
Behavioral Learning of a

Fuzzy Decision-Maker

Andrew Buck and James Keller

University of Missouri

4/24/2015

Modeling Decision-Makers

Humans are expert decision-makers,
but it’s not always clear what is being
optimized.

People generally make rational
decisions, but they may not have
perfect information, or enough time
to fully evaluate.

We use fuzzy weighted graphs to
model the mental map of a decision-
making agent and the principle of
bounded rationality to model how to
make choices.

Left or right?

Fuzzy Rose Diagrams

Fuzzy rose diagrams are a compact way to display vectors of fuzzy numbers.

Fuzzy Weighted Graphs

Fuzzy weighted graphs have
fuzzy weight vectors
attributed to the edges (and
possibly nodes).

Each edge is an unwrapped
linear fuzzy rose diagram.

A reference axis defines the
order of the features.

Features are mirrored
across the edges.

An Example Scenario

Consider a navigation problem with three possible choices:

An Example Scenario

We can represent the environment as a fuzzy weighted graph.

Fuzzy values model the imprecision
in the agent’s mental map.

An Example Scenario

We can unfold the graph into a decision tree.

• Agent starts at the root node.

• Each leaf node represents a different path.

• Features are aggregated along the paths.

Route 1

Route 2

Route 3

Bounded Rationality as OWA

The agent must now choose from among these alternatives.

The agent is defined by:

• A vector of feature biases 𝜷 = 𝛽1, … , 𝛽𝑁

• A vector of OWA weights 𝝎 = 𝜔1, … , 𝜔𝑁

• An optimism/pessimism parameter 𝜆 used for defuzzification
(The Liou and Wang index is used, which gives a linear weighting
of the left and right integrals of the fuzzy number.)

We define the agent’s cost interpretation of an aggregated fuzzy feature
vector 𝑭 = 𝑓1, … , 𝑓𝑁 as

𝐶 = 𝜔1𝑎𝜎 1 + ⋯ + 𝜔𝑁𝑎𝜎 𝑁 , where

 𝑎𝑖 = 𝛽𝑖𝑓𝑖

 𝜎: 1, 𝑁 → 1, 𝑁 𝑠. 𝑡. 𝑎𝜎 𝑖 ≥ 𝑎𝜎 𝑖+1

Bounded Rationality as OWA

𝛽 = 0.2, 0.9, 0.3, 0.8, 0.1
𝜔 = 0.9, 0.8, 0.6, 0.2, 0

𝜆 = 0.7

𝛽 = 0.4, 0.1, 0.1, 0.1, 0.7
𝜔 = 1, 0.8, 0.5, 0.2, 0.1

𝜆 = 0.9

𝛽 = 0.1, 0.4, 0.3, 0.1, 0.5
𝜔 = 1, 1, 0.9, 0.7, 0.5

𝜆 = 0.3

Route 1 Route 2 Route 3Agent Profile OWA Comparison

Learning the Agent Profile

Can we learn the agent parameters by observing its choices?

Experiment:

• Generate a dataset of many different decision scenarios for
100 randomly sampled agent parameter vectors
𝒙 = 𝛽1, … , 𝛽𝑁, 𝜔1, … , 𝜔𝑁, 𝜆 where each 𝑥𝑖 ∈ 0, 1 .
– 𝑁 = 5

– OWA weights sorted such that 𝜔𝑖 ≥ 𝜔𝑖+1

• Record the choice each agent makes for every scenario.

• Build a genetic algorithm to learn the agent profile.

Generating the Dataset

For each agent, we create three random fuzzy weighted graphs.

Each graph is a directed Urquhart graph computed from a set of uniformly
sampled vertices. The Urquhart graph is obtained by removing the longest
edge from each triangle in the Delaunay triangulation of the vertices.

Generating the Dataset

For each pair of points in a graph, we find the set of all non-
looping paths between them. Each set represents the decision-
making scenario of finding a route between these two points.

Generating the Dataset

We then evaluate each path according to the agent’s profile. The
results are ranked and the best (least cost) path is chosen.

Designing the GA

Individual chromosomes represent the agent parameter vector
𝒙 = 𝛽1, … , 𝛽𝑁, 𝜔1, … , 𝜔𝑁, 𝜆 where each 𝑥𝑖 ∈ 0, 1 .

To compute the fitness, we evaluate each decision scenario
according to the chromosome profile and measure the
percentage of scenarios for which the incorrect choice is made.

We perform 5-fold cross validation using a population size of
200, uniform crossover rate of 0.8, Gaussian mutation rate of
0.2, and an elite size of 10.

The algorithm runs until a solution is found with perfect
prediction accuracy or there are 10 stall generations.

Results

Overall average prediction accuracy rate: 99.34%

Results

Example parameter prediction distributions:

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜆𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜆

Next Steps

Our results show that the agent bias terms can be recovered, but
the OWA weights may be more difficult.

Future work:

• Stochastic models to add uncertainty to the policy

• Modeling spatial uncertainty and conflating with ground truth

• Understanding agent desires and beliefs with a Bayesian
Theory of Mind

• Learning the reward function with Inverse Reinforcement
Learning

Stochastic Models

Mental map graph has a reward vector
for each destination node and a cost

vector for each edge.

All possible paths to all possible
destinations are considered when

planning where to go.

Stochastic Models

Unbiased decision tree

Decision tree with agent biases

Stochastic Models

Decision tree with OWA costs (blue) and rewards (red)

𝑝 𝑥 ∝ 𝑒𝛽 𝑅𝑒𝑤𝑎𝑟𝑑 −𝐶𝑜𝑠𝑡

𝛽 = 0.1

𝛽 = 1

𝛽 = 10

Conflating with Ground Truth

Bayesian Theory of Mind

Can we infer the agent’s reward structure and mental map
state just by observing their actions in the environment?

Inverse Reinforcement Learning

Reinforcement Learning is the problem of determining an
optimal policy for a given environment in order to maximize a
given reward.

Inverse Reinforcement Learning is defined as follows:

Given
1. Measurements of an agent’s behavior over time, in a variety of

circumstances

2. If needed, measurements of the sensory inputs to that agent

3. If available, a model of the environment

Determine
The reward function being optimized

Inverse Reinforcement Learning

1 2 3 4 5

1

2

3

4

5

0.080 0.106 0.142 0.192 0.244

0.106 0.138 0.190 0.260 0.338

0.142 0.190 0.262 0.362 0.484

0.192 0.260 0.362 0.502 0.694

0.244 0.338 0.484 0.694 1.000

1

2

3

4

5

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1

Original Rewards

1

2

3

4

5

1

2

3

4

5
-0.5

0

0.5

1

Computed Rewards

1. Generate a gridworld environment and
place rewards.

2. Compute an optimal policy.
3. Given only the policy and the transition

function (stochastic), determine the
reward being optimized.

Inverse Reinforcement Learning

1. Generate trajectories through an environment with a known reward function.
2. Compute a feature vector for each trajectory.
3. Estimate the policy from the trajectories and learn the feature weights.
4. Infer the original reward function from the learned weights.

Original Rewards Computed Rewards

	Slide 1: Behavioral Learning of a Fuzzy Decision-Maker
	Slide 2: Modeling Decision-Makers
	Slide 3: Fuzzy Rose Diagrams
	Slide 4: Fuzzy Weighted Graphs
	Slide 5: An Example Scenario
	Slide 6: An Example Scenario
	Slide 7: An Example Scenario
	Slide 8: Bounded Rationality as OWA
	Slide 9: Bounded Rationality as OWA
	Slide 10: Learning the Agent Profile
	Slide 11: Generating the Dataset
	Slide 12: Generating the Dataset
	Slide 13: Generating the Dataset
	Slide 14: Designing the GA
	Slide 15: Results
	Slide 16: Results
	Slide 17: Next Steps
	Slide 18: Stochastic Models
	Slide 19: Stochastic Models
	Slide 20: Stochastic Models
	Slide 21: Conflating with Ground Truth
	Slide 22: Bayesian Theory of Mind
	Slide 23: Inverse Reinforcement Learning
	Slide 24: Inverse Reinforcement Learning
	Slide 25: Inverse Reinforcement Learning

