Visualizing Uncertainty with Fuzzy Rose Diagrams

Andrew R. Buck and James M. Keller Department of Electrical and Computer Engineering University of Missouri Columbia, Missouri, USA

CIES 2014

December 11, 2014

Orlando, FL

This work is funded by the U.S. National Geospatial-Intelligence Agency Contract NGA HM 1582-10-C-0013

- Example Problem (Mental Maps)
- Fuzzy Numbers
- Fuzzy Rose Diagrams
 - Alpha-mapped Arcs
 - Cumulative Fuzzy Wedges
 - Cumulative Petals
- Fuzzy Weighted Graphs
- Decision Support
- Conclusion/Future Work

What does a person's mental map look like? How does a person pick one path over another? Is there a way to visualize the inherent uncertainty?

Example Problem

Example Problem

Environment is represented as a directed graph with triangular fuzzy number feature values

Edge	Distance	Slope	Path	Shade	Water
(A,B)	(1,2,3)	(0, 0.64, 2.6)	(0, 0, 0.2)	(1,2,3)	(0, 0, 0.2)
(B,C)	(2,4,6)	$\left(0.8, 2.8, 4.8\right)$	$\left(1.5,3.5,5.5\right)$	$\left(0, 0.5, 2.5 ight)$	(0, 0, 0.4)
(B,D)	$\left(3.5,7,11\right)$	(0, 0.57, 2.6)	(0, 0, 0.7)	(3.5, 7, 11)	(0, 0, 0.7)
(B,E)	$\left(2.5,5,7.5\right)$	(5.5, 7.5, 9.5)	(1.5, 4, 6.5)	$\left(2.5,5,7.5\right)$	(0, 0, 0.5)
(C, E)	$\left(2.5,5,7.5\right)$	$\left(0.86, 2.9, 4.9 ight)$	(2, 4.5, 7)	(0, 0.5, 3)	(0, 1, 2.3)
(D,E)	(4, 8, 12)	(0, 0.7, 2.7)	(0, 0, 0.8)	(4,8,12)	(0, 0, 0.8)
(E,F)	(1, 2, 3)	(0, 0.25, 2.3)	(0, 0, 0.2)	(1, 2, 3)	(0, 0, 0.2)

A. R. Buck, J. M. Keller, and M. Popescu, "An alpha-level OWA implementation of bounded rationality for fuzzy route selection," in *World Conference on Soft Computing*, 2013.

How can we visualize a graph with vectors of fuzzy numbers assigned to the nodes and edges?

Goals:

- Should display all of the available information in a single graph (not a separate graph for each feature)
- Allow a high number of features
- Should be relatively easy and intuitive to interpret
- Final graphic should be reproducible across a range of mediums (i.e. print, projector, black and white)

A fuzzy number is a convex, normalized fuzzy set, $X: \mathbb{R} \to [0, 1]$ (for this work, we only consider \mathbb{R}^+) Defined by a membership function, $\mu_X(x)$ Support is given as $[s_X^-, s_X^+]$, where $\mu_X(x) > 0$

Useful for representing uncertainty such as "about 2" or "a little more than 5".

Representing Fuzzy Numbers

Common membership functions:

Alpha-cut represent	α	Left	Right	
ll v		0	$l_0 = s_X^-$	$r_0 = s_X^+$
1 X	Use a fixed	:	:	:
	number of	$lpha_i$	l_i	r_i
α_i	alpha-cuts	:	:	:
$0 \xrightarrow{s_{\overline{X}}} l_i r_i s_{\overline{X}}^+ x$		1	l_1	r_1

Consider visualizing a vector of fuzzy numbers, $\mathbf{X} = \langle X_1, ..., X_n \rangle$

Combined Axes

Stacked Axes

Graphics should be easy and intuitive to interpret, without misrepresenting the data.

The Principle of Perceptual Proportionality:

"The amount of ink or color used to indicate a value should be proportional to its size."

Rose Diagrams

Polar area diagrams (rose diagrams, or coxcombs) are similar to traditional pie charts, but represent values by modifying the radius of each wedge instead of the angle.

Proportional Radius

Proportional Area

Mapping values directly to radius length instead of area distorts the graphic.

$$r_i = \sqrt{\frac{Nx_i}{\pi}}$$

N: Number of features x_i : Feature value r_i : Radius length

Fuzzy Rose Diagrams

Alpha-mapped Arcs:

Alpha value is mapped directly to opacity.

The normalized cumulative membership function $C_i(x)$ of a fuzzy number X_i represents the confidence that $X_i \ge x$.

Normalized cumulative membership function:

$$C_i(x) = \frac{\int_0^x \mu_{X_i}(u) \, du}{\int_0^\infty \mu_{X_i}(u) \, du}$$
$$C_i(x) = 0 \text{ for } x \le s_{X_i}^-$$
$$C_i(x) = 1 \text{ for } x \ge s_{X_i}^+$$

Plotted opacity value:

$$F_i(r) = 1 - C_i(x)$$
$$x = \frac{\pi r^2}{N}$$

Cumulative Fuzzy Wedges:

Use cumulative membership function for opacity.

Solution: Use a variable radius length for each wedge, based on the normalized cumulative membership function.

Fuzzy Rose Diagrams

Cumulative Petals:

Use cumulative membership function for radius length. Draw min and max values with fixed opacity.

Fuzzy Weighted Graphs

How can vectors of fuzzy numbers be shown on a graph?

Solution:

Use fuzzy rose diagrams for vertices.

Unwrap the fuzzy rose diagram onto a linear axis to show edges.

Scale factor for linear edges:

$$\gamma = \frac{\lambda^2 N}{W}$$

 λ : Overall scale factor N: Number of features W: Width of diagram

Undirected Graphs

Directed Graphs

Diagrams follow a clockwise notation.

Consider the problem of planning a least-cost route from 1 to 4. 10 uncertain features for each edge. No obvious choice.

Conclusion

<u>Design Goals</u>:

- Clear, compact, and descriptive
- Principle of perceptual proportionality
- Capable of high dimensionality

Future Work:

- Validate usability with human studies
- Determine limits of usefulness (What scales are best?)
- Apply to some real world problems