
A Myopic Monte Carlo Strategy for the Partially

Observable Travelling Salesman Problem

Andrew R. Buck, Student Member, IEEE and James M. Keller, Life Fellow IEEE

Department of Electrical and Computer Engineering

University of Missouri

Columbia, Missouri, USA

Abstract—In this paper, we present two greedy, myopic

algorithms for solving the partially observable travelling salesman

problem. Although not optimal from a decision-theoretic

viewpoint, these strategies are shown to perform reasonably well

under the uncertain conditions of the environment. The first

algorithm is a strictly greedy algorithm and has no tunable

parameters, whereas the second algorithm uses Monte Carlo

sampling to determine likely configurations of the environment

and applies value iteration to pick an action. We present both

approaches with illustrative examples and empirically

demonstrate their relative strengths and weaknesses.

Keywords—Uncertain environments; agent planning; travelling

salesman problem; decision-making; procedural content generation

I. INTRODUCTION

Navigation in an unfamiliar environment can be complicated
by a lack of information. In many cases, a decision-making
agent may have limited prior knowledge and must balance the
exploration of new areas with the exploitation of known
objectives. Walls or other obstacles may restrict the agent’s view
and limit the information available for planning. In these
partially observable environments, agents can use a mental map
to represent the information that has been collected thus far and
plan a future course of action. These types of problems can arise
in many fields, including robotic mapping [1], search and rescue
operations [2], and human plan recognition [3]. Some of our
previous work has focused on the correspondence problem of
matching an approximate spatial configuration of landmarks to
known ground truth [4], [5], and modeling the behavior of
moving agents [6], [7]. Our goal in this paper is to extend these
ideas by laying the groundwork for a benchmark problem that
can be used to test models of agent behavior in unknown
environments. Ultimately, we plan to use problems like these to
study the effects of uncertainty on human judgement and spatial
awareness and develop realistic agent models that can anticipate
human behavior.

The travelling salesman problem (TSP) has been used as a
benchmark for combinatorial optimization algorithms for
decades. It comes from the class of NP-hard problems that make
it interesting to study and challenging to solve. Several
variations on the original definition have emerged over the
years, including the probabilistic TSP [8], in which tours must
generalize over multiple problem instances, and the physical
TSP [9], in which agents must provide actions in real-time in
order to navigate a vehicle that obeys the laws of kinematics.

Our definition of the partially observable TSP, which we
describe below, provides a simulation environment similar to the
physical TSP, but defined on a discrete domain in which the
environment is not completely known a priori. We use a grid to
represent the world out of convenience, but the problem could
conceivably be extended to continuous domains. In [9], the
authors use Monte Carlo Tree Search (MCTS) [10] to design a
control strategy for steering the physical vehicle. While MCTS
methods have previously been adapted for partially observable
domains [11], [12], we focus here on a simpler myopic approach
that is shown to achieve promising results on our example
problems.

The remainder of this paper is organized as follows. Section
II presents the details of the partially observable travelling
salesman problem, including the creation of our procedurally
generated environments. Section III describes the algorithms we
used for this problem. Section IV covers the experiments we ran,
and Section V gives our conclusions and ideas for future work.

II. THE PARTIALLY OBSERVABLE TRAVELLING SALESMAN

PROBLEM

The travelling salesman problem is a combinatorial
optimization problem that takes a set of waypoints and seeks to
find the shortest path that visits each one. Given a set of
waypoints {𝑤1 , … , 𝑤𝑁} and a distance matrix 𝐷 , where 𝑑𝑖𝑗 is

the distance between waypoints 𝑤𝑖 and 𝑤𝑗 , the task is to find an

ordering of the waypoints 𝜋 that minimizes the tour length,

 ∑ 𝑑𝜋(𝑖)𝜋(𝑖+1)
N−1
𝑖=1 + 𝑑𝜋(𝑁)𝜋(1) ()

We implement the TSP on a grid-based map in which each
grid cell is either open or blocked. Waypoints are assigned to
open grid cells and the acting agent is placed in one of the open
cells. Each time step, the agent moves into an adjacent open cell
in one of the four cardinal directions. The agent’s goal is to move
in such a way as to visit each of the waypoints with the fewest
steps possible. In our implementation, the episode is complete
when the agent visits the last waypoint; we do not require the
agent to return to its starting location.

A. Partial Observability

In the fully observable case, the grid-based TSP can be
solved directly by constructing the distance matrix according to
the obstacles in the environment and using any number of
existing TSP algorithms. One popular approach that provided

inspiration for our methods is ant colony optimization (ACO)
[13], in which the environment is modified with pheromones to
indicate favorable paths. Our main interest, however, is in
understanding the effects of partial observability in this domain.
We therefore proceed to define the partially observable traveling
salesman problem (PO-TSP) for grid-based maps.

The PO-TSP is implemented using a client/server
architecture (Fig. 1) in which a server program operates as the
referee, which validates actions given by the client and provides
an observation that the client can use to update its own mental
map. The client defines the behavior of the agent in the
environment and works with the limited information provided
by the server in the form of observations. The server computes
the visible region of the map based on the agent’s current
location and returns the information about the environment
within this region. For our grid-based worlds, this consists of

• An environment grid layer, where each grid cell comes
from the three element set {True, False, Unknown}
indicating whether or not the cell is traversable;

• A waypoint grid layer, where each grid cell comes from
the three element set {True, False, Unknown} indicating
the presence of a waypoint;

• The current agent location.

We maintain separate layers for the environment occupancy and
the waypoints because depending on the visibility method used,
it may be possible to know that a grid cell is open, but not know

if it contains a waypoint. For example, when looking around a
corner, one might be able to infer that a cell is open but not have
a clear enough view to determine if the cell contains a waypoint.
The details of the visibility computation are omitted for brevity,
but the general approach used in our experiments is to repeatedly
dilate the visible region around the agent and validate visible
cells that have a line of sight back to the agent using
Bresenham’s line algorithm [14]. For a more in-depth overview
of this problem, see [15]. Note that unlike many autonomous
mapping algorithms, the agent’s location within the
environment is known.

Upon receiving an observation from the server, the client
updates its mental map of the environment, which includes the
agent’s location, layers matching those provided by the
observation, and an additional layer indicating which grid cells
have been visited. Any environment layer cells that are observed
to be open or blocked are set as such in the mental map and
likewise, any cells that are observed to either have or not have a
waypoint are set as such. If the client has some prior knowledge
about the environment, it can use this as a heuristic to make
changes to the mental map that might not be observed directly.
For example, in the cave-like environments generated in the next
section, we always apply a one-cell border to the edge of the
environment to keep the agent from leaving the environment.
Additionally, because we ensure that all open locations are
reachable in our environments, any regions that become
completely closed off in the mental map can have their interiors
set to False.

It is the client’s responsibility to define a policy for a given
mental map that dictates the next action for the agent. We
present two methods in Section III, although any policy that
produces an action for any given observation can be used.

 Algorithm 1 Environment Generation

1: function GENERATE_ENVIRONMENT(m, n, p0, rb, rd, k)

2: E ← mn grid, where prob(Ei = True) = p0

3: while (# of connected components in E) 1 do

4: for k iterations do

5: E ← CELLULAR_AUTOMATA(E, rb, rd)

6: E ← False for all border grid cells

7: end for

8: if (# of conn. comp. in E) 1 then

9: Z ← the smallest connected components in E

10: E ← Z [0 1 0; 1 1 1; 0 1 0] // Dilation

11: else if (# of conn. comp. in E) < 1 then

12: E ← mn grid, where prob(Ei = True) = p0

13: end if

14: end while

15: E ← REMOVE_DIAGONAL_PASSAGES(E)

16: return E

Create

Environment

Provide

Observation
Get

Observation

Update Mental

Map

Initialize

Mental Map

Decide Action
Wait for

Action

Apply Action

SERVER CLIENT

Fig. 1. Block diagram of the server/client architecture of the PO-TSP.

B. Environment Generation

To generate a problem instance for the PO-TSP, we use an
iterative method that combines cellular automation with image
dilation. The complete pseudocode is given in Algorithm 1 and
an example of the process is shown in Fig. 2.

To start, a random mn grid is generated where each cell is
assigned True with probability p0 and False with probability

1−p0. In our experiments, we use 5050 grids with p0 = 0.45.
The algorithm then iterates through k steps of cellular
automation rules, as in Conway’s Game of Life [16]. (All of our
environments are generated with a single step using k = 1.) Many
different rules can be applied to two-dimensional cellular
automata [17]. Our specific implementation updates each grid
cell by looking at the 8 neighboring cells in the Moore
neighborhood and changes a False cell to True if there are more
than 4 True neighbors (birth rate, rb) and changes a True cell to
False if there are less than 3 True neighbors (death rate, rd). This
is represented by the CELLULAR_AUTOMATA function in line 5
of the pseudocode.

We then determine the smallest connected components,
consisting of a contiguous set of 4-connected open cells, and
dilate these sets by assigning any 4-connected neighbor of the
set to True (lines 9-10). There may be multiple sets with the
same number of open cells, in which case all are considered.
This serves to expand the open area and eventually create a
fully-connected environment with no unreachable areas. If after
a single dilation there are still multiple independent connected
components, an additional round of cellular automation and
dilation occurs. This continues until there is only a single
connected component. If all open areas are removed (as can
happen for certain values of rb and rd), the algorithm restarts
from the beginning.

As a final post-processing step, we remove any passageways
that are only connected diagonally (line 15 of the pseudocode

and Figs. 2j and 2k). This improves the reliability of the
visibility computation, which is used to get the agent’s
observation at a given location. The end result is an environment
that has an organic, cave-like structure and provides many
concealed areas that are not visible without exploration. We
randomly place the waypoints and the agent into the open cells
of this environment with an optional minimum separation.

III. AGENT POLICIES FOR THE PO-TSP

After receiving an observation from the server, the client
program updates its internal mental map representation of the
environment and picks an action for the agent. We define a
mental map structure M which is updated after each observation
and contains the following attributes.

• M.env = an mn grid, where each grid cell comes from
the three element set {True, False, Unknown} indicating
whether or not the cell is traversable.

• M.wpt = an mn grid, where each grid cell comes from
the three element set {True, False, Unknown} indicating
the presence of a waypoint.

• M.visited = an mn grid, where each grid cell is either
True or False indicating if the cell has been visited.

• M.pos = (ax, ay) = the current position of the agent.

Fig. 3a shows what an agent’s mental map might look like at the
start of an episode. We next describe two policies that take the
current mental map as input and return an action.

A. Greedy Policy

One of the simplest policies for the PO-TSP is a strictly
greedy policy that first looks to see if there are any unvisited
waypoints visible in the mental map. If so, the agent moves in
the direction of the closest waypoint. If no waypoints are visible,
the agent moves toward the nearest unexplored area. Provided
that all areas in the environment are reachable, this policy will

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. Generation of a random environment for the PO-TSP using a cellular automation. (a) The grid starts with each cell randomly initialized according to the

start probability. (b)-(j) Each iteration, the cellular automation rules are applied and the smallest continuous region is dilated. (k) A cleanup process removes
passageways that are only connected diagonally to improve the reliability of the visibility algorithm (circled). (l) The agent is placed in a random initial location,

shown as a red circle and waypoints are placed with a minimum spacing, shown as blue crosses, enlarged for clarity.

eventually pass through all waypoints. Algorithm 2 gives the
pseudocode for this policy. We assume the availability of a
routine, SHORTEST_PATH, for computing shortest paths through
grid-based worlds. This function returns a set of points, in order,
that would lead the agent from its current position to the nearest
target location. One approach for this is to implement Dijkstra’s
algorithm seeded at the target locations and stop when the agent
is reached. An example of the greedy policy evaluating an
environment is shown in Fig. 3. This example shows that while
the greedy agent may ultimately visit all waypoints, the path
taken may be far from optimal.

The greedy policy, while simple to implement, has several
shortcomings. Because visible waypoints are strictly prioritized
over exploring new areas, greedy agents will often leave an area
only partly explored before moving on. This can cause the agent
to perform a great deal of unnecessary backtracking in order to
return to areas that were only partially explored. Furthermore, as

a greedy algorithm, the agent does no forward planning to
formulate routes beyond the next immediate waypoint. Despite
these flaws, the greedy algorithm performs reasonably well on
many example environments.

B. Myopic Monte Carlo Policy

To improve upon the greedy policy, we now introduce a
myopic Monte Carlo (MMC) policy that has many similarities
with swarm intelligence techniques. For the MMC policy, we

define an additional persistent layer P, which is an mn grid
initialized with all zeros that serves to aggregate “pheromones”
in promising areas of the environment. This layer is modeled
after the pheromone trails deposited by ants in ACO. The
pheromone layer is maintained between observations and the

values decay each time step with an evaporation rate . The
pheromones serve as a form of memory, allowing the agent to
remember its previous goals and exhibit some momentum
toward achieving those original goals, even if new information
would suggest that better goals exist elsewhere. We will show
that this allows agents to finish exploring some areas before
moving on, ameliorating a key weakness of the greedy policy.

The MMC policy is divided into two phases. The complete
pseudocode is given in Algorithm 3. In the first phase (lines 3-
10), we perform Monte Carlo sampling on the mental map to
construct a distribution of possible ground truth environments.
For each sample S, we define the following attributes.

• S.env = an mn grid, sampled from M.env where any
cells marked as True or False are copied directly and
cells that are Unknown are sampled as either True or
False with equal likelihood.

• S.wpt = an mn grid, sampled from M.wpt in which only
a single grid cell is marked as True and all others are
marked as False. The True cell is chosen uniformly from
the cells of M.wpt that are either True or Unknown.

• S.pos = M.pos = the current position of the agent.

Note that we only sample a single waypoint location for each
sample. The aggregation of these individual samples forms a
uniform distribution over all possible waypoint locations.

Algorithm 2 Greedy Policy for the PO-TSP

1: function GREEDY_POLICY(M)

// Get target locations

2: T ← {(x, y) s.t. M.wpt(x, y) M.visited(x, y)}

3: if T = then

4: T ← {(x, y) s.t. M.wpt(x, y) = Unknown}

5: end if

// Compute the shortest path from the current agent

position to one of the target locations

6: D ← SHORTEST_PATH(T, M)

// Return the next location from D

7: A ← D.next

8: return A

(a) (b) (c) (d)

Fig. 3. Some selected moments from the greedy policy’s solution for the PO-TSP. Symbols are enlarged for clarity. (a) The initial mental map shows only what is

visible from the agent’s starting location (red circle), which includes two waypoints (blue crosses). The closest of these is chosen as the target objective (green

square). Grey areas indicate unknown areas of the environment and dots signify the possibility of a waypoint. (b) The first five waypoints are acquired greedily and
the sixth target is chosen as a waypoint that was discovered along the route, but requires the agent to backtrack. (c) Nine targets are acquired by always moving

toward the nearest unvisited waypoint if one is visible, or the nearest unexplored area otherwise. (d) The final target is hidden behind a corner that was not fully

explored on the first pass and is not discovered until the entire environment has been explored.

For each sample, we compute the shortest path between the
single waypoint and the agent, if it exists. Because unknown
cells in the environment layer are sampled randomly, it is
possible for the waypoint to be unreachable by the agent, in
which case the sample is ignored. If there are multiple shortest
paths (as is often the case in grid-based environments) one path
is chosen randomly and all grid cells belonging to this path are
incremented in the pheromone layer. In this way, the pheromone
layer serves to aggregate the best paths that lead to potential
waypoint locations.

The second phase of the MMC policy performs value
iteration using the unknown areas of the pheromone layer to
determine the best immediate course of action. First, a new value
layer V is created as a copy of the pheromone layer, but with all
observed areas (except unvisited waypoints, see below) set to
zero. This is done to signify that there is no inherent value in
visiting a grid cell that has already been observed. It also helps
prevent oscillatory behavior stemming from the high density of
pheromone in the immediate vicinity of the agent that can
interfere with moving toward more distant goals (See Fig. 4b
and 4c for examples). Waypoints that have been observed but
not visited are given an extra initial value, equal to some

multiple of the current maximum value in the pheromone

layer. This can be adjusted to produce greedy behavior when

is large or wandering behavior when is small. The creation of
the value layer is outlined in lines 11-13 of the pseudocode.

The values in the value layer are then propagated using a
version of the value iteration algorithm commonly used in
Markov decision processes [18]. Until there is no apparent
change in the value layer, each cell is iteratively assigned the
maximum value of either itself, or its 4-connected neighbors

multiplied by a discount factor, [0, 1). The discount factor
effectively determines how far the value propagates through the
environment. A large discount factor can cause distant goals to
influence the next action, whereas a smaller discount factor leads

to more local behavior. Once the algorithm has converged (<
0.001 for our experiments), the neighboring cell of the agent
with the greatest value is chosen as the agent’s next location.

Fig. 4 gives an example that shows how the pheromone
aggregation map and value layer evolve over the course of
implementing the MMC policy. In comparison with the greedy
policy used on the same environment in Fig. 3, the MMC policy
is able to achieve a much shorter route by exploiting local
gradients to finish exploring an area before moving on to more
distant goals.

IV. RESULTS

We designed a series of experiments to empirically evaluate
the greedy and MMC policies for the PO-TSP. First, we
generated 10 environments using Algorithm 1, shown in Fig. 5.

Each is a 5050 grid in which the agent and 10 waypoints are
distributed randomly using a minimum separation of 10 steps.
Then, for each environment, we performed 100 trials each of
the greedy policy and 18 different parameter configurations of
the MMC policy. For the MMC policy, we vary the evaporation

rate as = {0.9, 0.95, 0.99}, the discount factor as = {0.9,

0.95, 0.99}, and the waypoint weight as = {1, 10}. These
values were chosen based on preliminary experiments and

Algorithm 3 Myopic Monte Carlo Policy for the PO-TSP

1: function MMC_POLICY(M, P, N, , , ,)

// Evaporate old pheromones

2: p(x, y) ← p(x, y) (x, y)

/*** Monte Carlo Sampling ***/

3: for N iterations do

// Sample an environment

4: S.env ← randomly determinized from M.env

5: S.wpt ← randomly determinized from M.wpt

6: S.pos ← M.pos

// Compute the shortest path from the current

agent position to the sampled waypoint location

7: T ← {(x, y) s.t. S.wpt(x, y) = True}

8: D ← SHORTEST_PATH(T, S)

// Add the shortest path to the aggregation map

9: p(x, y) ← p(x, y) + 1 (x, y) D

10: end for

/*** Value Iteration ***/

11: v(x, y) ← 0 (x, y)

12: v(x, y) ← p(x, y) (x, y) s.t. M.wpt(x, y) ≠ False

M.visited(x, y)

13: v(x, y) ←(maxi pi) (x, y) s.t. M.wpt(x, y) = True

M.visited(x, y)

14: keepGoing ← True

15: while keepGoing do

16: for all (x, y) do

17: N ← {(x–1, y), (x+1, y), (x, y–1), (x, y+1)}

18: v(x, y) ← maxiN vi

19: end for

20: v″(x, y) ← max(v(x, y), v(x, y)) (x, y)

21: if ∑(x, y) (v(x, y) – v″(x, y))2 then

22: keepGoing ← False

23: end if

24: v(x, y) ← v″(x, y) (x, y)

25: end while

// Get the neighbor cell with the greatest value

26: (ax, ay) ← M.pos

27: N ← {(ax−1, ay), (ax+1, ay), (ax, ay−1), (ax, ay+1)}

28: A ← arg maxiN vi // Ties are broken randomly

29: return (A, P)

provide a reasonable range of results for the specified problem
size. Traditionally, the evaporation rate and discount factors are
set to be only slightly less than 1 to prevent the pheromone from
evaporating too quickly and to ensure that the value does not
dissipate too quickly as it propagates through the environment.
We used 1000 samples for each iteration of the MMC methods.
The results of these experiments are summarized in Fig. 6.

Each of the 10 environments is plotted separately in Fig. 6
since the optimal tour length is highly dependent on the specific
problem instance. The upper and lower plots for each
environment show the difference between the two waypoint
weight values. Each plot shows the distribution of tour lengths
for the 100 trials of each method or parameter setting. The grey
filled plots represent the results of the greedy policy and the
colored plots show the results of the various parameter settings
of the MMC policy. The leftmost point of each horizontal axis
represents the length of the “oracle” tour, that is, the shortest tour
possible that visits all waypoints. The oracle has perfect
knowledge of the environment a priori, and can therefore use
standard offline TSP solvers. Note that the oracle tour is not the
same as the decision-theoretic optimal tour. While it is possible
(in rare circumstances) that an agent could just so happen to
follow the oracle tour, in general, such an outcome is unlikely.

It is apparent from observing the plots that there is no
universal best method that works well in all environments.
Furthermore, a particular method may produce a wide range of
tour lengths. The random sampling process of the MMC policy
explains the wide distribution of results for these methods, and
the random tie-breaking procedure explains why some
distributions are multimodal. For example, if there are two
equally short paths to a target, but one provides a vantage point
that gives the location of another waypoint, it may ultimately
lead to a shorter tour than the other path.

The maximum tour length shown on the horizontal axis
occasionally cuts off some of the distributions to more clearly
show the rest of the results. This occurs in environments 6 and
10 when the discount factor is set to the highest value of 0.99.
With a high discount factor, the value iteration step is able to
propagate high values farther through the environment, which
can cause distant goals to become more attractive. This causes
the agent to adopt a more global search strategy, which may
force the agent to travel across the map repeatedly. A smaller
discount factor results in more local search, but can lead to
numerical underflow errors if the value iteration step terminates
before influencing the area around the agent. For example, when
the last corner of a cave branch is explored, the nearest
unexplored area may be too far away for its value to reach the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Some selected moments from the MMC policy’s solution to the same PO-TSP environment used in Fig. 3. The top row (a-d) shows the pheromone map,
which aggregates the shortest paths from the agent to sampled waypoints. The bottom row (e-h) shows the value map, which defines a gradient that the agent

follows. Symbols are enlarged for clarity. The initial observation (e) is identical to Fig. 3a, but instead of picking a target location, 1000 waypoint locations are

sampled and the shortest paths back to the agent are aggregated in a persistent pheromone map (a). Performing value iteration on the unobserved regions of (a) gives
the gradient map (e) that the agent follows. (b) and (f) show the maps after reaching four waypoints as the MMC agent recognizes the possibility of a waypoint in

the top-right and discovers the waypoint that was missed by the greedy agent. (c) and (g) show the maps after visiting eight waypoints when the agent could proceed

to the high value area in the left, but instead follows the local gradient toward the top and discovers the ninth waypoint. The final maps are shown in (d) and (h)

where most of the pheromone has evaporated except for a single trail and only a single peak is left in the gradient map.

agent, resulting in the agent performing a random walk until it
can “pick up the scent.”

Table I draws some conclusions about our experiments by
averaging the difference between the mean distribution values
of the MMC policies and greedy policy in each environment.
The values indicate the average number of additional steps
required by the MMC policy as compared to the greedy policy.
Values less than zero show that, averaged over all environments,

the MMC policy performed better than the greedy policy,
whereas values greater than zero show that the greedy policy
was better. The only obvious trend is that smaller discount
factors appear to perform better, which echoes our discussion
above. It is difficult to draw any more general conclusions from
these results, as the best method appears to be highly dependent
on the problem environment. Although we do not explicitly
compare computation time between the algorithms, it should be
noted that the MMC algorithm is more computationally

Fig. 5. The ten randomly generated environments used in the experiments. Each is a 5050 grid with 10 waypoints (blue crosses) randomly placed with a

minimum spacing of 10 steps. The initial agent location is shown as a red circle and example solutions from the greedy algorithm and the MMC algorithm are

shown. The path of the greedy algorithm is shown as a green dotted line and the path of the MMC algorithm is shown as a solid purple line. For the MMC

algorithm, the discount factor was set to =0.9, the evaporation rate was set to =0.99, and the waypoint weight was set to =10. Symbols are enlarged for clarity.

Fig. 6. Distributions of tour lengths for various methods on each of the 10 environments considered. Each plotted line is a probability density estimate of the tour

length for a given method, computed using a kernel density function of 100 trials for each method. Each environment shows two plots, separated by waypoint

weight . The horizontal axis gives the number of steps in the tour, with the lower limit set to the length of the oracle tour (the best tour possible if the environment

were known a priori). The grey filled plots show the distribution of the greedy policy tours. The myopic Monte Carlo policy tours are shown in various colors and

line styles. Color indicates the discount factor and line style indicates the evaporation rate .

intensive than the greedy approach, but can be designed to scale
with the number of samples used.

Fig. 5 shows an example solution from both the greedy and
MMC algorithms on each of the tested environments. The
parameters for the MMC algorithm shown were chosen based
on the best results from Table I. The paths from the two
algorithms are often nearly identical, however there are a few
instances where one algorithm explores an area that the other did
not. These differences stem from the different strategies
employed by the two algorithms, along with some degree of
random chance. Multiple runs of the same algorithm can yield
different paths. Our results indicate that by averaging over many
trials in all environments, the MMC policy with an appropriate
parameter configuration is capable of outperforming the greedy
policy.

V. CONCLUSION AND FUTURE WORK

The PO-TSP is an interesting benchmark problem to study
and leaves many opportunities for future enhancements. Our
greedy and MMC algorithms can solve most problem instances
intelligently but do not behave optimally under all
circumstances. It would be helpful to identify the characteristics
of the problems that impact the performance and group similar
problems together for a more consistent analysis. For example,
one algorithm might work better on problems that have many
waypoints hidden at the ends of passages, while another
algorithm might work better when the waypoints are distributed
in large open spaces. Our results show that the PO-TSP is highly
problem dependent, making it difficult to develop an algorithm
that performs well in every situation. This makes it a challenging
and perhaps unfair problem to use in a competition setting but
approachable in terms of optimal decision-theory. Future
enhancements may consider the use of MCTS techniques and
partially observable Markov decision process solvers to improve
general agent strategies.

The mental map representation used in our work is
applicable to small problem domains, but it may not scale well
to large problems. However, the ideas established by the MMC
algorithm in particular could prove useful in developing robust
policies that operate on more sophisticated mental map
representations. For example, a complete set of waypoints could
be sampled each iteration and used in conjunction with ACO to

plan future actions that look ahead past the next immediate
waypoint.

Lastly, it would be interesting to compare the algorithmic
policies developed here to the solutions of actual human beings.
This could give insight into models of human decision-making
under uncertainty. By solving a set of benchmark problems, the
PO-TSP could serve as a useful tool for studying anticipatory
analysis.

REFERENCES

[1] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial
Intelligence in the new Millenium, G. Lakemeyer and B. Nebel, Eds.,
Morgan Kaufmann, 2002, pp. 1-36.

[2] M. Morin, “Multi-criteria path planning with terrain visibility constraints:
The optimal searcher path problem with visibility,” M.S. thesis, Laval
Unv., Québec, 2010.

[3] C. L. Baker and J. B. Tenenbaum, “Modeling human plan recognition
using bayesian theory of mind,” in Plan, Activity, and Intent Recognition:
Theory and Practice, G. Sukthankar, R. P. Goldman, C. Geib, D.
Pynadath, and H. Bui, Eds., Morgan Kaufmann, 2014, pp. 177–204.

[4] A. R. Buck, J. M. Keller, and M. Skubic, “A memetic algorithm for
matching spatial configurations with the histograms of forces,” IEEE
Trans. Evol. Comput., vol. 17, no. 4, pp. 588-604, 2013.

[5] A. R. Buck and J. M. Keller, “A graph-based memetic approach to sketch
geolocation,” in IEEE Workshop on Memetic Computing, Singapore,
2013, pp. 44-51.

[6] J. M. Keller, M. Popescu, and D. Gibeson, “An extension of a confined
space evacuation model to human geography,” in 2012 IEEE Int. Geosci.
and Remote Sensing Symp., 2012, pp. 531–534.

[7] M. Popescu and J. M. Keller, “Implementing bounded rationality in
disaster agent behavior using OGA operators,” in 2012 IEEE Int. Geosci.
and Remote Sensing Symp., 2012, pp. 5379–5381.

[8] P. Jaillet, “Probabilistic traveling salesman problems,” Ph.D. dissertation,
MIT, 1985.

[9] D. Perez, P. Rohlfshagen, and S. M. Lucas, “Monte-Carlo tree search for
the physical travelling salesman problem,” in Applications of
Evolutionary Computation, Cecilia Di Chio et al. Eds., Springer, 2012,
pp. 255–264.

[10] C. B. Browne et. al., “A survey of Monte Carlo tree search methods,”
IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[11] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set Monte
Carlo tree search,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 2,
pp. 120–143, 2012.

[12] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems 23 (NIPS 2010),
2010, pp. 2164–2172.

[13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst. Man. Cybern., vol. 26,
no. 1, pp. 29–41, 1996.

[14] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Syst. J., vol. 4, no. 1, pp. 25–30, 1965.

[15] F. Durand, “A multidisciplinary survey of visibility,” ACM SIGGRAPH
course notes: Visibility, Problems, Techniques, and Applications, 2000.

[16] M. Gardner, “Mathematical games - The fantastic combinations of John
Conway’s new solitare game ‘life,’” Scientific American, no. 223, pp.
120–123, 1970.

[17] N. H. Packard and S. Wolfram, “Two-dimensional cellular automata,”
Journal of Statistical Physics, vol. 38, pp. 901–948, 1985.

[18] R. Bellman, “A Markovian decision process,” J. Math. Mech., vol. 6, pp.
679–684, 1957.

TABLE I. AVERAGE IMPROVEMENT OF MMC OVER GREEDY POLICY
a

Evaporation

Rate ()

Waypoint Weight () = 1 Waypoint Weight () = 10

Discount Factor () Discount Factor ()

0.9 0.95 0.99 0.9 0.95 0.99

0.9 -30.1 -8.4 27.5 4.7 -18.4 27.7

0.95 -23.4 -14.9 33.7 -22.3 -19.4 51.5

0.99 -18.5 21.0 68.7 -30.7 -21.1 64.2

a. Defined as the mean MMC tour length minus the mean greedy tour length, averaged over all 10

environments.

