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Abstract—In this project, we aim to understand the behavior 

of a decision-making agent. In particular, we present the agent 

with an environment, represented as a fuzzy weighted graph, and 

observe the preferred routes between any two points in the graph. 

We assume the agent follows the principle of bounded rationality, 

implemented as an alpha-level OWA operator, to determine the 

path with the smallest perceived cost. We design an experiment to 

generate many such agents and environments, and to observe the 

preferred route between any two points. The agent parameters are 

then learned from the observed data using a genetic algorithm. We 

present our findings, in which we show a high degree of 

reproducibility between the original and learned agent.  

Keywords—behavior learning; fuzzy decision-making; bounded 
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I. INTRODUCTION 

There are many applications in which a decision-maker is 
faced with several competing alternatives. Often, the 
distinguishing features of each alternative can be difficult to 
quantify numerically. In these cases, fuzzy numbers can be used 
to represent vagueness in the representation. One example is the 
problem of route selection in a partially-known environment. 
Consider the environment in Fig. 1. There are three route choices 
for the agent, each offering different tradeoffs. The shortest 
route goes directly over the hill, requiring a significant elevation 
change and a low path quality. An easier route goes around the 
hill on a paved path, but has a much longer distance. A third 
option balances distance and elevation by going through the 
woods, but requires a water crossing. 

We can represent this environment as a fuzzy weighted 
graph as shown in Fig. 2. Here, we have represented the various 
features describing each path (distance, elevation, path quality, 
sun exposure, and water crossings) as a vector of fuzzy numbers 
attributed to each edge. We use the method of fuzzy rose 
diagrams presented in [1] to visualize this graph. Intuitively, the 
larger shapes represent larger values, with the imprecision of the 
fuzzy numbers encoded in the shapes. For full details, we refer 
the reader to [1]. 

The decision-maker in this example can choose between 
three alternative paths in order to reach the goal. We can 
represent the full set of alternatives by expanding the graph into 
a decision tree such as in Fig. 3. In this tree, the agent starts at 
node 1 and proceeds to node 2, which results in the accumulation 
of the features along the edge 1-2. Here the agent must make a 
choice, choosing either the path 2-3, 2-4, or 2-5. Assuming the 

agent cannot visit a node twice, each path has only a single route 
to complete the journey to the goal. Each time a node is visited, 
the features of the preceding edge are accumulated to the agent’s 
total, resulting in the final values shown as the leaf nodes in Fig. 
3. 

The agent must now choose between the three alternatives. 
Given a vector of fuzzy feature values, 𝑭 = [𝑓1, … , 𝑓𝑁] , we 
assume that the agent has an internal bias for each feature type, 

Fig. 1. Example scene for a decision-making agent with three route choices. 

“Over the Hill” gives the shortest distance, but also has the greatest elevation 

change. “The Long Way Around” is the easist route in terms of elevation and 

path quality, but the longest distance. “Through the Woods” is a balance of 

distance and elevation, also offering some shade, but requires a water crossing. 

Fig. 2. A fuzzy weighted graph representation of the environment in Fig. 1. 
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𝜷 = [𝛽1, … , 𝛽𝑁], resulting in an agent-interpreted feature vector 
𝑨 = [𝑎1, … , 𝑎𝑁] where 𝑎𝑖 = 𝛽𝑖𝑓𝑖. Furthermore, we assume the 
agent cannot always make perfectly rational decisions and 
instead follows the principle of bounded rationality. We 
implement this using an alpha-level OWA operator, defined by 
a vector of weights 𝝎 = [𝜔1, … , 𝜔𝑁]. Essentially, this ranks and 
aggregates the agent-interpreted features to obtain a single fuzzy 
cost 𝐶 = 𝜔1𝑎𝜎(1) +⋯+ 𝜔𝑁𝑎𝜎(𝑁) where 𝜎 is a permutation of 

[1, 𝑁] such that 𝑎𝜎(𝑖) ≥ 𝑎𝜎(𝑖+1). The details of this computation 

are discussed in [2], particularly for the case when the agent bias 
terms and ordering weights are also fuzzy numbers. In this 
project, we consider only crisp scalar values for the 𝜷 and 𝝎 
terms. 

Finally, the agent must compare the computed cost values 
for all paths and rank the results. For this, we use the Liou and 
Wang index [3] which takes a single parameter 𝜆, which can be 
viewed as an optimism/pessimism value. Numerically, the index 
calculates the integrals of the rising left and falling right portions 
of the fuzzy number 𝐶 and uses 𝜆 as a linear weighting of the 
two extremes. When 𝜆 = 0 the agent is optimistic, considering 
only the smallest parts of the fuzzy number, whereas when 𝜆 =
1 the agent is pessimistic and considers the largest part of the 
fuzzy number. The result is a single crisp value that can be used 
to rank multiple fuzzy numbers. 

For our three-route example, we consider three different 
agent profiles, shown in Fig. 4. The first agent has a strong 
weight associated with elevation and sun exposure, resulting in 
a weighting of the leaf-nodes from Fig. 3 that prioritizes these 
features. The resulting OWA ranking gives the first route 
(“Through the Woods”) the lowest cost, making it the agent’s 
top choice. Similarly, the second and third agents can be defined 
such that routes 2 and 3 are the top choices. 

By representing an agent’s decision making preferences as a 
vector of feature biases, OWA weights, and an optimism 
parameter, we can generalize how the agent makes decisions in 
an environment represented as a fuzzy weighted graph. The 
focus of this project is to recover the agent profile from a set of 
examples in which we observe the agent’s choice from among a 
set of alternatives. The remainder of this paper describes our 
method for generating such a data set, a genetic algorithm for 
learning  the agent parameters, and finally our conclusions. 

II. GENERATING DECISION-MAKING DATA 

To create our training dataset, we begin by randomly 
sampling 100 different agent profiles. Each agent profile can be 
represented as a vector 𝒙 = [𝛽1, … , 𝛽𝑁 , 𝜔1, … , 𝜔𝑁 , 𝜆]  where 
each 𝑥𝑖 ∈ [0, 1]. For our experiments, we set 𝑁 = 5. We also 
sort the OWA weights so that 𝜔𝑖 ≥ 𝜔𝑖+1 . (Although this 
ordering is not strictly necessary, we have found that it leads to 

Fig. 4. A decision tree representation of the three possible routes between 

nodes 1 and 6 in the fuzzy weighted graph shown in Fig. 2. 

Fig. 5. Three example agent profiles, each with a different ranking of the three 

possible routes from the example three-route scenario. 

Fig. 3. Example of a fuzzy weighted graph generated for our experiments. 



more realistic agent behavior.) We then generate 3 random fuzzy 
weighted graphs for each agent like the one shown in Fig. 5. 
Each graph is a directed Urquhart graph [4] computed from a set 
of uniformly sampled vertices in the range [0, 10]2  with a 
minimum separation of 2. The Urquhart graph is obtained by 
removing the longest edge from each triangle in the Delaunay 
triangulation of the vertices, and results in a good approximation 
of the relative neighborhood graph in which two points p and q 
are connected only if there is no third point r that is closer to 
both p and q than they are to each other. Each edge is assigned 
a random fuzzy weight vector with each feature randomly 
chosen from the range [0, 10]. When sampling a fuzzy number, 
first a type is chosen such that triangular fuzzy numbers are 
twice as likely as trapezoidal fuzzy numbers, crisp intervals are 
twice as likely as triangular fuzzy numbers, and crisp singletons 
are again twice as likely as crisp intervals. The final fuzzy vector 

is randomly permuted and scaled such that 𝑓𝑖
′ = 𝑠𝑖−1𝑓𝑖  where 

we have chosen 𝑠 = 0.25. This increases the sparsity of the 
feature vector, leaving only a few significant features. The 
resulting fuzzy weighted graph is highly irregular yet still 
structured like a road network, resulting in interesting agent 
behavior. 

Next, we create the set of all possible decision scenarios for 
the agent within the 3 graphs. For each graph, we generate a 
decision scenario for each pair of points. We determine the set 
of all possible non-looping paths between these two points (Fig. 
6) and aggregate the fuzzy edge features corresponding to each 
of these paths (Fig. 7). The agent then applies the OWA operator 
and determines a ranking of the paths, from which it can select 
the best choice (i.e. the path with the minimum cost as 
determined by the OWA operator and the Liou and Wang 
index). Our dataset consists of the original unbiased aggregation 
of features for each path in every decision scenario and the index 
of the path chosen by the agent. While the exact number of 
scenarios and the number of alternatives depends on the 
randomly generated graphs, we typically have several hundred 
scenarios for each agent, each usually having between 10 and 30 
different alternatives. 

III. LEARNING THE AGENT’S PROFILE 

For each agent generated by our method, we set up a genetic 
algorithm to learn the agent parameters from the observed 

decisions made in each scenario. First, we construct a 
chromosome representation consisting of a vector of floating-
point variables 𝒙 = [𝛽1, … , 𝛽𝑁 , 𝜔1, … , 𝜔𝑁 , 𝜆]  where each 𝑥𝑖 ∈
[0, 1] . We then define a fitness function which uses the 
chromosome variables to determine an OWA ranking for each 
decision scenario. The fitness is measured as the percentage of 
scenarios for which an incorrect choice is made. 

We randomly divide the decision scenario data for each 
agent into 5 equal sets. Our training consists of a 5-fold cross 
validation for each agent in which we learn the agent parameters 
using 4 of the sets and test the accuracy on the remaining set. 
We use the Genetic Algorithm Toolbox for Matlab to learn the 
optimal agent parameters. Most parameters were left at their 
default values, with an explicit fitness limit to stop the algorithm 
when a perfect solution is found and a stall limit of 10 
generations. The default algorithm uses a population size of 200, 
a uniform scattered crossover rate of 0.8, a Gaussian mutation 
rate of 0.2, and an elite size of 10. 

The results of the algorithm for 10 selected agents are shown 
in Fig. 8. Here, we show the distribution of the learned 
parameters for the best solution in each of the 5 folds using a 
box plot for each parameter. The true agent parameters are 
shown with a dotted line. The algorithm is able to recover the 
agent feature weights 𝜷 and optimism parameter 𝜆 with a high 
degree of accuracy, however the OWA weights 𝝎 show a wide 
variation. This suggests that the aggregation operator may not 
play as significant a role as the agent-specific feature weights. 

The best fitness evaluation for each generation averaged 
over all folds for the first 5 agents tested is shown in Fig. 9. The 
algorithm concluded within 30 generations and quickly 
approached the ideal limit of perfect fitness. The average 
accuracy of our algorithm averaged over 5 folds for each of 100 
agents was an exceedingly high 99.34%. 

IV. CONCLUSIONS AND FUTURE WORK 

This project has established a framework for decision-
making in partially-known environments. We use the idea of a 
fuzzy weighted graph to represent a decision space and the 
concept of bounded rationality to implement a decision-making 
agent. We have shown that by representing each alternative as a 
vector of fuzzy features and applying an alpha-level OWA 

Fig. 6. A subset of the decision making scenarios generated for the graph in 

Fig. 5. Each row represents the set of all possible non-looping paths between a 

pair of points in the graph. 

Fig. 7. Aggregation of the edge features for each path in Fig. 6. Each row 

represts a decision scenario for which the agent must apply the OWA operator 

to determine the best choice. 



operator, we can design an agent model that is capable of 
choosing an action that minimizes the perceived cost. 
Furthermore, we have shown that we can recover the agent 

parameters by only observing the chosen actions in a set of 
decision-making scenarios. 

Although we have achieved a high degree of accuracy in our 
experiments, it should be emphasized that we use the same 
model for generating and learning the data. In real-world 
situations, the true model of the decision-maker is often 
unknown and the learned model is only valuable insofar as it is 
able to reproduce the observed behavior or give insight into the 
underlying mental representation of the environment. Further 
work in this area will focus on established methods of behavior 
learning like inverse reinforcement learning or apprenticeship 
learning. In these approaches, the problem is posed as learning 
a policy or reward function from an observed action sequence 
through a Markov decision process. Many existing models 
assume a linear mapping from environmental features to 
rewards. The inability of our method to accurately recover the 
OWA weights suggests that these linear models may be 
sufficient. 
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Fig. 8. Results of the genetic algorithm training shown for 10 selected agents. 

Each row shows a box plot for each parameter indicating the distribution of the 
best learned results for each of the 5 folds. The dotted line shows the true agent 

parameter values. 

Fig. 9. Best fitness value for each generation averaged over all folds for the 

first 5 agents tested. 


