
A Myopic Monte Carlo Strategy for the Partially

Observable Travelling Salesman Problem

Andrew R. Buck and James M. Keller

Department of Electrical and Computer Engineering
University of Missouri

Columbia, Missouri, USA

WCCI 2016 July 25, 2016 Vancouver, Canada

Outline

• Motivation and Background

• The Partially Observable Travelling Salesman Problem (PO-TSP)
– Generating Problem Instances

– Client/Server Architecture

• Agent Policies for the PO-TSP
– Greedy Policy

– Myopic Monte Carlo Policy

• Experiments and Results

• Conclusions and Future Work

2

An Example Problem

• Suppose you are tasked with finding

the shortest path that visits a set of

flags within a cave-like environment.

• You can only see your immediate

surroundings.

• More of the cave is revealed as you

explore.

• How should you navigate the cave in

order to minimize the total distance

traveled?

3

Motivation

• Agent-based models for navigation
– This project grew out of a need to create models for agent behavior in

uncertain environments.

– Agents may not have a complete map of the environment and must

navigate with only partial information.
• Walls or obstacles may limit visibility.

• Agents use a mental map to represent the environment and plan actions.

• Applications
– Robotic mapping and navigation

– Search and rescue

– Developing intelligent agents

– Modeling human decision-making behavior under uncertainty

4

Developing a Benchmark Problem

• The objective of the travelling salesman problem (TSP) is to find the
shortest route for an agent that visits a given set of waypoint locations.

• The TSP provides a generic problem for the agent to solve that can be
adapted to many different problem domains.

• The partially observable TSP (PO-TSP) restricts the visibility of the
environment to what the agent can see locally.
– Agents must decide how to acquire new information and act on existing

knowledge.

• For this work, we focus on developing agent strategies for PO-TSP
problems in discrete grid-world domains.

5

Overview of the PO-TSP

• The PO-TSP is implemented using a

client/server architecture.

• The server maintains all environment

variables and provides observations to

the agent.

• The agent uses observations to update its

mental map and decide actions.

• The server applies the agent’s actions

and determines if the goal conditions

have been met.

6

Create

Environment

Provide

Observation

Get

Observation

Update

Mental Map

Initialize

Mental Map

Decide

Action

Wait for

Action

Apply

Action

SERVER CLIENT

Cellular Automata

• The grid-world environments are

generated using cellular automation

rules similar to Conway’s Game of Life.

• Our implementation uses the following

rules based on a cell’s 8 neighbors:
– An open cell becomes occupied if it

has fewer than 3 open neighbors.

– An occupied cell becomes open if it

has more than 4 open neighbors.

7

Environment Generation

8

Initialize a random

occupancy grid

Every area

reachable?

Apply cellular

automation rules

Dilate the smallest

open region

Start

No

Clean up diagonal

passages

Yes

End

Place the agent and

waypoints

Initialize a random occupancy gridApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesDilate the smallest open regionApply cellular automation rulesClean up diagonal passagesPlace the agent and waypoints

Observations

• The server provides the agent
with observations containing

– An environment grid layer
where each cell is either
Open, Occupied, or
Unknown

– A waypoint grid layer where
each cell is either Waypoint,
No Waypoint, or Unknown

– The current agent location

• Line-of-sight visibility is
computed using Bresenham’s
line algorithm.

• The agent maintains the
history of observations as its
mental map.

9

Ground Truth Environment Observation

Environment Layer

Occupied

Unknown

Open

Waypoint Layer

Unknown

Waypoint

No waypoint

Agent location

Legend

A Greedy Policy

10

Get observation

from server

Start

Update the

mental map

Is an unvisited

waypoint visible?

Set the target as the

nearest unvisited

waypoint

Set the target as the

nearest unexplored

area

Move towards the

target location

Yes No

Improvements to the Greedy Policy

• Greedy policy
– Strengths:

• Simple to implement
• Low computation cost

– Weaknesses:
• Prioritizes visible waypoints over

unexplored areas
• Leaves areas only partially explored
• High amount of backtracking

• Improvements:
– Finish exploring a region before

moving on to the next waypoint
– Use random sampling to compute the

value of exploring each new area

11

Monte Carlo Sampling

Use a persistent pheromone
map to aggregate the shortest
paths to many possible
waypoints.

For many iterations:

1. Sample an environment
from the mental map

2. Sample a single waypoint

3. Get the shortest path from
the agent to the waypoint
if a path exists

4. Deposit pheromone on the
shortest path

12

Value Iteration

13

Define a value map over the
environment representing the
attractiveness of each grid cell.

1. Copy values from the pheromone
map in observed regions

2. Set the value for all non-frontier
grid cells to zero

3. Add extra value to observed but
unvisited waypoints

4. Propagate values to adjacent
cells with some decay until the
values settle

5. Move in the direction of
increasing value

A Myopic Monte Carlo Policy

14

Get observation

from server

Start

Update the

mental map

Initialize

pheromone map

Evaporate old

pheromones

Sufficient #

of samples?

Sample a possible

waypoint location

Deposit pheromone

on the shortest path

from the agent to the

sampled waypoint

Initialize the value map with

the pheromone levels

Set the value for all non-

frontier grid cells to zero

Add extra value to observed

but unvisited waypoints

Propagate values to adjacent

cells with some decay

Have the

values

settled?

Move in the direction

of increasing value

Monte Carlo Sampling

Value Iteration

Yes

Yes

No

No

A Myopic Monte Carlo Policy

15

MMC Policy Parameters

• The Myopic Monte Carlo (MMC) policy has many more adjustable

parameters then the greedy policy.
– Number of samples (n)

• We use 1000 samples in our experiments

– Evaporation rate (γ)
• Percentage of the pheromone that is maintained between movement actions

• We use γ = {0.9, 0.95, 0.99}

– Discount factor (λ)
• Percentage of the value that is spread to adjacent grid cells

• We use λ = {0.9, 0.95, 0.99}

– Waypoint weight (η)
• Amount of extra value given to observed but unvisited waypoints

• We use η = {1, 10} × maxPheromone

16

Experiments

• To compare the greedy and MMC policies, we create 10 benchmark
problem sets.
– 50 × 50 grids
– 10 waypoints with a minimum separation of 10 grid cells

• We then run 100 trials each of the greedy policy and 18 different
parameter configurations of the MMC policy.
– Varying γ = {0.9, 0.95, 0.99}, λ = {0.9, 0.95, 0.99}, and η = {1, 10}

• We report
– An example solution plotted for each problem set for both the greedy

and MMC policies
– The distribution of solution path lengths for each method
– Average improvement of the MMC policy over the greedy policy

17

Example Solutions

18

Environment 10

Environment 2 Environment 4Environment 3 Environment 5

Environment 6 Environment 7 Environment 8 Environment 9

Environment 1

MMC PolicyGreedy Policy

Distribution of Solution Lengths

19γ = Evaporation Rate λ = Discount Factor η = Waypoint Weight

Average Improvement

Evaporation

Rate ()

Waypoint Weight () = 1 Waypoint Weight () = 10

Discount Factor () Discount Factor ()

0.9 0.95 0.99 0.9 0.95 0.99

0.9 -30.1 -8.4 27.5 4.7 -18.4 27.7

0.95 -23.4 -14.9 33.7 -22.3 -19.4 51.5

0.99 -18.5 21.0 68.7 -30.7 -21.1 64.2

20

• To draw some general conclusions, we compute the difference between
the average path lengths of the various MMC policy parameterizations
and the greedy policy.

• The values in the table show the average difference over all 10
environments.
– Negative values indicate better performance by the MMC policy.

Conclusions and Future Work

• For certain parameter settings, the MMC policy can outperform the

greedy policy.
– None of the tested parameterizations was the best in every environment.

• Next steps:
– Identify environment features that impact performance and cluster

similar environments

– Use methods such as Ant Colony Optimization and Monte Carlo Tree

Search to plan farther into the future

– Develop a more scalable mental map representation

21

	Slide 1: A Myopic Monte Carlo Strategy for the Partially Observable Travelling Salesman Problem
	Slide 2: Outline
	Slide 3: An Example Problem
	Slide 4: Motivation
	Slide 5: Developing a Benchmark Problem
	Slide 6: Overview of the PO-TSP
	Slide 7: Cellular Automata
	Slide 8: Environment Generation
	Slide 9: Observations
	Slide 10: A Greedy Policy
	Slide 11: Improvements to the Greedy Policy
	Slide 12: Monte Carlo Sampling
	Slide 13: Value Iteration
	Slide 14: A Myopic Monte Carlo Policy
	Slide 15: A Myopic Monte Carlo Policy
	Slide 16: MMC Policy Parameters
	Slide 17: Experiments
	Slide 18: Example Solutions
	Slide 19: Distribution of Solution Lengths
	Slide 20: Average Improvement
	Slide 21: Conclusions and Future Work

