
Behavioral Learning of a Fuzzy Decision-Maker

Andrew R. Buck, Student Member IEEE, and

James M. Keller, Life Fellow IEEE

Electrical and Computer Engineering Department

University of Missouri

Columbia, MO 65211 USA

arb9p4@missouri.edu; kellerj@missouri.edu

Abstract—In this project, we aim to understand the behavior

of a decision-making agent. In particular, we present the agent

with an environment, represented as a fuzzy weighted graph, and

observe the preferred routes between any two points in the graph.

We assume the agent follows the principle of bounded rationality,

implemented as an alpha-level OWA operator, to determine the

path with the smallest perceived cost. We design an experiment to

generate many such agents and environments, and to observe the

preferred route between any two points. The agent parameters are

then learned from the observed data using a genetic algorithm. We

present our findings, in which we show a high degree of

reproducibility between the original and learned agent.

Keywords—behavior learning; fuzzy decision-making; bounded

rationality; fuzzy rose diagrams

I. INTRODUCTION

There are many applications in which a decision-maker is
faced with several competing alternatives. Often, the
distinguishing features of each alternative can be difficult to
quantify numerically. In these cases, fuzzy numbers can be used
to represent vagueness in the representation. One example is the
problem of route selection in a partially-known environment.
Consider the environment in Fig. 1. There are three route choices
for the agent, each offering different tradeoffs. The shortest
route goes directly over the hill, requiring a significant elevation
change and a low path quality. An easier route goes around the
hill on a paved path, but has a much longer distance. A third
option balances distance and elevation by going through the
woods, but requires a water crossing.

We can represent this environment as a fuzzy weighted
graph as shown in Fig. 2. Here, we have represented the various
features describing each path (distance, elevation, path quality,
sun exposure, and water crossings) as a vector of fuzzy numbers
attributed to each edge. We use the method of fuzzy rose
diagrams presented in [1] to visualize this graph. Intuitively, the
larger shapes represent larger values, with the imprecision of the
fuzzy numbers encoded in the shapes. For full details, we refer
the reader to [1].

The decision-maker in this example can choose between
three alternative paths in order to reach the goal. We can
represent the full set of alternatives by expanding the graph into
a decision tree such as in Fig. 3. In this tree, the agent starts at
node 1 and proceeds to node 2, which results in the accumulation
of the features along the edge 1-2. Here the agent must make a
choice, choosing either the path 2-3, 2-4, or 2-5. Assuming the

agent cannot visit a node twice, each path has only a single route
to complete the journey to the goal. Each time a node is visited,
the features of the preceding edge are accumulated to the agent’s
total, resulting in the final values shown as the leaf nodes in Fig.
3.

The agent must now choose between the three alternatives.
Given a vector of fuzzy feature values, 𝑭 = [𝑓1, … , 𝑓𝑁] , we
assume that the agent has an internal bias for each feature type,

Fig. 1. Example scene for a decision-making agent with three route choices.

“Over the Hill” gives the shortest distance, but also has the greatest elevation

change. “The Long Way Around” is the easist route in terms of elevation and

path quality, but the longest distance. “Through the Woods” is a balance of

distance and elevation, also offering some shade, but requires a water crossing.

Fig. 2. A fuzzy weighted graph representation of the environment in Fig. 1.

mailto:arb9p4@missouri.edu

𝜷 = [𝛽1, … , 𝛽𝑁], resulting in an agent-interpreted feature vector
𝑨 = [𝑎1, … , 𝑎𝑁] where 𝑎𝑖 = 𝛽𝑖𝑓𝑖. Furthermore, we assume the
agent cannot always make perfectly rational decisions and
instead follows the principle of bounded rationality. We
implement this using an alpha-level OWA operator, defined by
a vector of weights 𝝎 = [𝜔1, … , 𝜔𝑁]. Essentially, this ranks and
aggregates the agent-interpreted features to obtain a single fuzzy
cost 𝐶 = 𝜔1𝑎𝜎(1) +⋯+ 𝜔𝑁𝑎𝜎(𝑁) where 𝜎 is a permutation of

[1, 𝑁] such that 𝑎𝜎(𝑖) ≥ 𝑎𝜎(𝑖+1). The details of this computation

are discussed in [2], particularly for the case when the agent bias
terms and ordering weights are also fuzzy numbers. In this
project, we consider only crisp scalar values for the 𝜷 and 𝝎
terms.

Finally, the agent must compare the computed cost values
for all paths and rank the results. For this, we use the Liou and
Wang index [3] which takes a single parameter 𝜆, which can be
viewed as an optimism/pessimism value. Numerically, the index
calculates the integrals of the rising left and falling right portions
of the fuzzy number 𝐶 and uses 𝜆 as a linear weighting of the
two extremes. When 𝜆 = 0 the agent is optimistic, considering
only the smallest parts of the fuzzy number, whereas when 𝜆 =
1 the agent is pessimistic and considers the largest part of the
fuzzy number. The result is a single crisp value that can be used
to rank multiple fuzzy numbers.

For our three-route example, we consider three different
agent profiles, shown in Fig. 4. The first agent has a strong
weight associated with elevation and sun exposure, resulting in
a weighting of the leaf-nodes from Fig. 3 that prioritizes these
features. The resulting OWA ranking gives the first route
(“Through the Woods”) the lowest cost, making it the agent’s
top choice. Similarly, the second and third agents can be defined
such that routes 2 and 3 are the top choices.

By representing an agent’s decision making preferences as a
vector of feature biases, OWA weights, and an optimism
parameter, we can generalize how the agent makes decisions in
an environment represented as a fuzzy weighted graph. The
focus of this project is to recover the agent profile from a set of
examples in which we observe the agent’s choice from among a
set of alternatives. The remainder of this paper describes our
method for generating such a data set, a genetic algorithm for
learning the agent parameters, and finally our conclusions.

II. GENERATING DECISION-MAKING DATA

To create our training dataset, we begin by randomly
sampling 100 different agent profiles. Each agent profile can be
represented as a vector 𝒙 = [𝛽1, … , 𝛽𝑁 , 𝜔1, … , 𝜔𝑁 , 𝜆] where
each 𝑥𝑖 ∈ [0, 1]. For our experiments, we set 𝑁 = 5. We also
sort the OWA weights so that 𝜔𝑖 ≥ 𝜔𝑖+1 . (Although this
ordering is not strictly necessary, we have found that it leads to

Fig. 4. A decision tree representation of the three possible routes between

nodes 1 and 6 in the fuzzy weighted graph shown in Fig. 2.

Fig. 5. Three example agent profiles, each with a different ranking of the three

possible routes from the example three-route scenario.

Fig. 3. Example of a fuzzy weighted graph generated for our experiments.

more realistic agent behavior.) We then generate 3 random fuzzy
weighted graphs for each agent like the one shown in Fig. 5.
Each graph is a directed Urquhart graph [4] computed from a set
of uniformly sampled vertices in the range [0, 10]2 with a
minimum separation of 2. The Urquhart graph is obtained by
removing the longest edge from each triangle in the Delaunay
triangulation of the vertices, and results in a good approximation
of the relative neighborhood graph in which two points p and q
are connected only if there is no third point r that is closer to
both p and q than they are to each other. Each edge is assigned
a random fuzzy weight vector with each feature randomly
chosen from the range [0, 10]. When sampling a fuzzy number,
first a type is chosen such that triangular fuzzy numbers are
twice as likely as trapezoidal fuzzy numbers, crisp intervals are
twice as likely as triangular fuzzy numbers, and crisp singletons
are again twice as likely as crisp intervals. The final fuzzy vector

is randomly permuted and scaled such that 𝑓𝑖
′ = 𝑠𝑖−1𝑓𝑖 where

we have chosen 𝑠 = 0.25. This increases the sparsity of the
feature vector, leaving only a few significant features. The
resulting fuzzy weighted graph is highly irregular yet still
structured like a road network, resulting in interesting agent
behavior.

Next, we create the set of all possible decision scenarios for
the agent within the 3 graphs. For each graph, we generate a
decision scenario for each pair of points. We determine the set
of all possible non-looping paths between these two points (Fig.
6) and aggregate the fuzzy edge features corresponding to each
of these paths (Fig. 7). The agent then applies the OWA operator
and determines a ranking of the paths, from which it can select
the best choice (i.e. the path with the minimum cost as
determined by the OWA operator and the Liou and Wang
index). Our dataset consists of the original unbiased aggregation
of features for each path in every decision scenario and the index
of the path chosen by the agent. While the exact number of
scenarios and the number of alternatives depends on the
randomly generated graphs, we typically have several hundred
scenarios for each agent, each usually having between 10 and 30
different alternatives.

III. LEARNING THE AGENT’S PROFILE

For each agent generated by our method, we set up a genetic
algorithm to learn the agent parameters from the observed

decisions made in each scenario. First, we construct a
chromosome representation consisting of a vector of floating-
point variables 𝒙 = [𝛽1, … , 𝛽𝑁 , 𝜔1, … , 𝜔𝑁 , 𝜆] where each 𝑥𝑖 ∈
[0, 1] . We then define a fitness function which uses the
chromosome variables to determine an OWA ranking for each
decision scenario. The fitness is measured as the percentage of
scenarios for which an incorrect choice is made.

We randomly divide the decision scenario data for each
agent into 5 equal sets. Our training consists of a 5-fold cross
validation for each agent in which we learn the agent parameters
using 4 of the sets and test the accuracy on the remaining set.
We use the Genetic Algorithm Toolbox for Matlab to learn the
optimal agent parameters. Most parameters were left at their
default values, with an explicit fitness limit to stop the algorithm
when a perfect solution is found and a stall limit of 10
generations. The default algorithm uses a population size of 200,
a uniform scattered crossover rate of 0.8, a Gaussian mutation
rate of 0.2, and an elite size of 10.

The results of the algorithm for 10 selected agents are shown
in Fig. 8. Here, we show the distribution of the learned
parameters for the best solution in each of the 5 folds using a
box plot for each parameter. The true agent parameters are
shown with a dotted line. The algorithm is able to recover the
agent feature weights 𝜷 and optimism parameter 𝜆 with a high
degree of accuracy, however the OWA weights 𝝎 show a wide
variation. This suggests that the aggregation operator may not
play as significant a role as the agent-specific feature weights.

The best fitness evaluation for each generation averaged
over all folds for the first 5 agents tested is shown in Fig. 9. The
algorithm concluded within 30 generations and quickly
approached the ideal limit of perfect fitness. The average
accuracy of our algorithm averaged over 5 folds for each of 100
agents was an exceedingly high 99.34%.

IV. CONCLUSIONS AND FUTURE WORK

This project has established a framework for decision-
making in partially-known environments. We use the idea of a
fuzzy weighted graph to represent a decision space and the
concept of bounded rationality to implement a decision-making
agent. We have shown that by representing each alternative as a
vector of fuzzy features and applying an alpha-level OWA

Fig. 6. A subset of the decision making scenarios generated for the graph in

Fig. 5. Each row represents the set of all possible non-looping paths between a

pair of points in the graph.

Fig. 7. Aggregation of the edge features for each path in Fig. 6. Each row

represts a decision scenario for which the agent must apply the OWA operator

to determine the best choice.

operator, we can design an agent model that is capable of
choosing an action that minimizes the perceived cost.
Furthermore, we have shown that we can recover the agent

parameters by only observing the chosen actions in a set of
decision-making scenarios.

Although we have achieved a high degree of accuracy in our
experiments, it should be emphasized that we use the same
model for generating and learning the data. In real-world
situations, the true model of the decision-maker is often
unknown and the learned model is only valuable insofar as it is
able to reproduce the observed behavior or give insight into the
underlying mental representation of the environment. Further
work in this area will focus on established methods of behavior
learning like inverse reinforcement learning or apprenticeship
learning. In these approaches, the problem is posed as learning
a policy or reward function from an observed action sequence
through a Markov decision process. Many existing models
assume a linear mapping from environmental features to
rewards. The inability of our method to accurately recover the
OWA weights suggests that these linear models may be
sufficient.

REFERENCES

[1] A. R. Buck and J. M. Keller, “Visualizing Uncertainty with Fuzzy Rose

Diagrams,” in Computational Intelligence for Engineering Solutions

(CIES) , 2014 IEEE Symposium on, 2014, pp. 30–36.
[2] A. R. Buck, J. M. Keller, and M. Popescu, “An alpha-level OWA

implementation of Bounded Rationality for Fuzzy Route Selection,” in

World Conference on Soft Computing, 2013.
[3] T.-S. Liou and M.-J. J. Wang, “Ranking fuzzy numbers with integral

value,” Fuzzy Sets Syst., vol. 50, no. 3, pp. 247–255, Sep. 1992.

[4] R. B. Urquhart, “Algorithms for computation of relative neighborhood
graph,” Electron. Lett., vol. 16, no. 14, pp. 556–557, 1980.

Fig. 8. Results of the genetic algorithm training shown for 10 selected agents.

Each row shows a box plot for each parameter indicating the distribution of the
best learned results for each of the 5 folds. The dotted line shows the true agent

parameter values.

Fig. 9. Best fitness value for each generation averaged over all folds for the

first 5 agents tested.

