
A Myopic Monte Carlo Strategy for the Partially 

Observable Travelling Salesman Problem 
 

Andrew R. Buck, Student Member, IEEE and James M. Keller, Life Fellow IEEE 

Department of Electrical and Computer Engineering 

University of Missouri 

Columbia, Missouri, USA 

 

 
Abstract—In this paper, we present two greedy, myopic 

algorithms for solving the partially observable travelling salesman 

problem. Although not optimal from a decision-theoretic 

viewpoint, these strategies are shown to perform reasonably well 

under the uncertain conditions of the environment. The first 

algorithm is a strictly greedy algorithm and has no tunable 

parameters, whereas the second algorithm uses Monte Carlo 

sampling to determine likely configurations of the environment 

and applies value iteration to pick an action. We present both 

approaches with illustrative examples and empirically 

demonstrate their relative strengths and weaknesses.  
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I. INTRODUCTION 

Navigation in an unfamiliar environment can be complicated 
by a lack of information. In many cases, a decision-making 
agent may have limited prior knowledge and must balance the 
exploration of new areas with the exploitation of known 
objectives. Walls or other obstacles may restrict the agent’s view 
and limit the information available for planning. In these 
partially observable environments, agents can use a mental map 
to represent the information that has been collected thus far and 
plan a future course of action. These types of problems can arise 
in many fields, including robotic mapping [1], search and rescue 
operations [2], and human plan recognition [3]. Some of our 
previous work has focused on the correspondence problem of 
matching an approximate spatial configuration of landmarks to 
known ground truth [4], [5], and modeling the behavior of 
moving agents [6], [7]. Our goal in this paper is to extend these 
ideas by laying the groundwork for a benchmark problem that 
can be used to test models of agent behavior in unknown 
environments. Ultimately, we plan to use problems like these to 
study the effects of uncertainty on human judgement and spatial 
awareness and develop realistic agent models that can anticipate 
human behavior. 

The travelling salesman problem (TSP) has been used as a 
benchmark for combinatorial optimization algorithms for 
decades. It comes from the class of NP-hard problems that make 
it interesting to study and challenging to solve. Several 
variations on the original definition have emerged over the 
years, including the probabilistic TSP [8], in which tours must 
generalize over multiple problem instances, and the physical 
TSP [9], in which agents must provide actions in real-time in 
order to navigate a vehicle that obeys the laws of kinematics. 

Our definition of the partially observable TSP, which we 
describe below, provides a simulation environment similar to the 
physical TSP, but defined on a discrete domain in which the 
environment is not completely known a priori. We use a grid to 
represent the world out of convenience, but the problem could 
conceivably be extended to continuous domains. In [9], the 
authors use Monte Carlo Tree Search (MCTS) [10] to  design a 
control strategy for steering the physical vehicle. While MCTS 
methods have previously been adapted for partially observable 
domains [11], [12], we focus here on a simpler myopic approach 
that is shown to achieve promising results on our example 
problems. 

The remainder of this paper is organized as follows. Section 
II presents the details of the partially observable travelling 
salesman problem, including the creation of our procedurally 
generated environments. Section III describes the algorithms we 
used for this problem. Section IV covers the experiments we ran, 
and Section V gives our conclusions and ideas for future work. 

II. THE PARTIALLY OBSERVABLE TRAVELLING SALESMAN 

PROBLEM 

The travelling salesman problem is a combinatorial 
optimization problem that takes a set of waypoints and seeks to 
find the shortest path that visits each one. Given a set of 
waypoints {𝑤1 , … , 𝑤𝑁} and a distance matrix 𝐷 , where 𝑑𝑖𝑗  is 

the distance between waypoints 𝑤𝑖  and 𝑤𝑗 , the task is to find an 

ordering of the waypoints 𝜋 that minimizes the tour length, 

 ∑ 𝑑𝜋(𝑖)𝜋(𝑖+1)
N−1
𝑖=1 + 𝑑𝜋(𝑁)𝜋(1) () 

We implement the TSP on a grid-based map in which each 
grid cell is either open or blocked. Waypoints are assigned to 
open grid cells and the acting agent is placed in one of the open 
cells. Each time step, the agent moves into an adjacent open cell 
in one of the four cardinal directions. The agent’s goal is to move 
in such a way as to visit each of the waypoints with the fewest 
steps possible. In our implementation, the episode is complete 
when the agent visits the last waypoint; we do not require the 
agent to return to its starting location. 

A. Partial Observability 

In the fully observable case, the grid-based TSP can be 
solved directly by constructing the distance matrix according to 
the obstacles in the environment and using any number of 
existing TSP algorithms. One popular approach that provided 



inspiration for our methods is ant colony optimization (ACO) 
[13], in which the environment is modified with pheromones to 
indicate favorable paths. Our main interest, however, is in 
understanding the effects of partial observability in this domain. 
We therefore proceed to define the partially observable traveling 
salesman problem (PO-TSP) for grid-based maps. 

The PO-TSP is implemented using a client/server 
architecture (Fig. 1) in which a server program operates as the 
referee, which validates actions given by the client and provides 
an observation that the client can use to update its own mental 
map. The client defines the behavior of the agent in the 
environment and works with the limited information provided 
by the server in the form of observations. The server computes 
the visible region of the map based on the agent’s current 
location and returns the information about the environment 
within this region. For our grid-based worlds, this consists of 

• An environment grid layer, where each grid cell comes 
from the three element set {True, False, Unknown} 
indicating whether or not the cell is traversable; 

• A waypoint grid layer, where each grid cell comes from 
the three element set {True, False, Unknown} indicating 
the presence of a waypoint; 

• The current agent location. 

We maintain separate layers for the environment occupancy and 
the waypoints because depending on the visibility method used, 
it may be possible to know that a grid cell is open, but not know 

if it contains a waypoint. For example, when looking around a 
corner, one might be able to infer that a cell is open but not have 
a clear enough view to determine if the cell contains a waypoint. 
The details of the visibility computation are omitted for brevity, 
but the general approach used in our experiments is to repeatedly 
dilate the visible region around the agent and validate visible 
cells that have a line of sight back to the agent using 
Bresenham’s line algorithm [14]. For a more in-depth overview 
of this problem, see [15]. Note that unlike many autonomous 
mapping algorithms, the agent’s location within the 
environment is known. 

Upon receiving an observation from the server, the client 
updates its mental map of the environment, which includes the 
agent’s location, layers matching those provided by the 
observation, and an additional layer indicating which grid cells 
have been visited. Any environment layer cells that are observed 
to be open or blocked are set as such in the mental map and 
likewise, any cells that are observed to either have or not have a 
waypoint are set as such. If the client has some prior knowledge 
about the environment, it can use this as a heuristic to make 
changes to the mental map that might not be observed directly. 
For example, in the cave-like environments generated in the next 
section, we always apply a one-cell border to the edge of the 
environment to keep the agent from leaving the environment. 
Additionally, because we ensure that all open locations are 
reachable in our environments, any regions that become 
completely closed off in the mental map can have their interiors 
set to False. 

It is the client’s responsibility to define a policy for a given 
mental map that dictates the next action for the agent. We 
present two methods in Section III, although any policy that 
produces an action for any given observation can be used. 

 
 Algorithm 1 Environment Generation 

 

1: function GENERATE_ENVIRONMENT(m, n, p0, rb, rd, k) 

 

2: E ← mn grid, where prob(Ei = True) = p0 

3: while (# of connected components in E)  1 do 

4: for k iterations do 

5: E ← CELLULAR_AUTOMATA(E, rb, rd) 

6: E ← False for all border grid cells 

7: end for 

8: if (# of conn. comp. in E)  1 then 

9: Z ← the smallest connected components in E 

10: E ← Z  [0 1 0; 1 1 1; 0 1 0] // Dilation 

11: else if (# of conn. comp. in E) < 1 then 

12: E ← mn grid, where prob(Ei = True) = p0 

13: end if 

14: end while 

15: E ← REMOVE_DIAGONAL_PASSAGES(E) 

 

16: return E 
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Fig. 1. Block diagram of the server/client architecture of the PO-TSP. 



B. Environment Generation 

To generate a problem instance for the PO-TSP, we use an 
iterative method that combines cellular automation with image 
dilation. The complete pseudocode is given in Algorithm 1 and 
an example of the process is shown in Fig. 2. 

To start, a random mn grid is generated where each cell is 
assigned True with probability p0 and False with probability 

1−p0. In our experiments, we use 5050 grids with p0 = 0.45. 
The algorithm then iterates through k steps of cellular 
automation rules, as in Conway’s Game of Life [16]. (All of our 
environments are generated with a single step using k = 1.) Many 
different rules can be applied to two-dimensional cellular 
automata [17]. Our specific implementation updates each grid 
cell by looking at the 8 neighboring cells in the Moore 
neighborhood and changes a False cell to True if there are more 
than 4 True neighbors (birth rate, rb) and changes a True cell to 
False if there are less than 3 True neighbors (death rate, rd). This 
is represented by the CELLULAR_AUTOMATA function in line 5 
of the pseudocode. 

We then determine the smallest connected components, 
consisting of a contiguous set of 4-connected open cells, and 
dilate these sets by assigning any 4-connected neighbor of the 
set to True (lines 9-10). There may be multiple sets with the 
same number of open cells, in which case all are considered. 
This serves to expand the open area and eventually create a 
fully-connected environment with no unreachable areas. If after 
a single dilation there are still multiple independent connected 
components, an additional round of cellular automation and 
dilation occurs. This continues until there is only a single 
connected component. If all open areas are removed (as can 
happen for certain values of rb and rd), the algorithm restarts 
from the beginning. 

As a final post-processing step, we remove any passageways 
that are only connected diagonally (line 15 of the pseudocode 

and Figs. 2j and 2k). This improves the reliability of the 
visibility computation, which is used to get the agent’s 
observation at a given location. The end result is an environment 
that has an organic, cave-like structure and provides many 
concealed areas that are not visible without exploration. We 
randomly place the waypoints and the agent into the open cells 
of this environment with an optional minimum separation. 

III. AGENT POLICIES FOR THE PO-TSP 

After receiving an observation from the server, the client 
program updates its internal mental map representation of the 
environment and picks an action for the agent. We define a 
mental map structure M which is updated after each observation 
and contains the following attributes. 

• M.env = an mn grid, where each grid cell comes from 
the three element set {True, False, Unknown} indicating 
whether or not the cell is traversable. 

• M.wpt = an mn grid, where each grid cell comes from 
the three element set {True, False, Unknown} indicating 
the presence of a waypoint. 

• M.visited = an mn grid, where each grid cell is either 
True or False indicating if the cell has been visited. 

• M.pos = (ax, ay) = the current position of the agent. 

Fig. 3a shows what an agent’s mental map might look like at the 
start of an episode. We next describe two policies that take the 
current mental map as input and return an action. 

A. Greedy Policy 

One of the simplest policies for the PO-TSP is a strictly 
greedy policy that first looks to see if there are any unvisited 
waypoints visible in the mental map. If so, the agent moves in 
the direction of the closest waypoint. If no waypoints are visible, 
the agent moves toward the nearest unexplored area. Provided 
that all areas in the environment are reachable, this policy will 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Fig. 2. Generation of a random environment for the PO-TSP using a cellular automation. (a) The grid starts with each cell randomly initialized according to the 

start probability. (b)-(j) Each iteration, the cellular automation rules are applied and the smallest continuous region is dilated. (k) A cleanup process removes 
passageways that are only connected diagonally to improve the reliability of the visibility algorithm (circled). (l) The agent is placed in a random initial location, 

shown as a red circle and waypoints are placed with a minimum spacing, shown as blue crosses, enlarged for clarity. 



eventually pass through all waypoints. Algorithm 2 gives the 
pseudocode for this policy. We assume the availability of a 
routine, SHORTEST_PATH, for computing shortest paths through 
grid-based worlds. This function returns a set of points, in order, 
that would lead the agent from its current position to the nearest 
target location. One approach for this is to implement Dijkstra’s 
algorithm seeded at the target locations and stop when the agent 
is reached. An example of the greedy policy evaluating an 
environment is shown in Fig. 3. This example shows that while 
the greedy agent may ultimately visit all waypoints, the path 
taken may be far from optimal.  

The greedy policy, while simple to implement, has several 
shortcomings. Because visible waypoints are strictly prioritized 
over exploring new areas, greedy agents will often leave an area 
only partly explored before moving on. This can cause the agent 
to perform a great deal of unnecessary backtracking in order to 
return to areas that were only partially explored. Furthermore, as 

a greedy algorithm, the agent does no forward planning to 
formulate routes beyond the next immediate waypoint. Despite 
these flaws, the greedy algorithm performs reasonably well on 
many example environments. 

B. Myopic Monte Carlo Policy 

To improve upon the greedy policy, we now introduce a 
myopic Monte Carlo (MMC) policy that has many similarities 
with swarm intelligence techniques. For the MMC policy, we 

define an additional persistent layer P, which is an mn grid 
initialized with all zeros that serves to aggregate “pheromones” 
in promising areas of the environment. This layer is modeled 
after the pheromone trails deposited by ants in ACO. The 
pheromone layer is maintained between observations and the 

values decay each time step with an evaporation rate . The 
pheromones serve as a form of memory, allowing the agent to 
remember its previous goals and exhibit some momentum 
toward achieving those original goals, even if new information 
would suggest that better goals exist elsewhere. We will show 
that this allows agents to finish exploring some areas before 
moving on, ameliorating a key weakness of the greedy policy. 

The MMC policy is divided into two phases. The complete 
pseudocode is given in Algorithm 3. In the first phase (lines 3-
10), we perform Monte Carlo sampling on the mental map to 
construct a distribution of possible ground truth environments. 
For each sample S, we define the following attributes. 

• S.env = an mn grid, sampled from M.env where any 
cells marked as True or False are copied directly and 
cells that are Unknown are sampled as either True or 
False with equal likelihood. 

• S.wpt = an mn grid, sampled from M.wpt in which only 
a single grid cell is marked as True and all others are 
marked as False. The True cell is chosen uniformly from 
the cells of M.wpt that are either True or Unknown. 

• S.pos = M.pos = the current position of the agent. 

Note that we only sample a single waypoint location for each 
sample. The aggregation of these individual samples forms a 
uniform distribution over all possible waypoint locations. 

 
Algorithm 2 Greedy Policy for the PO-TSP 

 

1: function GREEDY_POLICY(M) 

 

// Get target locations 

2: T ← {(x, y) s.t. M.wpt(x, y)  M.visited(x, y)} 

3: if T =  then 

4: T ← {(x, y) s.t. M.wpt(x, y) = Unknown} 

5: end if 

 

// Compute the shortest path from the current agent 

position to one of the target locations 

6: D ← SHORTEST_PATH(T, M) 

 

// Return the next location from D 

7: A ← D.next 

 

8: return A 

 

    

(a) (b) (c) (d) 

Fig. 3. Some selected moments from the greedy policy’s solution for the PO-TSP. Symbols are enlarged for clarity. (a) The initial mental map shows only what is 

visible from the agent’s starting location (red circle), which includes two waypoints (blue crosses). The closest of these is chosen as the target objective (green 

square). Grey areas indicate unknown areas of the environment and dots signify the possibility of a waypoint. (b) The first five waypoints are acquired greedily and 
the sixth target is chosen as a waypoint that was discovered along the route, but requires the agent to backtrack. (c) Nine targets are acquired by always moving 

toward the nearest unvisited waypoint if one is visible, or the nearest unexplored area otherwise. (d) The final target is hidden behind a corner that was not fully 

explored on the first pass and is not discovered until the entire environment has been explored. 



For each sample, we compute the shortest path between the 
single waypoint and the agent, if it exists. Because unknown 
cells in the environment layer are sampled randomly, it is 
possible for the waypoint to be unreachable by the agent, in 
which case the sample is ignored. If there are multiple shortest 
paths (as is often the case in grid-based environments) one path 
is chosen randomly and all grid cells belonging to this path are 
incremented in the pheromone layer. In this way, the pheromone 
layer serves to aggregate the best paths that lead to potential 
waypoint locations. 

The second phase of the MMC policy performs value 
iteration using the unknown areas of the pheromone layer to 
determine the best immediate course of action. First, a new value 
layer V is created as a copy of the pheromone layer, but with all 
observed areas (except unvisited waypoints, see below) set to 
zero. This is done to signify that there is no inherent value in 
visiting a grid cell that has already been observed. It also helps 
prevent oscillatory behavior stemming from the high density of 
pheromone in the immediate vicinity of the agent that can 
interfere with moving toward more distant goals (See Fig. 4b 
and 4c for examples). Waypoints that have been observed but 
not visited are given an extra initial value, equal to some 

multiple  of the current maximum value in the pheromone 

layer. This can be adjusted to produce greedy behavior when  

is large or wandering behavior when  is small. The creation of 
the value layer is outlined in lines 11-13 of the pseudocode. 

The values in the value layer are then propagated using a 
version of the value iteration algorithm commonly used in 
Markov decision processes [18]. Until there is no apparent 
change in the value layer, each cell is iteratively assigned the 
maximum value of either itself, or its 4-connected neighbors 

multiplied by a discount factor,   [0, 1). The discount factor 
effectively determines how far the value propagates through the 
environment. A large discount factor can cause distant goals to 
influence the next action, whereas a smaller discount factor leads 

to more local behavior. Once the algorithm has converged ( < 
0.001 for our experiments), the neighboring cell of the agent 
with the greatest value is chosen as the agent’s next location. 

Fig. 4 gives an example that shows how the pheromone 
aggregation map and value layer evolve over the course of 
implementing the MMC policy. In comparison with the greedy 
policy used on the same environment in Fig. 3, the MMC policy 
is able to achieve a much shorter route by exploiting local 
gradients to finish exploring an area before moving on to more 
distant goals. 

IV. RESULTS 

We designed a series of experiments to empirically evaluate 
the greedy and MMC policies for the PO-TSP. First, we 
generated 10 environments using Algorithm 1, shown in Fig. 5. 

Each is a 5050 grid in which the agent and 10 waypoints are 
distributed randomly using a minimum separation of 10 steps. 
Then, for each environment, we performed 100 trials each of 
the greedy policy and 18 different parameter configurations of 
the MMC policy. For the MMC policy, we vary the evaporation 

rate as  = {0.9, 0.95, 0.99}, the discount factor as  = {0.9, 

0.95, 0.99}, and the waypoint weight as  = {1, 10}. These 
values were chosen based on preliminary experiments and 

 
Algorithm 3 Myopic Monte Carlo Policy for the PO-TSP 

 

1: function MMC_POLICY(M, P, N, , , , ) 

 

// Evaporate old pheromones 

2: p(x, y) ← p(x, y) (x, y) 

 

/*** Monte Carlo Sampling ***/ 

3: for N iterations do 

 

// Sample an environment 

4: S.env ← randomly determinized from M.env 

5: S.wpt ← randomly determinized from M.wpt 

6: S.pos ← M.pos 

 

// Compute the shortest path from the current 

agent position to the sampled waypoint location 

7: T ← {(x, y) s.t. S.wpt(x, y) = True} 

8: D ← SHORTEST_PATH(T, S) 

 

// Add the shortest path to the aggregation map 

9: p(x, y) ← p(x, y) + 1 (x, y)  D 

 

10: end for 

 

/*** Value Iteration ***/ 

11: v(x, y) ← 0 (x, y) 

12: v(x, y) ← p(x, y) (x, y) s.t. M.wpt(x, y) ≠ False  

M.visited(x, y) 

13: v(x, y) ←(maxi pi) (x, y) s.t. M.wpt(x, y) = True   

M.visited(x, y) 

 

14: keepGoing ← True 

15: while keepGoing do 

16: for all (x, y) do 

17: N ← {(x–1, y), (x+1, y), (x, y–1), (x, y+1)} 

18: v(x, y) ← maxiN vi 

19: end for 

20: v″(x, y) ← max(v(x, y), v(x, y)) (x, y) 

21: if ∑(x, y) (v(x, y) – v″(x, y))2   then 

22: keepGoing ← False 

23: end if 

24: v(x, y) ← v″(x, y) (x, y) 

25: end while 

 

// Get the neighbor cell with the greatest value 

26: (ax, ay) ← M.pos 

27: N ← {(ax−1, ay), (ax+1, ay), (ax, ay−1), (ax, ay+1)} 

28: A ← arg maxiN vi // Ties are broken randomly 

 

29: return (A, P) 

 



provide a reasonable range of results for the specified problem 
size. Traditionally, the evaporation rate and discount factors are 
set to be only slightly less than 1 to prevent the pheromone from 
evaporating too quickly and to ensure that the value does not 
dissipate too quickly as it propagates through the environment. 
We used 1000 samples for each iteration of the MMC methods. 
The results of these experiments are summarized in Fig. 6. 

Each of the 10 environments is plotted separately in Fig. 6 
since the optimal tour length is highly dependent on the specific 
problem instance. The upper and lower plots for each 
environment show the difference between the two waypoint 
weight values. Each plot shows the distribution of tour lengths 
for the 100 trials of each method or parameter setting. The grey 
filled plots represent the results of the greedy policy and the 
colored plots show the results of the various parameter settings 
of the MMC policy. The leftmost point of each horizontal axis 
represents the length of the “oracle” tour, that is, the shortest tour 
possible that visits all waypoints. The oracle has perfect 
knowledge of the environment a priori, and can therefore use 
standard offline TSP solvers. Note that the oracle tour is not the 
same as the decision-theoretic optimal tour. While it is possible 
(in rare circumstances) that an agent could just so happen to 
follow the oracle tour, in general, such an outcome is unlikely. 

It is apparent from observing the plots that there is no 
universal best method that works well in all environments. 
Furthermore, a particular method may produce a wide range of 
tour lengths. The random sampling process of the MMC policy 
explains the wide distribution of results for these methods, and 
the random tie-breaking procedure explains why some 
distributions are multimodal. For example, if there are two 
equally short paths to a target, but one provides a vantage point 
that gives the location of another waypoint, it may ultimately 
lead to a shorter tour than the other path. 

The maximum tour length shown on the horizontal axis 
occasionally cuts off some of the distributions to more clearly 
show the rest of the results. This occurs in environments 6 and 
10 when the discount factor is set to the highest value of 0.99. 
With a high discount factor, the value iteration step is able to 
propagate high values farther through the environment, which 
can cause distant goals to become more attractive. This causes 
the agent to adopt a more global search strategy, which may 
force the agent to travel across the map repeatedly. A smaller 
discount factor results in more local search, but can lead to 
numerical underflow errors if the value iteration step terminates 
before influencing the area around the agent. For example, when 
the last corner of a cave branch is explored, the nearest 
unexplored area may be too far away for its value to reach the 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig. 4. Some selected moments from the MMC policy’s solution to the same PO-TSP environment used in Fig. 3. The top row (a-d) shows the pheromone map, 
which aggregates the shortest paths from the agent to sampled waypoints. The bottom row (e-h) shows the value map, which defines a gradient that the agent 

follows. Symbols are enlarged for clarity. The initial observation (e) is identical to Fig. 3a, but instead of picking a target location, 1000 waypoint locations are 

sampled and the shortest paths back to the agent are aggregated in a persistent pheromone map (a). Performing value iteration on the unobserved regions of (a) gives 
the gradient map (e) that the agent follows. (b) and (f) show the maps after reaching four waypoints as the MMC agent recognizes the possibility of a waypoint in 

the top-right and discovers the waypoint that was missed by the greedy agent. (c) and (g) show the maps after visiting eight waypoints when the agent could proceed 

to the high value area in the left, but instead follows the local gradient toward the top and discovers the ninth waypoint. The final maps are shown in (d) and (h) 

where most of the pheromone has evaporated except for a single trail and only a single peak is left in the gradient map. 



agent, resulting in the agent performing a random walk until it 
can “pick up the scent.” 

Table I draws some conclusions about our experiments by 
averaging the difference between the mean distribution values 
of the MMC policies and greedy policy in each environment. 
The values indicate the average number of additional steps 
required by the MMC policy as compared to the greedy policy. 
Values less than zero show that, averaged over all environments, 

the MMC policy performed better than the greedy policy, 
whereas values greater than zero show that the greedy policy 
was better. The only obvious trend is that smaller discount 
factors appear to perform better, which echoes our discussion 
above. It is difficult to draw any more general conclusions from 
these results, as the best method appears to be highly dependent 
on the problem environment. Although we do not explicitly 
compare computation time between the algorithms, it should be 
noted that the MMC algorithm is more computationally 

 

     

     

Fig. 5. The ten randomly generated environments used in the experiments. Each is a 5050 grid with 10 waypoints (blue crosses) randomly placed with a 

minimum spacing of 10 steps. The initial agent location is shown as a red circle and example solutions from the greedy algorithm and the MMC algorithm are 

shown. The path of the greedy algorithm is shown as a green dotted line and the path of the MMC algorithm is shown as a solid purple line. For the MMC 

algorithm, the discount factor was set to =0.9, the evaporation rate was set to =0.99, and the waypoint weight was set to =10. Symbols are enlarged for clarity. 

     

     

 

Fig. 6. Distributions of tour lengths for various methods on each of the 10 environments considered. Each plotted line is a probability density estimate of the tour 

length for a given method, computed using a kernel density function of 100 trials for each method. Each environment shows two plots, separated by waypoint 

weight . The horizontal axis gives the number of steps in the tour, with the lower limit set to the length of the oracle tour (the best tour possible if the environment 

were known a priori). The grey filled plots show the distribution of the greedy policy tours. The myopic Monte Carlo policy tours are shown in various colors and 

line styles. Color indicates the discount factor  and line style indicates the evaporation rate . 



intensive than the greedy approach, but can be designed to scale 
with the number of samples used. 

Fig. 5 shows an example solution from both the greedy and 
MMC algorithms on each of the tested environments. The 
parameters for the MMC algorithm shown were chosen based 
on the best results from Table I. The paths from the two 
algorithms are often nearly identical, however there are a few 
instances where one algorithm explores an area that the other did 
not. These differences stem from the different strategies 
employed by the two algorithms, along with some degree of 
random chance. Multiple runs of the same algorithm can yield 
different paths. Our results indicate that by averaging over many 
trials in all environments, the MMC policy with an appropriate 
parameter configuration is capable of outperforming the greedy 
policy. 

V. CONCLUSION AND FUTURE WORK 

The PO-TSP is an interesting benchmark problem to study 
and leaves many opportunities for future enhancements. Our 
greedy and MMC algorithms can solve most problem instances 
intelligently but do not behave optimally under all 
circumstances. It would be helpful to identify the characteristics 
of the problems that impact the performance and group similar 
problems together for a more consistent analysis. For example, 
one algorithm might work better on problems that have many 
waypoints hidden at the ends of passages, while another 
algorithm might work better when the waypoints are distributed 
in large open spaces. Our results show that the PO-TSP is highly 
problem dependent, making it difficult to develop an algorithm 
that performs well in every situation. This makes it a challenging 
and perhaps unfair problem to use in a competition setting but 
approachable in terms of optimal decision-theory. Future 
enhancements may consider the use of MCTS techniques and 
partially observable Markov decision process solvers to improve 
general agent strategies. 

The mental map representation used in our work is 
applicable to small problem domains, but it may not scale well 
to large problems. However, the ideas established by the MMC 
algorithm in particular could prove useful in developing robust 
policies that operate on more sophisticated mental map 
representations. For example, a complete set of waypoints could 
be sampled each iteration and used in conjunction with ACO to 

plan future actions that look ahead past the next immediate 
waypoint.  

Lastly, it would be interesting to compare the algorithmic 
policies developed here to the solutions of actual human beings. 
This could give insight into models of human decision-making 
under uncertainty. By solving a set of benchmark problems, the 
PO-TSP could serve as a useful tool for studying anticipatory 
analysis. 
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TABLE I.  AVERAGE IMPROVEMENT OF MMC OVER GREEDY POLICY
a 

Evaporation 

Rate () 

Waypoint Weight () = 1 Waypoint Weight () = 10 

Discount Factor () Discount Factor () 

0.9 0.95 0.99 0.9 0.95 0.99 

0.9 -30.1 -8.4 27.5 4.7 -18.4 27.7 

0.95 -23.4 -14.9 33.7 -22.3 -19.4 51.5 

0.99 -18.5 21.0 68.7 -30.7 -21.1 64.2 

a. Defined as the mean MMC tour length minus the mean greedy tour length, averaged over all 10 

environments.  


