
Multi-Objective Monte Carlo Tree Search

for Real-Time Games

Diego Perez, Sanaz Mostaghim, Spyridon Samothrakis, and Simon M. Lucas

IEEE Transactions on Computational Intelligence and AI in Games (2014)

Presented by Drew Buck

9/22/2015

Outline

• Games Research
– Reinforcement Learning (RL)

• Monte Carlo Tree Search (MCTS)
– Example

• Multi-Objective Optimization

• Multi-Objective Monte Carlo Tree Search (MO-MCTS)

• Examples
– Deep Sea Treasure (DST)

– Multi-Objective Physical Traveling Salesman Problem (MO-
PTSP)

• Conclusions

Games Research

Why study games?

• Games provide a flexible, abstract domain to test decision-
making strategies.

• Games can be made to model real-world problems.

• Most games are too hard to solve with brute-force search.

Image credit: http://www.wikipedia.org

Defining a Game

The general form of a game is a Markov decision process (MDP).

Define:

• 𝑆0 : The initial state of the game

• 𝑃𝐿𝐴𝑌𝐸𝑅 𝑠 : Which player has the move in a state

• 𝐴𝐶𝑇𝐼𝑂𝑁𝑆 𝑠 : The set of legal moves in a state

• 𝑅𝐸𝑆𝑈𝐿𝑇 𝑠, 𝑎 : Returns the outcome of a move

• 𝑇𝐸𝑅𝑀𝐼𝑁𝐴𝐿−𝑇𝐸𝑆𝑇 𝑠 : True if the game is over

• 𝑈𝑇𝐼𝐿𝐼𝑇𝑌 𝑠, 𝑝 : Gives the value of a state for a player

Minimax Strategy

Example:

The optimal move for “MAX” is 𝑎1 because it maximizes the worst-case outcome.

Image credit: S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach, 3rd ed.”

Tic-Tac-Toe Example

Image credit: S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach, 3rd ed.”

Tic-Tac-Toe Example

Image credit: https://xkcd.com/

Optimal Policy

A policy defines what action to take for any given game state.

• The optimal policy guarantees the best possible outcome
regardless of how the opponent plays.

It’s not always easy to define the optimal policy!

Proving that a policy is optimal requires examining all possible
game states.

• Tic-Tac-Toe has about 9! = 362,880 states.

• Chess has over 1040 game states.

• Real-time games may have an infinite number of states!

Optimal Policy

How can we ensure that we make good decisions, even when
we cannot consider all possible outcomes?

Strategies:

• Branch and bound
– 𝛼−𝛽 pruning ignores moves that cannot influence the final decision.

• State value estimation
– In chess, the value of a board state can be estimated by the number of

remaining pieces for each player.

• Monte Carlo methods
– Build the game tree and estimate state values from simulated games.

Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm that
governs how agents ought to make decisions in environments so as to
maximize their reward.

The agent tries an action and the environment (or simulated
opponent) provides a new state and reward.

Environment

Current State

Current Reward

Action

Adversary

Multi-Armed Bandits

How do we decide which action to try?

Without knowing the optimal policy, we must decide which move to
take in each state so as to build the search tree effectively.
• Exploitation: If a move leads to a good reward, we should continue to take

that move.

• Exploration: Sometimes we should try a sub-optimal move to expand the
search space.

The multi-armed bandit problem:
Given several actions to choose from,
how should they be sampled so as to
balance exploitation and exploration?

Image credit: http://research.microsoft.com

Multi-Armed Bandits

Upper Confidence Bound (UCB)

Select the action 𝑗 maximizing 𝑈𝐶𝐵1 = ത𝑋𝑗 + 𝐶
ln 𝑛

𝑛𝑗

• ത𝑋𝑗 is the average reward obtained when action 𝑗 is chosen

• 𝑛 is the total number of plays

• 𝑛𝑗 is the number of times action 𝑗 was chosen

• 𝐶 is a constant that balances exploration and exploitation

– If the reward is bounded by [0, 1], 𝐶 = 2 is optimal

ExplorationExploitation

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Mach. Learn., vol. 47,

no. 2, pp. 235–256, 2002.

Monte Carlo Tree Search

• Monte Carlo Tree Search (MCTS) is an online, anytime
algorithm used by an agent to pick the next action
– Suitable for real-time games (can always return the best

result found so far)
– Good for large search spaces with a high branching factor

• Leading method for the game of Go

• Builds and searches an asymmetric tree
– Requires access to a “black-box” environment simulator
– Uses a tree variant of UCB called UCT (upper confidence

trees)
• Can use other multi-armed bandit selection techniques

– Requires many simulations to provide accurate results
(typically 1,000 – 1,000,000)

Monte Carlo Tree Search

Each iteration consists of four phases:
• Selection (tree policy)

– Starting at the root, descend through the tree until
finding a node with unexplored actions

• Expansion
– Select an unexplored action and add a new child node

to the tree

• Simulation (default policy)
– Use the “black-box” simulator to run a random

playout from the current state and get a reward

• Backpropagation
– Update the statistics for each visited node

Monte Carlo Tree Search

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D.

Perez, S. Samothrakis, S. Colton, “A Survey of Monte Carlo Tree Search Methods,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1-43, 2012.

MCTS Example

Current State

Unexplored

Actions

Step 1: Selection (Tree policy)

• Descend through the tree until reaching a node with unexplored actions

• This is the root node for the first iteration

• Use UCB1 to iteratively select children from the root node until a node

with unexplored actions is found

Accumulated

Reward

Number of

Visits

0 / 1

MCTS Example

0/1
Selected

Action

Step 2: Expansion

• Randomly select an unexplored action and create a new child node

• Alternative:

• Use heuristics to select an action (e.g. RAVE)

0/0

d
o
w

n

MCTS Example

0/1

Random

Playout

0/0

down

right

down

up

7 Reward

Step 3: Simulation (Default policy)

• Perform a random playout from the

newly created node

• Stop when a terminal state is

reached or after a fixed number of

steps

• Can use heuristics to guide the

random playout

MCTS Example

7/2

7/1

7 Reward

Step 4: Backpropagation

• Revisit the parent of each node until reaching the root

• Accumulate the total reward for each node

MCTS Example

7/2

7/1

Next Iteration …

Step 1: Selection (Tree policy)

• Root node has an unexplored action, so stop at the root

Unexplored

Action

d
o

w
n

MCTS Example

7/2

7/1

Step 2: Expansion

• Select the unexplored action and create a new child node

Selected

Action

0/0

d
o

w
n

MCTS Example

7/2

7/1

Step 3: Simulation (Default policy)

• The new child may already be a terminal state, in which case we

return the immediate reward

Terminal State

0/0

1Reward d
o

w
n

MCTS Example

8/3

7/1

Step 4: Backpropagation

• Revisit the parent of each node until reaching the root

• Accumulate the total reward for each node

1/1

1Reward d
o

w
n

MCTS Example

8/3

7/1

Next Iteration …

Step 1: Selection (Tree policy)

• All actions have been explored

• Compute the value of each child using the UCB1 equation

• “Right” action is biggest, which leads to a node with unexplored

actions

1/1

d
o

w
n

𝑉1 =
1

1
+

2 ln 3

1
≈ 2.48 𝑉2 =

7

1
+

2 ln 3

1
≈ 8.48

MCTS Example

8/3

7/1

Step 2: Expansion

1/1

d
o

w
n

0/0

MCTS Example

8/3

7/1

Step 3: Simulation (Default policy)

1/1

d
o

w
n

0/0

Random

Playout

right

down

-2 Reward

MCTS Example

6/4

5/2

Step 4: Backpropagation

1/1

d
o

w
n

-2/1

-2 Reward

Monte Carlo Tree Search

When the computational budget is expended, return the action from
the root that has been selected the most often.
• This has been shown to outperform selecting the action with the

largest average reward value.

Improvements
• Use domain-specific heuristics

– Simulation playouts
– Action selection

• Update multiple nodes each iteration
– Use transposition tables to find similar or identical states
– Update the statistics for actions globally

MCTS is best for problems that are too big or complicated to solve
using exact methods quickly.

Example: Geister

State of the board Monte Carlo Search Tree

Multiple objective functions 𝑓𝑖 𝑥𝑖 to be maximized (or minimized)

A solution 𝒙 dominates another solution 𝒚 if and only if:

• 𝑓𝑖(𝒙) is not worse than 𝑓𝑖 𝒚 , ∀ 𝑖 = 1, 2, … , 𝑚

• 𝑓𝑗(𝒙) is better than 𝑓𝑗(𝒚) for at least one 𝑗 = 1, 2, … , 𝑚

The set of non-dominated solutions in decision space forms the Pareto front
𝑃 in objective space.

Multi-Objective Optimization

NSGA-II

Evolutionary multi-objective
optimization (EMO) algorithms are
a popular choice for solving multi-
objective optimization problems
(MOPs).

The NSGA-II algorithm works well
for 2 objectives, but alternatives
exist for problems with more
objectives.

The algorithm accounts for Pareto
rank and crowding to provide a
distribution of solutions along the
Pareto front.

Multi-Objective RL

A reinforcement learning problem may have a reward
vector instead of a scalar reward.

Single-policy algorithms simplify the reward into a
conventional scalar reward
• Scalarization
• Objective preference ordering

Multiple-policy algorithms work to find the optimal
Pareto front
• Convex Hull Iteration
• Multiple-Objective Monte Carlo Tree Search

Multi-Objective Metric

The Hypervolume Indicator (HV) is a popular metric for measuring the quality
of a Pareto front 𝑃.

It is defined as the volume of the objective space dominated by 𝑃.

Computing 𝐻𝑉 𝑃 is exponential in the number of objective dimensions.
– In high dimensions, the value can be approximated with Monte Carlo sampling

Multi-Objective MCTS

In Multi-Objective Monte Carlo Tree Search, each node stores a local
Pareto front approximation.
• This allows each node to have an estimate of the quality of the

solutions reachable from there.

Rewards are backpropagated only if they would expand the local
Pareto front.
• A child’s Pareto front can never dominate its parent.
• The root node has the best non-dominated front found during the

search.

The average reward in the UCB1 equation is replaced with the average
value of HV:

𝑎∗ = arg max
𝑎∈𝐴 𝑠

𝐻𝑉 𝑃

𝑁 𝑠, 𝑎
+ 𝐶

ln 𝑁 𝑠

𝑁 𝑠, 𝑎

Multi-Objective MCTS

How to select a solution from the Pareto front?

A weight vector can be defined 𝑊 = 𝑤1, … , 𝑤𝑚 ; σ𝑖
𝑚 𝑤𝑖 = 1

• Weighted sum: Choose the action that maximizes the weighted sum
of the reward vector multiplied by 𝑊

• Euclidean distance: Normalize the points in the Pareto front into the
range 0, 1 and choose the action that minimizes the distance to
the weight vector 𝑊

Other methods can be used to select an action from the Pareto front.

MO-MCTS Example

Step 1: Selection (Tree policy)

• Descend through the tree using UCB1 as before

• Node value is given by the hypervolume indicator

𝑎1 𝑎2

MO-MCTS Example

Step 2: Expansion

• Select an unvisited action and create a

new node with an empty Pareto front

𝑎1 𝑎2

MO-MCTS Example

Step 3: Simulation (Default policy)

• Perform a random playout from the new

node until a terminal state is reached

• Add the reward vector to the local Pareto

front

𝑎1 𝑎2

MO-MCTS Example

Step 4: Backpropagation

• If the reward would expand the parent’s

Pareto front, add it

• Otherwise, stop backpropagation

Reward expands the

front, so it is added.

Reward is dominated, so

backpropagation ends.

𝑎1 𝑎2

MO-MCTS Example

Action Selection

• Define a weight vector 𝑤
• Find the reward on the Pareto front closest

to the weight vector

• Select the action associated with that reward

w

Reward from 𝑎2 is closest

to 𝑤, so 𝑎2 is selected.

𝑎1 𝑎2

MO-MCTS Experiments

Deep Sea Treasure

The agent can move up, down, left, or right and ends the game upon
reaching a treasure (or a 100 move limit). The goal is to maximize
treasure value and minimize distance.

MO-MCTS Experiments

The weight vector 𝑊 = 𝑤𝑚, 1 − 𝑤𝑚 is varied in 0.01 step increments and 100
runs are performed for each setting. Euclidean distance is used for MO-MCTS.

The graphs show the percentage of the runs that converged to each of the 10 true
optimal points for this problem.

Note that MO-MCTS found more optima than regular MCTS and converged to
them more often.

MO-MCTS Experiments

• Agent must visit all 10 waypoints.

• Provide an action every 40ms

– Throttle (on, off)

– Steering (straight, left, right)

• Objectives are

– Minimize distance

– Minimize fuel use

– Minimize damage

• Start with 5000 units of fuel

– Waypoints provide 50 fuel units

– Fuel canisters provide 250 fuel units

• Start with 5000 damage points

– Hitting black walls causes 10 damage

– Hitting red walls causes 30 damage

– Driving through lava causes 1 damage

Physical Traveling Salesman Problem

Unvisited waypoints are blue circles
Visited waypoints are empty circles

Fuel canisters are green circles

MO-MCTS Experiments

Reward vector to be maximized: ҧ𝑟 = 𝜌𝑡 , 𝜌𝑓 , 𝜌𝑑

Time: 𝜌𝑡 = 1 − 𝑑𝑡/𝑑𝑀

• 𝑑𝑡 : Minimum distance remaining through all waypoints
• 𝑑𝑀 : Distance of the whole route from the start position

Fuel: 𝜌𝑓 = 1 − Τ𝜆𝑡 𝜆0 × 𝛼 + 𝜌𝑡 × 1 − 𝛼
• 𝜆𝑡 : Fuel consumed so far
• 𝜆0 = 5000 : Initial fuel at the start of the game
• 𝛼 = 0.66 : Balance fuel and time (to prevent standing still)

Damage: 𝜌𝑑 = ቊ
1 − Τ𝑔𝑡 𝑔𝑀 × 𝛽1 + 𝜌𝑡 × 1 − 𝛽1 , 𝑠𝑝 > 𝛾

1 − Τ𝑔𝑡 𝑔𝑀 × 𝛽2 + 𝜌𝑡 × 1 − 𝛽2 , 𝑠𝑝 ≤ 𝛾
• 𝑔𝑡 : Damage suffered so far
• 𝑔𝑀 = 5000 : Max possible damage
• 𝛽1 = 0.75 : Balance damage and time at high speeds
• 𝛽2 = 0.25 : Balance damage and time at low speeds
• 𝛾 = 0.8 : Speed threshold

MO-MCTS Experiments

The algorithm was run 30 times each on 10 maps with 4 predefined weight vectors.

By adjusting the weights, different solutions could be found.

MO-MCTS Experiments

All algorithms were compared in terms of solution dominance across the maps.

MO-MCTS dominates MCTS and NSGA-II more frequently and is less frequently
dominated by PurofMovio, the winning solution from the game competition.

MO-MCTS Experiments

In the final experiment, the weight vector is allowed to
change between each waypoint.

Computing the sequence with a hill-climbing algorithm
gave improved performance over static weights.

1 = 𝑊1 = (0.33, 0.33, 0.33)
2 = 𝑊2 = 0.1, 0.3 0.6
3 = 𝑊3 = 0.1, 0.6, 0.3

MO-MCTS Improvements

Transposition Tables

• Use hash tables to store representative
nodes for equivalent locations.

• In DST, these are nodes with the same
position and depth in the search tree.

• This avoids redundant computation on
equivalent parts of the tree.

Macro-Actions

• Repeat a given action during 𝐿 consecutive time steps.
• This allows for additional computation time and lets the algorithm see farther into

the future.
• In MO-PTSP, the macro-action size is 𝐿 = 15.

Conclusions

Monte Carlo Tree Search is a leading anytime method for searching large
sequential decision spaces.

Multiple-objective problems can have many different solutions. A weight
vector can give flexibility in the decision-maker’s preferences.

MO-MCTS is able to find more of the non-dominated solutions than single
objective MCTS or NSGA-II.

The algorithm has not been tested on problems with many objectives.
Computing the hypervolume indicator can be difficult in high dimensions.

Thank You

	Slide 1: Multi-Objective Monte Carlo Tree Search for Real-Time Games Diego Perez, Sanaz Mostaghim, Spyridon Samothrakis, and Simon M. Lucas IEEE Transactions on Computational Intelligence and AI in Games (2014)
	Slide 2: Outline
	Slide 3: Games Research
	Slide 4: Defining a Game
	Slide 5: Minimax Strategy
	Slide 6: Tic-Tac-Toe Example
	Slide 7: Tic-Tac-Toe Example
	Slide 8: Optimal Policy
	Slide 9: Optimal Policy
	Slide 10: Reinforcement Learning
	Slide 11: Multi-Armed Bandits
	Slide 12: Multi-Armed Bandits
	Slide 13: Monte Carlo Tree Search
	Slide 14: Monte Carlo Tree Search
	Slide 15: Monte Carlo Tree Search
	Slide 16: MCTS Example
	Slide 17: MCTS Example
	Slide 18: MCTS Example
	Slide 19: MCTS Example
	Slide 20: MCTS Example
	Slide 21: MCTS Example
	Slide 22: MCTS Example
	Slide 23: MCTS Example
	Slide 24: MCTS Example
	Slide 25: MCTS Example
	Slide 26: MCTS Example
	Slide 27: MCTS Example
	Slide 28: Monte Carlo Tree Search
	Slide 29: Example: Geister
	Slide 30: Multi-Objective Optimization
	Slide 31: NSGA-II
	Slide 32: Multi-Objective RL
	Slide 33: Multi-Objective Metric
	Slide 34: Multi-Objective MCTS
	Slide 35: Multi-Objective MCTS
	Slide 36: MO-MCTS Example
	Slide 37: MO-MCTS Example
	Slide 38: MO-MCTS Example
	Slide 39: MO-MCTS Example
	Slide 40: MO-MCTS Example
	Slide 41: MO-MCTS Experiments
	Slide 42: MO-MCTS Experiments
	Slide 43: MO-MCTS Experiments
	Slide 44: MO-MCTS Experiments
	Slide 45: MO-MCTS Experiments
	Slide 46: MO-MCTS Experiments
	Slide 47: MO-MCTS Experiments
	Slide 48: MO-MCTS Improvements
	Slide 49: Conclusions
	Slide 50: Thank You

