Mark Steyvers - University of California, Irvine Tom Griffiths - Brown University

> Presented by Drew Buck 9/25/2014

Outline

- What are topic models?
 - Generative models
 - Probabilistic Topic Models
- How to extract topics from documents?
 - Gibbs sampling algorithm
 - Examples
- Applications
 - Information retrieval
 - Word association

Topic Models

- Consider a corpus of many documents...
 - Documents contain mixtures of topics
 - Topics are distributions over words
- Topic models are generative models
 - New documents can be generated if the statistical parameters are known
 - The parameters can also be estimated

Topics

Topics are distributions over words.

Topic 247		Topic 5		Topic 43	Topic 56
word	prob.	word	prob.	word	prob. word prob.
DRUGS	.069	RED	.202	MIND	.081 DOCTOR .074
DRUG	.060	BLUE	.099	THOUGHT	.066 DR063
MEDICINE	.027	GREEN	.096	REMEMBER	.064 PATIENT .061
EFFECTS	.026	YELLOW	.073	MEMORY	.037 HOSPITAL .049
BODY	.023	WHITE	.048	THINKING	.030 CARE .046
MEDICINES	.019	COLOR	.048	PROFESSOR	.028 MEDICAL .042
PAIN	.016	BRIGHT	.030	FELT	.025 NURSE .031
PERSON	.016	COLORS	.029	REMEMBERED	.022 PATIENTS .029
MARIJUANA	.014	ORANGE	.027	THOUGHTS	.020 DOCTORS .028
LABEL	.012	BROWN	.027	FORGOTTEN	.020 HEALTH .025
ALCOHOL	.012	PINK	.017	MOMENT	.020 MEDICINE .017
DANGEROUS	.011	LOOK	.017	THINK	.019 NURSING .017
ABUSE	.009	BLACK	.016	THING	.016 DENTAL .015
EFFECT	.009	PURPLE	.015	WONDER	.014 NURSES .013
KNOWN	.008	CROSS	.011	FORGET	.012 PHYSICIAN .012
PILLS	.008	COLORED	.009	RECALL	.012 HOSPITALS .011

When the distributions in the model are known, documents can be generated by sampling.

Consider two topics:

- Money
 - Money, Bank, Loan
- Rivers
 - River, Bank, Stream

For Document 1, only Topic 1 is used to sample words.

Each word is sampled independently.

Bag-of-words assumption

For Document 2, both topics are chosen with equal probability.

First, a topic is chosen. Then, a word is sampled from the topic's distribution over words.

TOPIC 2

For Document 3, only Topic 2 is used.

Words having multiple meanings (polysemy) can appear in multiple topics.

Now, suppose that we don't know the topics.

We want to determine:

- What is the distribution over words for each topic?
- Which topics appear in each document?

STATISTICAL INFERENCE

Notation:

- P(z) Distribution over topics z in a particular document
- P(w|z) Distribution over words w given topic z
- $P(z_i = j)$ Probability that the *j*th topic was sampled for the *i*th word token

 $P(w_i|z_i = j)$ Probability of word w_i under topic j

Distribution over words within a document:

$$P(w_i) = \sum_{j=1}^{T} P(w_i | z_i = j) P(z_i = j)$$

where T is the number of topics.

Let:

- $\phi^{(j)} = P(w|z = j)$ = multinomial distribution over words for topic *j*
- $\theta^{(d)} = P(z) =$ multinomial distribution over topics for document d
- D = number of documents, each containing N_d word tokens
- $N = \text{total number of word tokens (i.e., } N = \Sigma N_d)$

- ϕ and θ are both multinomial distributions.
 - $-\phi$ indicates which words are important for a particular topic.
 - θ indicates which topics are important for a particular document.

What is the domain of possible distributions for ϕ and θ ?

Consider the multinomial distribution $p = (p_1, ..., p_T)$.

To be a probability distribution, we must have $\sum_j p_j = 1$.

Given $p = (p_1, ..., p_T)$, there are *T* parameters to define.

In *T*-dimensional space, the points that satisfy $\sum_j p_j = 1$ form a (*T*-1)-dimensional probability simplex.

Points on this simplex are valid probability distributions.

Dirichlet Distribution

The probability density of a *T* dimensional Dirichlet distribution over the multinomial distribution $p = (p_1, ..., p_T)$ is defined by:

$$\operatorname{Dir}(\alpha_1, \dots, \alpha_T) = \frac{\Gamma(\sum_j \alpha_j)}{\prod_j \Gamma(\alpha_j)} \prod_{j=1}^T p_j^{\alpha_j - 1}$$

Bela A. Frigyik, Amol Kapila, and Maya R. Gupta, Introduction to the Dirichlet Distribution and Related Processes

Dirichlet Distribution

- The parameters $\alpha_1 \dots \alpha_T$ define the distribution.
- For convenience, we set $\alpha_1 = \alpha_2 = \cdots = \alpha_T = \alpha$.
 - Larger values for α give more smoothing (away from corners).
 - For $\alpha < 1$, the modes are located at the corners of the simplex, favoring topic distributions with only a few topics.

Graphical Model

- We use a symmetric Dirichlet(α) prior on θ .
 - Represents the prior observation count for topics within documents.
- We also use a symmetric Dirichlet(β) prior on ϕ .
 - Represents the prior observation count for words within topics.
- Suggested Values
 - $\alpha = 50/T$

$$- \beta = 0.01$$

Geometric Interpretation

Imagine a W-dimensional space where each axis represents the probability of observing word w.

Points on the (W-1)-dimensional simplex represent probability distributions over words.

Each generated document lies on the (T-1)-dimensional subsimplex.

When $T \ll W$, this can be thought of as dimensionality reduction.

Matrix Factorization Interpretation

In Latent Semantic Analysis (LSA), the word document co-occurrence matrix C is decomposed using singular value decomposition.

In our model, C is split into a topic matrix Φ and a document matrix Θ .

- Approach:
 - Estimate the posterior distribution over z (the assignment of word tokens to topics) given the observed words w, while marginalizing out ϕ and θ .
 - Use a Gibbs sampling algorithm to sequentially sample from the posterior distribution of z.
 - Continue generating samples until the sampled values approximate the target distribution.
 - Compute estimates of ϕ and θ using the posterior estimates of z.

Initialization:

- Assign each word token to a random topic in [1 ... *T*].
- Compute the count matrices C^{WT} and C^{DT} .

C ^{WT}	Topic 1	Topic 2
River	2	2
Stream	1	2
Bank	6	3
Money	2	3
Loan	2	1

C ^{DT}	Topic 1	Topic 2
DOC1	4	4
DOC2	4	4
DOC3	5	3

STATISTICAL INFERENCE

Gibbs Sampling Algorithm:

- Look at each word token in turn
- Decrement the corresponding entries in *C*^{WT} and *C*^{DT}

C ^{WT}	Topic 1	Topic 2
River	2	2
Stream	1	2
Bank	6	3
Money	1	3
Loan	2	1

C ^{DT}	Topic 1	Topic 2
DOC1	3	4
DOC2	4	4
DOC3	5	3

STATISTICAL INFERENCE

- Gibbs Sampling Algorithm:
 - Estimate the posterior distribution over z_i

$$P(z_i = j | z_{-i}, w_i, d_i, \cdot) \propto \frac{C_{w_i j}^{WT} + \beta}{\sum_{w=1}^{W} C_{w j}^{WT} + W\beta} \frac{C_{d_i j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_i t}^{DT} + T\alpha}$$

- z_{-i} refers to the topic assignments of all other word tokens
- w_i is the current word token
- d_i is the current document
- · refers to all other known information, such as all other word and document indices w_{-i} and d_{-i} and hyperparameters α and β .

For this example assume $\alpha = 25$ and $\beta = 0.01$.

$$P(z_{i} = j | z_{-i}, w_{i}, d_{i}, \cdot) \propto \frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_{i}j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha}$$

$$P(z_i = 1 | z_{-i}, w_i, d_i, \cdot) \propto \frac{1 + 0.01}{12 + 0.05} \frac{3 + 25}{7 + 50} = 0.0412$$

$$P(z_i = 2|z_{-i}, w_i, d_i, \cdot) \propto \frac{3 + 0.01}{11 + 0.05} \frac{4 + 25}{7 + 50} = 0.139$$

Normalize and sample a new topic for this word token.

$$P(z_i = 1 | z_{-i}, w_i, d_i, \cdot) = 0.229$$

$$P(z_i = 2 | z_{-i}, w_i, d_i, \cdot) = 0.771$$

C ^{WT}	Topic 1	Topic 2
River	2	2
Stream	1	2
Bank	6	3
Money	1	3
Loan	2	1

C ^{DT}	Topic 1	Topic 2
DOC1	3	4
DOC2	4	4
DOC3	5	3

Gibbs Sampling Algorithm:

- Update C^{WT} and C^{DT} .
- Repeat with the next word token.
- Continue until the samples approximate the target distribution.

C ^{WT}	Topic 1	Topic 2
River	2	2
Stream	1	2
Bank	6	3
Money	1	4
Loan	2	1

C ^{DT}	Topic 1	Topic 2
DOC1	3	5
DOC2	4	4
DOC3	5	3

TOPIC 2

STATISTICAL INFERENCE

- Gibbs Sampling Algorithm:
 - The first several passes through the corpus will produce poor samples and should be ignored (burn-in period).
 - After the burn-in period, use samples at regularly spaced intervals to prevent correlations between samples.
- Estimating ϕ and θ :

$$\phi_{i}^{\prime(j)} = \frac{C_{ij}^{WT} + \beta}{\sum_{k=1}^{W} C_{kj}^{WT} + W\beta} \qquad \qquad \theta_{j}^{\prime(d)} = \frac{C_{dj}^{DT} + \alpha}{\sum_{k=1}^{T} C_{dk}^{DT} + T\alpha}$$

An Example

- Generate artificial data from a known topic model:
 - Topic 1 (black): $\phi_{MONEY}^{(1)} = \phi_{LOAN}^{(1)} = \phi_{BANK}^{(1)} = 1/3$
 - Topic 2 (white): $\phi_{RIVER}^{(2)} = \phi_{STREAM}^{(2)} = \phi_{BANK}^{(2)} = 1/3$

An Example

• After 64 iterations of Gibbs sampling,

$$- \phi'^{(1)}_{MONEY} = 0.32 \qquad \phi'^{(1)}_{LOAN} = 0.29 \qquad \phi'^{(1)}_{BANK} = 0.39 - \phi'^{(2)}_{RIVER} = 0.25 \qquad \phi'^{(2)}_{STREAM} = 0.4 \qquad \phi'^{(2)}_{BANK} = 0.35$$

	River	Stream	Bank	Money	Loan
12345					
6 7 8 9 10		00			
112 13 14 15 16	00 000 000000 00 0000 00000	000 000000 000 0000000 0000000	0000000 000000 000000 00000 0000	•••	

Stability of Topics

- There is no a priori ordering on the topics that will make the topics identifiable between runs of the algorithm.
- In some applications, we want to know which topics are stable (appearing across many runs of the algorithm) versus idiosyncratic for a particular run.
- We measure the distance between topics *j*₁ and *j*₂ with the symmetrized Kullback Liebler (KL) distance:

$$KL(j_1, j_2) = \frac{1}{2} \sum_{k=1}^{W} \phi'_k^{(j_1)} \log_2 \frac{\phi'_k^{(j_1)}}{\phi''_k^{(j_2)}} + \frac{1}{2} \sum_{k=1}^{W} \phi''_k^{(j_2)} \log_2 \frac{\phi''_k^{(j_2)}}{\phi''_k^{(j_1)}}$$

Stability of Topics

Alignment of topics between runs

- TASA corpus •
 - $W=26,414; D=37,651; N=5,628,867; T=100; \alpha=50/T=0.5; \beta=0.01$

16

14

12

10

8

6

2

- 2000 iterations

Worst Pair of Aligned Topics KL distance = 9.4

	Run 2		Run 1
.086	MONEY	.094	MONEY
.033	PAY	.044	GOLD
.027	BANK	.034	POOR
.027	INCOME	.023	FOUND
.022	INTEREST	.021	RICH
.021	TAX	.020	SILVER
.016	PAID	.019	HARD
.016	TAXES	.018	DOLLARS
.015	BANKS	.016	GIVE
.015	INSURANCE	.016	WORTH
.011	AMOUNT	.015	BUY
.010	CREDIT	.014	WORKED
.010	DOLLARS	.013	LOST
.008	COST	.013	SOON
.008	FUNDS	.013	PAY

Polysemy with Topics

Many words in natural language are polysemous, having multiple senses, which must be resolved through context.

Topic 166

word

PLAY

BALL

GAME

HIT

PLAYING

PLAYED

GAMES

THROW

BALLS

HOME

CATCH

FIELD

TENNIS

BAT

RUN

BASEBALL

prob.

.136

.129

.065

.042

.032

.031

.027

.025

.019

.019

.016

.015

.011

.010

.010

.010

Topic 82 word prob. prob. word LITERATURE **MUSIC** .090 .031 DANCE .034 POEM .028 SONG .033 POETRY .027 POET PLAY .030 .020 .026 SING PLAYS .019 SINGING .026 .019 POEMS BAND .026 PLAY .015 PLAYED .023 LITERARY .013 SANG .022 WRITERS .013 SONGS .021 DRAMA .012 DANCING .020 WROTE .012 PIANO .017 POETS .011 PLAYING .016 WRITER .011 RHYTHM .015 **SHAKESPEARE** .010 .013 ALBERT WRITTEN .009 MUSICAL .013 **STAGE** .009

Topic 77

Polysemy with Topics

Document #29795

Bix beiderbecke, at age⁰⁶⁰ fifteen²⁰⁷, sat¹⁷⁴ on the slope⁰⁷¹ of a bluff⁰⁵⁵ overlooking⁰²⁷ the mississippi¹³⁷ river¹³⁷. He was listening⁰⁷⁷ to music⁰⁷⁷ coming⁰⁰⁹ from a passing⁰⁴³ riverboat. The music⁰⁷⁷ had already captured⁰⁰⁶ his heart¹⁵⁷ as well as his ear¹¹⁹. It was jazz⁰⁷⁷. Bix beiderbecke had already had music⁰⁷⁷ lessons⁰⁷⁷. He showed⁰⁰² promise¹³⁴ on the piano⁰⁷⁷, and his parents⁰³⁵ hoped²⁶⁸ he might consider¹¹⁸ becoming a concert⁰⁷⁷ pianist⁰⁷⁷. But bix was interested²⁶⁸ in another kind⁰⁵⁰ of music⁰⁷⁷. He wanted²⁶⁸ to play⁰⁷⁷ the cornet. And he wanted²⁶⁸ to play⁰⁷⁷ jazz⁰⁷⁷...

Document #1883

There is a simple⁰⁵⁰ reason¹⁰⁶ why there are so few periods⁰⁷⁸ of really great theater⁰⁸² in our whole western⁰⁴⁶ world. Too many things³⁰⁰ have to come right at the very same time. The dramatists must have the right actors⁰⁸², the actors⁰⁸² must have the right playhouses, the playhouses must have the right audiences⁰⁸². We must remember²⁸⁸ that plays⁰⁸² exist¹⁴³ to be performed⁰⁷⁷, not merely⁰⁵⁰ to be read²⁵⁴. (even when you read²⁵⁴ a play⁰⁸² to yourself, try²⁸⁸ to perform⁰⁶² it, to put¹⁷⁴ it on a stage⁰⁷⁸, as you go along.) as soon⁰²⁸ as a play⁰⁸² has to be performed⁰⁸², then some kind¹²⁶ of theatrical⁰⁸²...

Document #21359

Jim²⁹⁶ has a game¹⁶⁶ book²⁵⁴. Jim²⁹⁶ reads²⁵⁴ the book²⁵⁴. Jim²⁹⁶ sees⁰⁸¹ a game¹⁶⁶ for one. Jim²⁹⁶ plays¹⁶⁶ the game¹⁶⁶. Jim²⁹⁶ likes⁰⁸¹ the game¹⁶⁶ for one. The game¹⁶⁶ book²⁵⁴ helps⁰⁸¹ jim²⁹⁶. Don¹⁸⁰ comes⁰⁴⁰ into the house⁰³⁸. Don¹⁸⁰ and jim²⁹⁶ read²⁵⁴ the game¹⁶⁶ book²⁵⁴. The boys⁰²⁰ see a game¹⁶⁶ for two. The two boys⁰²⁰ play¹⁶⁶ the game¹⁶⁶. The boys⁰²⁰ play¹⁶⁶ the game¹⁶⁶ for two. The boys⁰²⁰ play¹⁶⁶ the game¹⁶⁶. The boys⁰²⁰ play¹⁶⁶ the game¹⁶⁶ for two. The see a game¹⁶⁶ for three. Meg²⁸² comes⁰⁴⁰ into the house²⁸². Meg²⁸² and don¹⁸⁰ and jim²⁹⁶ read²⁵⁴ the book²⁵⁴. They see a game¹⁶⁶ for three. Meg²⁸² and don¹⁸⁰ and jim²⁹⁶ play¹⁶⁶ the game¹⁶⁶. They play¹⁶⁶...

Similarity Between Documents

Two documents are similar to the extent that the same topics appear in both of those documents.

To compare documents d_1 and d_2 , we compare their corresponding topic distributions $\theta^{(d_1)}$ and $\theta^{(d_2)}$.

The KL divergence gives the difference between distributions p and q:

$$D(p,q) = \sum_{j=1}^{T} p_j \log_2 \frac{p_j}{q_j}$$

Symmetric KL divergence:

$$KL(p,q) = \frac{1}{2} [D(p,q) + D(q,p)]$$

Symmetric JS divergence:

$$JS(p,q) = \frac{1}{2} \left[D\left(p, \frac{(p+q)}{2}\right) + D\left(q, \frac{(p+q)}{2}\right) \right]$$

Similarity Between Documents

Information Retrieval:

- Find the most similar documents to a query q.
- Retrieve the documents that maximize the conditional probability of the query given the candidate document.
- Using topic models:

$$P(q|d_i) = \prod_{w_k \in q} P(w_k|d_i)$$
$$= \prod_{w_k \in q} \sum_{j=1}^T P(w_k|z=j)P(z=j|d_i)$$

Similarity Between Words

Two words w_1 and w_2 are similar to the extent that they share the same topics.

We can use the symmetrized KL or JS divergence to measure the difference between $\theta^{(1)}$ and $\theta^{(2)}$, where $\theta^{(1)} = P(z|w_i = w_1)$ and $\theta^{(2)} = P(z|w_i = w_2)$

Similarity Between Words

An alternative approach is to use human word association.

Based on the topic interpretation of the observed word, predict the likelihood of new words in the same context.

$$P(w_2|w_1) = \sum_{j=1}^{T} P(w_2|z=j)P(z=j|w_1)$$

HUMANS		TOPICS)
FUN	.141	BAL	L .036
BALL	.134	GAM	E .024
GAME	.074	CHILDRE	N .016
WORK	.067	TEAN	А .011
GROUND	.060	WAN	Т .010
MATE	.027	MUSI	C .010
CHILD	.020	SHOV	V .009
ENJOY	.020	HI	Т .009
WIN	.020	CHILI	008 C
ACTOR	.013	BASEBAL	L .008
FIGHT	.013	GAME	S .007
HORSE	.013	FUI	N .007
KID	.013	STAG	E .007
MUSIC	.013	FIEL	D .006

Observed and predicted responses for the cue word PLAY.

Conclusion

Generative models for text, such as the topic model, provide a deeper understanding of human language.

Statistical analysis of large document collections can identify the latent structure of text and capture more of the language content.

Topic models can be extended to identify some interesting properties of language, such as the hierarchical semantic relations between words and the interaction between syntax and semantics.