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Modeling Decision-Makers

Humans are expert decision-makers, 
but it’s not always clear what is being 
optimized.

People generally make rational 
decisions, but they may not have 
perfect information, or enough time 
to fully evaluate.

We use fuzzy weighted graphs to 
model the mental map of a decision-
making agent and the principle of 
bounded rationality to model how to 
make choices.

Left or right?



Fuzzy Rose Diagrams

Fuzzy rose diagrams are a compact way to display vectors of fuzzy numbers.



Fuzzy Weighted Graphs

Fuzzy weighted graphs have 
fuzzy weight vectors 
attributed to the edges (and 
possibly nodes).

Each edge is an unwrapped 
linear fuzzy rose diagram.

A reference axis defines the 
order of the features.

Features are mirrored 
across the edges.



An Example Scenario

Consider a navigation problem with three possible choices:



An Example Scenario

We can represent the environment as a fuzzy weighted graph.

Fuzzy values model the imprecision 
in the agent’s mental map. 



An Example Scenario

We can unfold the graph into a decision tree.

• Agent starts at the root node.

• Each leaf node represents a different path.

• Features are aggregated along the paths.

Route 1

Route 2

Route 3



Bounded Rationality as OWA

The agent must now choose from among these alternatives.

The agent is defined by: 

• A vector of feature biases 𝜷 = 𝛽1, … , 𝛽𝑁

• A vector of OWA weights 𝝎 = 𝜔1, … , 𝜔𝑁

• An optimism/pessimism parameter 𝜆 used for defuzzification 
(The Liou and Wang index is used, which gives a linear weighting 
of the left and right integrals of the fuzzy number.)

We define the agent’s cost interpretation of an aggregated fuzzy feature 
vector 𝑭 = 𝑓1, … , 𝑓𝑁  as

𝐶 = 𝜔1𝑎𝜎 1 + ⋯ + 𝜔𝑁𝑎𝜎 𝑁 ,  where

 𝑎𝑖 = 𝛽𝑖𝑓𝑖

 𝜎: 1, 𝑁 → 1, 𝑁  𝑠. 𝑡.  𝑎𝜎 𝑖 ≥ 𝑎𝜎 𝑖+1



Bounded Rationality as OWA

𝛽 = 0.2, 0.9, 0.3, 0.8, 0.1
𝜔 = 0.9, 0.8, 0.6, 0.2, 0

𝜆 = 0.7

𝛽 = 0.4, 0.1, 0.1, 0.1, 0.7
𝜔 = 1, 0.8, 0.5, 0.2, 0.1

𝜆 = 0.9

𝛽 = 0.1, 0.4, 0.3, 0.1, 0.5
𝜔 = 1, 1, 0.9, 0.7, 0.5

𝜆 = 0.3

Route 1 Route 2 Route 3Agent Profile OWA Comparison



Learning the Agent Profile

Can we learn the agent parameters by observing its choices?

Experiment:

• Generate a dataset of many different decision scenarios for 
100 randomly sampled agent parameter vectors
𝒙 = 𝛽1, … , 𝛽𝑁, 𝜔1, … , 𝜔𝑁, 𝜆  where each 𝑥𝑖 ∈ 0, 1 .
– 𝑁 = 5

– OWA weights sorted such that 𝜔𝑖 ≥ 𝜔𝑖+1

• Record the choice each agent makes for every scenario.

• Build a genetic algorithm to learn the agent profile.



Generating the Dataset

For each agent, we create three random fuzzy weighted graphs.

Each graph is a directed Urquhart graph computed from a set of uniformly 
sampled vertices. The Urquhart graph is obtained by removing the longest 
edge from each triangle in the Delaunay triangulation of the vertices.



Generating the Dataset

For each pair of points in a graph, we find the set of all non-
looping paths between them. Each set represents the decision-
making scenario of finding a route between these two points.



Generating the Dataset

We then evaluate each path according to the agent’s profile. The 
results are ranked and the best (least cost) path is chosen.



Designing the GA

Individual chromosomes represent the agent parameter vector 
𝒙 = 𝛽1, … , 𝛽𝑁, 𝜔1, … , 𝜔𝑁, 𝜆  where each 𝑥𝑖 ∈ 0, 1 .

To compute the fitness, we evaluate each decision scenario 
according to the chromosome profile and measure the 
percentage of scenarios for which the incorrect choice is made.

We perform 5-fold cross validation using a population size of 
200, uniform crossover rate of 0.8, Gaussian mutation rate of 
0.2, and an elite size of 10.

The algorithm runs until a solution is found with perfect 
prediction accuracy or there are 10 stall generations.



Results

Overall average prediction accuracy rate: 99.34%



Results

Example parameter prediction distributions:

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜆𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜆



Next Steps

Our results show that the agent bias terms can be recovered, but 
the OWA weights may be more difficult.

Future work:

• Stochastic models to add uncertainty to the policy

• Modeling spatial uncertainty and conflating with ground truth

• Understanding agent desires and beliefs with a Bayesian 
Theory of Mind

• Learning the reward function with Inverse Reinforcement 
Learning



Stochastic Models

Mental map graph has a reward vector 
for each destination node and a cost 

vector for each edge.

All possible paths to all possible 
destinations are considered when 

planning where to go.



Stochastic Models

Unbiased decision tree

Decision tree with agent biases



Stochastic Models

Decision tree with OWA costs (blue) and rewards (red)

𝑝 𝑥 ∝ 𝑒𝛽 𝑅𝑒𝑤𝑎𝑟𝑑 −𝐶𝑜𝑠𝑡

𝛽 = 0.1

𝛽 = 1

𝛽 = 10



Conflating with Ground Truth



Bayesian Theory of Mind

Can we infer the agent’s reward structure and mental map 
state just by observing their actions in the environment?



Inverse Reinforcement Learning

Reinforcement Learning is the problem of determining an 
optimal policy for a given environment in order to maximize a 
given reward.

Inverse Reinforcement Learning is defined as follows:

Given
1. Measurements of an agent’s behavior over time, in a variety of 

circumstances

2. If needed, measurements of the sensory inputs to that agent

3. If available, a model of the environment

Determine
The reward function being optimized



Inverse Reinforcement Learning
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Computed Rewards

1. Generate a gridworld environment and 
place rewards.

2. Compute an optimal policy.
3. Given only the policy and the transition 

function (stochastic), determine the 
reward being optimized.



Inverse Reinforcement Learning

1. Generate trajectories through an environment with a known reward function.
2. Compute a feature vector for each trajectory.
3. Estimate the policy from the trajectories and learn the feature weights.
4. Infer the original reward function from the learned weights.

Original Rewards Computed Rewards
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