objectives.

• This paper compares five state-of-the art MaOEAs:
– MOEA/D

• MOEA based on decomposition 
– NSGA-III

• Reference-point based many-objective nondominated sorting 
genetic algorithm (NSGA)-II

– ε-MOEA
• ε-domination-based MOEA

– HypE
• Hypervolume estimation algorithm for multi-objective optimization

– GrEA
• Grid-based evolutionary algorithm
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MOEA/D

• MOEA/D is a multiobjective evolutionary algorithm based 
on decomposition.
– Simplify the problem into several different single-objective problems 

using different scalarization functions.
– Solve these problems using traditional optimization techniques.

• The main algorithm is:
1. Create a uniformly distributed set of weight vectors
2. Define the neighborhood region around each weight vector (e.g. 10 

nearest neighbors)
3. Create an initial population by solving the single-objective problem 

defined by each weight vector
4. Each iteration, for each weight vector

a. Select two solutions from the neighborhood of the weight vector and 
generate a new solution using genetic operators

b. Perform a problem specific repair/improvement heuristic
c. If the new solution dominates its neighbors, use it as the representative 

solution for this weight vector
d. Update the archive population with the set of nondominated solutions
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NSGA-II
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• Generate a new population using binary tournament selection.

• Sort individuals based on dominance depth.

• Partitions that fit into the new population are copied directly.

• The last partition is further sorted based on crowding distance.
– In high-dimensional spaces, this is often the first front!

• Individuals with the largest distance are added until the new population is filled.

𝑧2

𝑧1

Dominance Depth Partitioning
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𝐹2

𝐹3

𝐹4

𝐹5



NSGA-III

• Uses the same dominance based 

partitioning as NSGA-II.

• Instead of using crowding distance to 

accept solutions from the last front, 

NSGA-III uses uniformly distributed 

reference vectors, similar to 

MOEA/D.

• Each individual is associated with 

the nearest reference point, and 

niching is used to ensure that the 

subsequent generation contains a 

relatively uniform distribution of 

individuals.

• This also ensures that the population 

has a good distribution and spread 

over the entire Pareto front. 
17



HypE

• Same approach as NSGA-II for generating a new population and 
partitioning into nondominated fronts.

• For the last front, compute the fitness of each individual using the 
hypervolume indicator, using Monte Carlo sampling to estimate the 
value in high-dimensional space, and move only the individuals with 
the best fitness to the new population. (Ex. 10,000 sample points)
– Fitness is based on how much the hypervolume would change if this 

individual were removed from the front.
– Approximate values are okay since only the rank of the individuals is 

important.
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ε-MOEA

• ε-MOEA is a steady-state algorithm 

that uses two co-evolving populations: 

an EA population 𝑃 and an archive 

population 𝐴 containing the best ε-

nondominated solutions.

• A random solution 𝑝 is picked from 𝑃 

using binary dominance selection and 

a solution 𝑒 is picked from 𝐴 randomly.

• The child of 𝑝 and 𝑒 is accepted into 

the population 𝑃 if it dominates an 

existing individual, which it replaces.

• The child is accepted into the archive 

population only if it is ε-nondominated.
– Only one solution is allowed in each ε-

sized grid cell, ensuring population 

diversity. 
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GrEA

Grid-based Evolutionary Algorithm

Each iteration:
• Divide each objective range into a uniform number of grid 

cells

• Compute 3 fitness values for each individual:
– Grid rank: 𝐺𝑅 𝐱 = σ𝑘=1

𝑀 𝐺𝑘 𝐱 , where 𝐺𝑘 𝐱  is the grid 

coordinate of 𝐱 in objective 𝑘.

– Density: 𝐺𝐶𝐷 𝐱 = σ𝐲∈𝑁 𝐱 𝑀 − 𝐺𝐷 𝐱, 𝐲 , where 

𝐺𝐷 𝐱, 𝐲 = σ𝑘=1
𝑀 𝐺𝑘 𝐱 − 𝐺𝑘 𝐲  and 𝐲 ∈ 𝑁 𝐱 ⇔ 𝐺𝐷 𝐱, 𝐲 < 𝑀.

– Hyperbox distance: 𝐺𝐶𝑃𝐷 𝐱 = σ𝑘=1
𝑀 𝐹𝑘 𝐱 − 𝑙𝑏𝑘+𝐺𝑘 𝐱 ×𝑑𝑘

𝑑𝑘

2

, 

where 𝐺𝑘 𝐱  and 𝐹𝑘 𝐱  denote the grid coordinate and actual 

objective value of 𝐱 for objective 𝑘. 𝑙𝑏𝑘 and 𝑑𝑘 are the lower 

boundary and grid width for objective 𝑘.

• Generate new individuals using binary tournament 

selection and a hierarchy of the fitness values.

• Partition the new solutions into nondominated fronts as in 

NSGA-II and for the last front, use the computed fitness 

values to decide which solutions to add.
– The fitness of neighbor solutions is adjusted as solutions are 

selected and removed from the previous population.
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Visualizing MaOPs

• In low-dimensional space, a scatter plot can show 

the location, distribution, and shape of the 

approximated front.
– Each axis represents one objective

– Limited to 2 or 3 objectives

– A bundle chart also plots size and color, extending the 

number of possible objectives to 5.

• Most existing approaches can be categorized as…
– Methods based on a parallel coordinate system:

• Parallel coordinates

• Heatmap

– Methods based on mapping:
• Sammon mapping

• Neuroscale

• RadViz

• Self-Organizing Map (SOM)

• Isomap
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Parallel Coordinate Methods

22

Parallel Coordinates

Each M-dimensional vector is 

represented as a polyline that 

connects points on parallel axes.

• Shows dependencies between 

objectives

• Many individuals leads to over-

crowded lines

Heatmap

Each individual is a row in the image.

Color indicates objective value.

Rows are clustered based on similarity.

• Used to display microarray data

• High information density

• Difficult to see tradeoff between 

objectives



Stress Minimization Methods
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Sammon Mapping

Uses gradient descent or other iterative 

methods to minimize a stress function of the 

form 𝐸 =
1

σ𝑖<𝑗 𝑑𝑖𝑗
∗ σ𝑖<𝑗

𝑑𝑖𝑗
∗ −𝑑𝑖𝑗

2

𝑑𝑖𝑗
∗ , where 𝑑𝑖𝑗 and 

𝑑𝑖𝑗
∗  are distances between the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

points in the original and projected spaces 

respectively.

Neuroscale

Similarly, minimizes a stress 

function using an RBF neural 

network to generalize the 

projection transformation to 

unseen data points.

The points are mapped from a high-dimensional space to a low-dimensional 

space in a way that preserves the distances between points.



Self-Organizing Maps
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• Individuals in a high-dimensional space are mapped onto a grid of neurons 

arranged in a (usually 2D) topology.

• When trained, nearby vectors in the high-dimensional space are mapped onto 

nearby neurons in the SOM.

• Regional clusters in the SOM represent similar feature vectors.



Other Mapping Methods
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RadViz

• Objectives are represented as 

anchors on a circle.

• Individuals are connected to 

each anchor with “springs” that 

are weighted according to the 

relative objective values.

• Preserves the distribution of 

vectors, but does not show the 

shape of the Pareto front.

Isomap

• Topological geometry of the high-

dimensional space is preserved by 

linking points only to their nearest 

neighbors.

• Distance between points is computed as 

the shortest path through the topology.

• Multidimensional scaling is applied to 

map points to 2D while preserving 

pairwise distances.



Proposed Visualization Method
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• The proposed visualization method maps individuals from a high-

dimensional Cartesian space into a 2D polar coordinate system.

– Angular coordinates show the distribution of individuals on the 

approximated Pareto front and the crowdedness in each subregion of 

high-dimensional space.

– Radial coordinates show the convergence status toward the theoretical 

true Pareto front.



Angular Coordinate
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• The high-dimensional 

objective space is 

evenly divided into 

subregions.

• Each subregion is 

represented by one 

direction vector and 

assigned an angular 

coordinate.

• Individuals in the 

original objective 

space are mapped 

onto the closest 

direction vector and 

assigned the same 

angular coordinate.



Radial Coordinate
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• The radial coordinate indicates 
how close an individual is to the 
theoretical true Pareto front.

• For each of the three basic front 
shapes, there is a constant 𝑟 
that can be used to characterize 
the shape of the front:

– Concave: σ𝑚=1
𝑀 𝑓𝑚 𝐱 2 = 𝑟2

– Convex: σ𝑚=1
𝑀 𝑟 − 𝑓𝑚 𝐱

2
= 𝑟2

– Linear: σ𝑚=1
𝑀 𝑓𝑚 𝐱 = 𝑟

• Smaller values of 𝑟 indicate 
better convergence 
performance.

• Individuals are assigned a radial 
coordinate based on closeness 
to the true Pareto front.

• Each quadrant of the mapped 
space represents a subfront of 
the objective space.



Visualization Process
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1. Precompute a set of equally 

distributed direction vectors in high-

dimensional space and assign a 

fixed angular-coordinate to each.

2. Map each individual to the nearest 

direction vector in objective space 

and assign it the corresponding 

angular coordinate.

3. Determine the shape of the 

approximate front by solving for 𝑟 

using the three possible shapes.

4. If most individuals achieve the same 

value of 𝑟 under one shape, use this 

shape as the approximate front. 

Otherwise consider a mixed front 

and treat each subpart 

independently.

5. Assign the radial coordinate for 

each individual based on the 

closeness to the approximate front.



Visualization Examples
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More Examples
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Visualization Summary

• Individuals are mapped from a high-dimensional 
objective space into a 2D polar coordinate system.
– Radial coordinate reflects convergence performance
– Angular coordinate reflects distribution of individuals

• Main contributions:
– Mapping is consistent

• Pareto dominance relationship, front shape and location, and the 
distribution of solutions is maintained

– Allows for observation of the evolution process
• Improvement of the approximation set can be tracked in location, 

range, and distribution as the population evolves

– Decision-making is easy and effective
• Solution quality and trade-offs can be observed from the plots

– Scalable to any number of dimensions
• High-dimensional objective spaces can be visualized, even with a 

large number of individuals on the front
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𝑝-Metric

• A new performance metric is proposed called 𝑝-metric 

that is based on the proposed visualization approach.
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• Method:
– For each direction vector 𝑗:

• 𝑟min = min
𝑖=1:𝑁𝑗

𝑟𝑖, where 𝑁𝑗 is the 

number of solutions associated with 

direction vector 𝑗 and 𝑟𝑖 is the radius 

value of solution 𝑖.

• 𝑑𝑗 = ቐ

1

𝑟min
, 𝑁𝑗 > 0

0,  𝑁𝑗 = 0

– Compute performance score:
• 𝑆 = σ𝑗=1:𝑁 𝑑𝑗, where 𝑁 is the 

number of direction vectors.



𝑝-Metric Comparison

• All solutions except 𝑥1 in the approximate front 1 (blue) are dominated by 
at least one solution on the approximate front 2 (black).

– Based on this property, the authors prefer front 2.
– However, because 𝑥1 is so close to the true Pareto front, the IGD metric always 

assigns it as the closest point.
– The 𝑝-Metric favors front 2 because it is well distributed with a solution for each 

direction vector and dominates most points on front 1.
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𝑝-Metric Comparison

• All solutions except 𝑥1 in the approximate front 1 (blue) are dominated by a 
solution on the approximate front 2 (black).

– Based on this property, the authors prefer front 2 (although 𝑥1 is close to the ideal 
point).

– Front 1 encloses a larger area than front 2 so the hypervolume (S-metric) is larger for 
front 1.

– The 𝑝-Metric favors front 2 because it is well distributed with a solution for each 
direction vector and dominates most points on front 1.
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𝑝-Metric Comparison

• All solutions from approximate front 1 (blue) are focused in a single 
neighborhood, as tends to happen in high-dimensional spaces.

• Approximate front 2 is well distributed, but farther from the ideal point.
– Based on these properties, the authors prefer front 2.
– As with the previous examples, IGD and S-metric prefer front 1, even with extremely 

poor diversity.
– The 𝑝-Metric favors front 2 because it is well-distributed, although somewhat farther 

from the ideal point than front 1.

36
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Experiments

• 5 MaOEAs are tested on 5-D and 10-D benchmark 
functions DTLZ1-DTLZ7.

• For each problem, the following parameters are used:
– Population size: 100
– Stopping criteria: 10,000 generations
– Initial population: uniform random sampling
– Crossover: simulated binary crossover (SBX) 𝑝𝑐 = 1
– Mutation: polynomial mutation 𝑝𝑚 =

1

𝑚
– Number of decision variables (𝑚):

• 5-D DTLZ1: 9
• 10-D DTLZ1 & 5-D DTLZ2-DTLZ7: 14
• 10-D DTLZ2-DTLZ7: 19

– Number of direction vectors:
• 126 for 5-D
• 55 for 10-D

• Each algorithm is run 30 times to compute the average 
performance metric.

37



DTLZ1
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GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

5-D DTLZ1 10-D DTLZ1

DTLZ1 has a linear Pareto front with a large number of local fronts.
• GrEA (blue) 

performs best and 

ε-MOEA (black) is 

worst.

• In 5-D DTLZ1, the 

MOEA/D front 

(magenta) is 

localized to the top-

right, behind the 

GrEA front (blue).
– Despite poor 

diversity, MOEA/D 

still scores well with 

IGD and S-metrics.



DTLZ2
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5-D DTLZ2 10-D DTLZ2

GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

DTLZ2 has a single concave Pareto front.
• In 5-D DTLZ2, IGD 

shows that:
– ε-MOEA (black) 

performs better than 

NSGA-III (yellow), 

but appears to have 

worse convergence.

– MOEA/D (magenta) 

performs better than 

HypE (cyan), but 

has worse diversity.

• GrEA (blue) 

performs best, 

which is shown by 

the 𝑝-metric, but not 

by the S-metric.



DTLZ3
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5-D DTLZ3 10-D DTLZ3

GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

DTLZ3 has a concave Pareto front and a large number of local 

Pareto fronts.

• GrEA (blue) 

performs best.

• Other algorithms 

can only converge 

to several 

different local 

Pareto fronts.



DTLZ4
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5-D DTLZ4 10-D DTLZ4

GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

DTLZ4 has a single concave Pareto front with a non-uniform mapping 

from decision space to objective space to challenge solution diversity.

• GrEA (blue) continues 
to perform best.

• S-metric claims 
MOEA/D (magenta) 
and HypE (cyan) are 
best, despite poor 
diversity.

• In 10-D DTLZ4, IGD 
ranks ε-MOEA (black) 
above GrEA (blue) 
despite better 
convergence.

• In 10-D DTLZ4, S-
metric ranks MOEA/D 
(magenta), HypE 
(cyan), and NSGA-III 
(yellow) above GrEA 
(blue) despite poor 
diversity.



DTLZ5
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5-D DTLZ5 10-D DTLZ5

GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

DTLZ5 has a degenerated hypersurface as the Pareto front. • In 10-D-DTLZ5, 
IGD ranks ε-MOEA 
(black) above 
NSGA-III (yellow), 
despite worse 
convergence.

• NSGA-III (yellow) 
and HypE (cyan) 
perform best on this 
problem.

• GrEA (blue) 
performs poorly on 
DTLZ5 with a 
degenerated 
hypersurface.



DTLZ6
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5-D DTLZ6 10-D DTLZ6

GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

DTLZ6 has a large number of local Pareto fronts and disconnected 

Pareto-optimal regions.

• ε-MOEA (black) 
shows poor 
performance in 
DTLZ6.

• GrEA (blue) 
performs poorly in 
10-D DTLZ6, but 
does well in 5-D 
DTLZ6.

• NSGA-III (yellow), 
HypE (cyan), and 
MOEA/D (magenta) 
perform best on 
high-dimensional 
disconnected 
problems.



DTLZ7
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5-D DTLZ7 10-D DTLZ7

GrEA

ε-MOEA

NSGA-III

MOEA/D

HypE

DTLZ7 has a Pareto front at the intersection of a straight line and a 

hyperplane.

• None of the tested 

MaOEAs are 

effective at 

converging to the 

true Pareto front.

• A single metric 

alone cannot show 

this and some form 

of visualization is 

required to observe 

both convergence 

and diversity 

performance.
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• Visualization is an important tool for evaluating MaOEAs 

and MaOPs.
– The proposed visualization approach maps a high-dimensional 

objective space into a 2D polar coordinate plot while preserving 

Pareto dominance, shape and location of the Pareto front, and 

population diversity.

– The approach is scalable to a large number of dimensions and 

can display many individuals and fronts simultaneously.

• The proposed performance metric, 𝑝-Metric is well-

suited for high-dimensional MaOPs.
– Convergence is measured by radial value.

– Distribution is shown with angular coordinates.

– Provides a comprehensive and consistent comparison among 

MaOEAs.
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