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Games Research

Why study games?

• Games provide a flexible, abstract domain to test decision-
making strategies.

• Games can be made to model real-world problems.

• Most games are too hard to solve with brute-force search.

Image credit: http://www.wikipedia.org



Defining a Game

The general form of a game is a Markov decision process (MDP).

Define:

• 𝑆0 : The initial state of the game

• 𝑃𝐿𝐴𝑌𝐸𝑅 𝑠  : Which player has the move in a state

• 𝐴𝐶𝑇𝐼𝑂𝑁𝑆 𝑠  : The set of legal moves in a state

• 𝑅𝐸𝑆𝑈𝐿𝑇 𝑠, 𝑎  : Returns the outcome of a move

• 𝑇𝐸𝑅𝑀𝐼𝑁𝐴𝐿−𝑇𝐸𝑆𝑇 𝑠  : True if the game is over

• 𝑈𝑇𝐼𝐿𝐼𝑇𝑌 𝑠, 𝑝  : Gives the value of a state for a player



Minimax Strategy

Example:

The optimal move for “MAX” is 𝑎1 because it maximizes the worst-case outcome.

Image credit: S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach, 3rd ed.”



Tic-Tac-Toe Example

Image credit: S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach, 3rd ed.”



Tic-Tac-Toe Example

Image credit: https://xkcd.com/



Optimal Policy

A policy defines what action to take for any given game state.

• The optimal policy guarantees the best possible outcome 
regardless of how the opponent plays.

It’s not always easy to define the optimal policy!

Proving that a policy is optimal requires examining all possible 
game states.

• Tic-Tac-Toe has about 9! = 362,880 states.

• Chess has over 1040 game states.

• Real-time games may have an infinite number of states!



Optimal Policy

How can we ensure that we make good decisions, even when 
we cannot consider all possible outcomes?

Strategies:

• Branch and bound
– 𝛼−𝛽 pruning ignores moves that cannot influence the final decision.

• State value estimation
– In chess, the value of a board state can be estimated by the number of 

remaining pieces for each player.

• Monte Carlo methods
– Build the game tree and estimate state values from simulated games.



Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm that 
governs how agents ought to make decisions in environments so as to 
maximize their reward.

The agent tries an action and the environment (or simulated 
opponent) provides a new state and reward.

Environment

Current State

Current Reward

Action

Adversary



Multi-Armed Bandits

How do we decide which action to try?

Without knowing the optimal policy, we must decide which move to 
take in each state so as to build the search tree effectively.
• Exploitation: If a move leads to a good reward, we should continue to take 

that move.

• Exploration: Sometimes we should try a sub-optimal move to expand the 
search space.

The multi-armed bandit problem:
Given several actions to choose from, 
how should they be sampled so as to 
balance exploitation and exploration?

Image credit: http://research.microsoft.com



Multi-Armed Bandits

Upper Confidence Bound (UCB)

Select the action 𝑗 maximizing         𝑈𝐶𝐵1 = ത𝑋𝑗 + 𝐶
ln 𝑛

𝑛𝑗

• ത𝑋𝑗  is the average reward obtained when action 𝑗 is chosen

• 𝑛 is the total number of plays

• 𝑛𝑗 is the number of times action 𝑗 was chosen

• 𝐶 is a constant that balances exploration and exploitation

– If the reward is bounded by [0, 1], 𝐶 = 2 is optimal

ExplorationExploitation

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Mach. Learn., vol. 47, 

no. 2, pp. 235–256, 2002.



Monte Carlo Tree Search

• Monte Carlo Tree Search (MCTS) is an online, anytime 
algorithm used by an agent to pick the next action
– Suitable for real-time games (can always return the best 

result found so far)
– Good for large search spaces with a high branching factor

• Leading method for the game of Go

• Builds and searches an asymmetric tree
– Requires access to a “black-box” environment simulator
– Uses a tree variant of UCB called UCT (upper confidence 

trees)
• Can use other multi-armed bandit selection techniques

– Requires many simulations to provide accurate results 
(typically 1,000 – 1,000,000)



Monte Carlo Tree Search

Each iteration consists of four phases:
• Selection (tree policy)

– Starting at the root, descend through the tree until 
finding a node with unexplored actions

• Expansion
– Select an unexplored action and add a new child node 

to the tree

• Simulation (default policy)
– Use the “black-box” simulator to run a random 

playout from the current state and get a reward

• Backpropagation
– Update the statistics for each visited node



Monte Carlo Tree Search

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. 

Perez, S. Samothrakis, S. Colton, “A Survey of Monte Carlo Tree Search Methods,” IEEE 

Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1-43, 2012.



MCTS Example

Current State

Unexplored 

Actions

Step 1: Selection (Tree policy)

• Descend through the tree until reaching a node with unexplored actions

• This is the root node for the first iteration

• Use UCB1 to iteratively select children from the root node until a node 

with unexplored actions is found

Accumulated 

Reward

Number of 

Visits

0 / 1



MCTS Example

0/1
Selected 

Action

Step 2: Expansion

• Randomly select an unexplored action and create a new child node

• Alternative:

• Use heuristics to select an action (e.g. RAVE)

0/0

d
o
w

n



MCTS Example

0/1

Random 

Playout

0/0

down

right

down

up

7 Reward

Step 3: Simulation (Default policy)

• Perform a random playout from the 

newly created node

• Stop when a terminal state is 

reached or after a fixed number of 

steps

• Can use heuristics to guide the 

random playout



MCTS Example

7/2

7/1

7 Reward

Step 4: Backpropagation

• Revisit the parent of each node until reaching the root

• Accumulate the total reward for each node



MCTS Example

7/2

7/1

Next Iteration …

Step 1: Selection (Tree policy)

• Root node has an unexplored action, so stop at the root

Unexplored 

Action

d
o

w
n



MCTS Example

7/2

7/1

Step 2: Expansion

• Select the unexplored action and create a new child node

Selected

Action

0/0

d
o

w
n



MCTS Example

7/2

7/1

Step 3: Simulation (Default policy)

• The new child may already be a terminal state, in which case we 

return the immediate reward

Terminal State

0/0

1Reward d
o

w
n



MCTS Example

8/3

7/1

Step 4: Backpropagation

• Revisit the parent of each node until reaching the root

• Accumulate the total reward for each node

1/1

1Reward d
o

w
n



MCTS Example

8/3

7/1

Next Iteration …

Step 1: Selection (Tree policy)

• All actions have been explored

• Compute the value of each child using the UCB1 equation

• “Right” action is biggest, which leads to a node with unexplored 

actions

1/1

d
o

w
n

𝑉1 =
1

1
+

2 ln 3

1
≈ 2.48 𝑉2 =

7

1
+

2 ln 3

1
≈ 8.48



MCTS Example

8/3

7/1

Step 2: Expansion

1/1
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o

w
n

0/0



MCTS Example

8/3

7/1

Step 3: Simulation (Default policy)

1/1
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Playout
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down

-2 Reward



MCTS Example

6/4

5/2

Step 4: Backpropagation

1/1

d
o

w
n

-2/1

-2 Reward



Monte Carlo Tree Search

When the computational budget is expended, return the action from 
the root that has been selected the most often.
• This has been shown to outperform selecting the action with the 

largest average reward value.

Improvements
• Use domain-specific heuristics

– Simulation playouts
– Action selection

• Update multiple nodes each iteration
– Use transposition tables to find similar or identical states
– Update the statistics for actions globally

MCTS is best for problems that are too big or complicated to solve 
using exact methods quickly.



Example: Geister

State of the board Monte Carlo Search Tree



Multiple objective functions 𝑓𝑖 𝑥𝑖  to be maximized (or minimized)

A solution 𝒙 dominates another solution 𝒚 if and only if:

• 𝑓𝑖(𝒙) is not worse than 𝑓𝑖 𝒚 , ∀ 𝑖 = 1, 2, … , 𝑚

• 𝑓𝑗(𝒙) is better than 𝑓𝑗(𝒚) for at least one 𝑗 = 1, 2, … , 𝑚

The set of non-dominated solutions in decision space forms the Pareto front 
𝑃 in objective space.

Multi-Objective Optimization



NSGA-II

Evolutionary multi-objective 
optimization (EMO) algorithms are 
a popular choice for solving multi-
objective optimization problems 
(MOPs).

The NSGA-II algorithm works well 
for 2 objectives, but alternatives 
exist for problems with more 
objectives.

The algorithm accounts for Pareto 
rank and crowding to provide a 
distribution of solutions along the 
Pareto front.



Multi-Objective RL

A reinforcement learning problem may have a reward 
vector instead of a scalar reward.

Single-policy algorithms simplify the reward into a 
conventional scalar reward
• Scalarization
• Objective preference ordering

Multiple-policy algorithms work to find the optimal 
Pareto front
• Convex Hull Iteration
• Multiple-Objective Monte Carlo Tree Search



Multi-Objective Metric

The Hypervolume Indicator (HV) is a popular metric for measuring the quality 
of a Pareto front 𝑃.

It is defined as the volume of the objective space dominated by 𝑃.

Computing 𝐻𝑉 𝑃  is exponential in the number of objective dimensions.
– In high dimensions, the value can be approximated with Monte Carlo sampling



Multi-Objective MCTS

In Multi-Objective Monte Carlo Tree Search, each node stores a local 
Pareto front approximation.
• This allows each node to have an estimate of the quality of the 

solutions reachable from there.

Rewards are backpropagated only if they would expand the local 
Pareto front.
• A child’s Pareto front can never dominate its parent.
• The root node has the best non-dominated front found during the 

search.

The average reward in the UCB1 equation is replaced with the average 
value of HV:

𝑎∗ = arg max
𝑎∈𝐴 𝑠

𝐻𝑉 𝑃

𝑁 𝑠, 𝑎
+ 𝐶

ln 𝑁 𝑠

𝑁 𝑠, 𝑎



Multi-Objective MCTS

How to select a solution from the Pareto front?

A weight vector can be defined 𝑊 = 𝑤1, … , 𝑤𝑚 ;  σ𝑖
𝑚 𝑤𝑖 = 1

• Weighted sum: Choose the action that maximizes the weighted sum 
of the reward vector multiplied by 𝑊

• Euclidean distance: Normalize the points in the Pareto front into the 
range 0, 1  and choose the action that minimizes the distance to 
the weight vector 𝑊

Other methods can be used to select an action from the Pareto front.



MO-MCTS Example

Step 1: Selection (Tree policy)

• Descend through the tree using UCB1 as before

• Node value is given by the hypervolume indicator

𝑎1 𝑎2



MO-MCTS Example

Step 2: Expansion

• Select an unvisited action and create a 

new node with an empty Pareto front

𝑎1 𝑎2



MO-MCTS Example

Step 3: Simulation (Default policy)

• Perform a random playout from the new 

node until a terminal state is reached

• Add the reward vector to the local Pareto 

front

𝑎1 𝑎2



MO-MCTS Example

Step 4: Backpropagation

• If the reward would expand the parent’s 

Pareto front, add it

• Otherwise, stop backpropagation

Reward expands the 

front, so it is added.

Reward is dominated, so 

backpropagation ends.

𝑎1 𝑎2



MO-MCTS Example

Action Selection

• Define a weight vector 𝑤
• Find the reward on the Pareto front closest 

to the weight vector

• Select the action associated with that reward

w

Reward from 𝑎2 is closest 

to 𝑤, so 𝑎2 is selected.

𝑎1 𝑎2



MO-MCTS Experiments

Deep Sea Treasure

The agent can move up, down, left, or right and ends the game upon 
reaching a treasure (or a 100 move limit). The goal is to maximize 
treasure value and minimize distance. 



MO-MCTS Experiments

The weight vector 𝑊 = 𝑤𝑚, 1 − 𝑤𝑚  is varied in 0.01 step increments and 100 
runs are performed for each setting. Euclidean distance is used for MO-MCTS.

The graphs show the percentage of the runs that converged to each of the 10 true 
optimal points for this problem.

Note that MO-MCTS found more optima than regular MCTS and converged to 
them more often.



MO-MCTS Experiments

• Agent must visit all 10 waypoints.

• Provide an action every 40ms

– Throttle (on, off)

– Steering (straight, left, right)

• Objectives are

– Minimize distance

– Minimize fuel use

– Minimize damage

• Start with 5000 units of fuel

– Waypoints provide 50 fuel units

– Fuel canisters provide 250 fuel units

• Start with 5000 damage points

– Hitting black walls causes 10 damage

– Hitting red walls causes 30 damage

– Driving through lava causes 1 damage

Physical Traveling Salesman Problem

Unvisited waypoints are blue circles
Visited waypoints are empty circles

Fuel canisters are green circles



MO-MCTS Experiments

Reward vector to be maximized: ҧ𝑟 = 𝜌𝑡 , 𝜌𝑓 , 𝜌𝑑

Time: 𝜌𝑡 = 1 − 𝑑𝑡/𝑑𝑀

• 𝑑𝑡 : Minimum distance remaining through all waypoints
• 𝑑𝑀 : Distance of the whole route from the start position

Fuel: 𝜌𝑓 = 1 − Τ𝜆𝑡 𝜆0 × 𝛼 + 𝜌𝑡 × 1 − 𝛼
• 𝜆𝑡 : Fuel consumed so far
• 𝜆0 = 5000 : Initial fuel at the start of the game
• 𝛼 = 0.66 : Balance fuel and time (to prevent standing still)

Damage: 𝜌𝑑 = ቊ
1 − Τ𝑔𝑡 𝑔𝑀 × 𝛽1 + 𝜌𝑡 × 1 − 𝛽1 , 𝑠𝑝 > 𝛾

1 − Τ𝑔𝑡 𝑔𝑀 × 𝛽2 + 𝜌𝑡 × 1 − 𝛽2 , 𝑠𝑝 ≤ 𝛾
• 𝑔𝑡 : Damage suffered so far
• 𝑔𝑀 = 5000 : Max possible damage
• 𝛽1 = 0.75 : Balance damage and time at high speeds
• 𝛽2 = 0.25 : Balance damage and time at low speeds
• 𝛾 = 0.8 : Speed threshold



MO-MCTS Experiments

The algorithm was run 30 times each on 10 maps with 4 predefined weight vectors.

By adjusting the weights, different solutions could be found.



MO-MCTS Experiments

All algorithms were compared in terms of solution dominance across the maps.

MO-MCTS dominates MCTS and NSGA-II more frequently and is less frequently 
dominated by PurofMovio, the winning solution from the game competition.



MO-MCTS Experiments

In the final experiment, the weight vector is allowed to 
change between each waypoint.

Computing the sequence with a hill-climbing algorithm 
gave improved performance over static weights.

1 = 𝑊1 = (0.33, 0.33, 0.33) 
2 = 𝑊2 = 0.1, 0.3 0.6  
3 = 𝑊3 = 0.1, 0.6, 0.3  



MO-MCTS Improvements

Transposition Tables

• Use hash tables to store representative 
nodes for equivalent locations.

• In DST, these are nodes with the same 
position and depth in the search tree.

• This avoids redundant computation on 
equivalent parts of the tree.

Macro-Actions

• Repeat a given action during 𝐿 consecutive time steps.
• This allows for additional computation time and lets the algorithm see farther into 

the future.
• In MO-PTSP, the macro-action size is 𝐿 = 15.



Conclusions

Monte Carlo Tree Search is a leading anytime method for searching large 
sequential decision spaces.

Multiple-objective problems can have many different solutions. A weight 
vector can give flexibility in the decision-maker’s preferences.

MO-MCTS is able to find more of the non-dominated solutions than single 
objective MCTS or NSGA-II.

The algorithm has not been tested on problems with many objectives. 
Computing the hypervolume indicator can be difficult in high dimensions.



Thank You
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