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An Example Problem

• Suppose you are tasked with finding 

the shortest path that visits a set of 

flags within a cave-like environment.

• You can only see your immediate 

surroundings.

• More of the cave is revealed as you 

explore.

• How should you navigate the cave in 

order to minimize the total distance 

traveled?
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Motivation

• Agent-based models for navigation
– This project grew out of a need to create models for agent behavior in 

uncertain environments.

– Agents may not have a complete map of the environment and must 

navigate with only partial information.
• Walls or obstacles may limit visibility.

• Agents use a mental map to represent the environment and plan actions.

• Applications
– Robotic mapping and navigation

– Search and rescue

– Developing intelligent agents

– Modeling human decision-making behavior under uncertainty

4



Developing a Benchmark Problem

• The objective of the travelling salesman problem (TSP) is to find the 
shortest route for an agent that visits a given set of waypoint locations.

• The TSP provides a generic problem for the agent to solve that can be 
adapted to many different problem domains.

• The partially observable TSP (PO-TSP) restricts the visibility of the 
environment to what the agent can see locally.
– Agents must decide how to acquire new information and act on existing 

knowledge.

• For this work, we focus on developing agent strategies for PO-TSP 
problems in discrete grid-world domains.
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Overview of the PO-TSP

• The PO-TSP is implemented using a 

client/server architecture.

• The server maintains all environment 

variables and provides observations to 

the agent.

• The agent uses observations to update its 

mental map and decide actions.

• The server applies the agent’s actions 

and determines if the goal conditions 

have been met.
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Cellular Automata

• The grid-world environments are 

generated using cellular automation 

rules similar to Conway’s Game of Life.

• Our implementation uses the following 

rules based on a cell’s 8 neighbors:
– An open cell becomes occupied if it 

has fewer than 3 open neighbors.

– An occupied cell becomes open if it 

has more than 4 open neighbors.
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Environment Generation
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Observations

• The server provides the agent 
with observations containing

– An environment grid layer 
where each cell is either 
Open, Occupied, or 
Unknown

– A waypoint grid layer where 
each cell is either Waypoint, 
No Waypoint, or Unknown

– The current agent location

• Line-of-sight visibility is 
computed using Bresenham’s
line algorithm.

• The agent maintains the 
history of observations as its 
mental map.
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A Greedy Policy
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Improvements to the Greedy Policy

• Greedy policy
– Strengths:

• Simple to implement
• Low computation cost

– Weaknesses:
• Prioritizes visible waypoints over 

unexplored areas
• Leaves areas only partially explored
• High amount of backtracking

• Improvements:
– Finish exploring a region before 

moving on to the next waypoint
– Use random sampling to compute the 

value of exploring each new area
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Monte Carlo Sampling

Use a persistent pheromone 
map to aggregate the shortest 
paths to many possible 
waypoints.

For many iterations:

1. Sample an environment 
from the mental map

2. Sample a single waypoint

3. Get the shortest path from 
the agent to the waypoint 
if a path exists

4. Deposit pheromone on the 
shortest path
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Value Iteration
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A Myopic Monte Carlo Policy

14

Get observation 

from server

Start

Update the 

mental map

Initialize 

pheromone map

Evaporate old 

pheromones

Sufficient # 

of samples?

Sample a possible 

waypoint location

Deposit pheromone 

on the shortest path 

from the agent to the 

sampled waypoint

Initialize the value map with 

the pheromone levels

Set the value for all non-

frontier grid cells to zero

Add extra value to observed 

but unvisited waypoints

Propagate values to adjacent 

cells with some decay

Have the 

values 

settled?

Move in the direction 

of increasing value

Monte Carlo Sampling

Value Iteration

Yes

Yes

No

No



A Myopic Monte Carlo Policy
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MMC Policy Parameters

• The Myopic Monte Carlo (MMC) policy has many more adjustable 

parameters then the greedy policy.
– Number of samples (n)

• We use 1000 samples in our experiments 

– Evaporation rate (γ)
• Percentage of the pheromone that is maintained between movement actions

• We use γ = {0.9, 0.95, 0.99}

– Discount factor (λ)
• Percentage of the value that is spread to adjacent grid cells

• We use λ = {0.9, 0.95, 0.99}

– Waypoint weight (η)
• Amount of extra value given to observed but unvisited waypoints  

• We use η = {1, 10} × maxPheromone
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Experiments

• To compare the greedy and MMC policies, we create 10 benchmark 
problem sets.
– 50 × 50 grids
– 10 waypoints with a minimum separation of 10 grid cells

• We then run 100 trials each of the greedy policy and 18 different 
parameter configurations of the MMC policy.
– Varying γ = {0.9, 0.95, 0.99}, λ = {0.9, 0.95, 0.99}, and η = {1, 10}

• We report
– An example solution plotted for each problem set for both the greedy 

and MMC policies 
– The distribution of solution path lengths for each method 
– Average improvement of the MMC policy over the greedy policy
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Example Solutions
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Distribution of Solution Lengths
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Average Improvement

Evaporation 

Rate ()

Waypoint Weight () = 1 Waypoint Weight () = 10

Discount Factor () Discount Factor ()

0.9 0.95 0.99 0.9 0.95 0.99

0.9 -30.1 -8.4 27.5 4.7 -18.4 27.7

0.95 -23.4 -14.9 33.7 -22.3 -19.4 51.5

0.99 -18.5 21.0 68.7 -30.7 -21.1 64.2

20

• To draw some general conclusions, we compute the difference between 
the average path lengths of the various MMC policy parameterizations 
and the greedy policy.

• The values in the table show the average difference over all 10 
environments.
– Negative values indicate better performance by the MMC policy.



Conclusions and Future Work

• For certain parameter settings, the MMC policy can outperform the 

greedy policy.
– None of the tested parameterizations was the best in every environment.

• Next steps:
– Identify environment features that impact performance and cluster 

similar environments

– Use methods such as Ant Colony Optimization and Monte Carlo Tree 

Search to plan farther into the future

– Develop a more scalable mental map representation
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