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Abstract—This paper presents a novel method for visualizing 

vectors of fuzzy numbers. The proposed approach is an extension 

of the standard polar area diagram and can be applied to a single 

uncertain vector or a fuzzy weighted graph with vectors of fuzzy 

attributes on the vertices and/or edges. The resulting diagrams 

are intuitive to understand and do not require an extensive 

background in fuzzy set theory. By visualizing uncertain vectors 

in this way, the viewer can easily compare and contrast sets of 

fuzzy numbers. This can be useful in the context of decision 

support systems, particularly those involving multi-criteria 

decision making. We demonstrate our approach on the problem 

of finding a least-cost path through an uncertain environment. 

Keywords—visualization; decision support; fuzzy weighted 

graphs; multi-criteria decision making; fuzzy rose diagram 

I. INTRODUCTION 

here are many application domains in which information 
must be conveyed to a viewer quickly and concisely. 

Charts, graphs, maps, images, and other types of visualizations 
provide ways of organizing and presenting data in meaningful 
and informative ways. The common saying, “a picture is worth 
a thousand words” is indicative of the much higher information 
density that a graphic can provide over written text or 
numerical tables [1]. Furthermore, visualizations can 
summarize data, reveal hidden patterns, and make information 
more accessible to audiences with low numeracy [2]. Often, 
there is some uncertainty associated with the data that must 
also be represented visually. There is no consensus on the best 
way to convey uncertainty visually, although there are some 
established techniques that are appropriate for certain situations 
[3]. In the case of statistical variance, a plotted value can be 
shown with error bars or contour lines, depending on the 
context. In other situations, such as when dealing with vectors 
of fuzzy numbers, the process of visualizing the uncertainty 
may not be straightforward. The conventional method of 
plotting individual fuzzy membership functions, either on 
separate or combined axes, might not be the best way to 
convey the desired information. For example, radar charts [4] 
and disk diagrams [5] offer alternate ways of visualizing some 
types of fuzzy information. We develop the method presented 
in this paper as a way to visualize vectors of fuzzy numbers. 

A fuzzy number is a convex, normalized fuzzy set 𝑋:ℝ →
[0,1]  that provides a way of representing uncertainty in the 
value of a real number [6]. They are particularly useful for 
capturing linguistic uncertainty, such as “about 2” or “a little 
more than 5”. In this paper, we focus solely on non-negative 

fuzzy numbers that can be considered quantities of some 
feature or attribute. The membership function 𝜇𝑋(𝑥) gives the 
degree of membership that a specific value 𝑥 has in the fuzzy 
number 𝑋. We define the support of the membership function 
as the interval for which 𝜇𝑋 > 0, [𝑠𝑋

−, 𝑠𝑋
+]. In order to visualize 

a fuzzy number, we establish the principle of perceptual 
proportionality, which states that the apparent size of a fuzzy 
quantity should be proportional to its value. Since fuzzy 
numbers cannot, in general, be represented by a single crisp 
value, we have developed a method for drawing shapes that 
convey the uncertainty in a fuzzy number, while allowing the 
actual value to be represented by its apparent size. 

In this paper, we present a novel method for visualizing 
vectors of fuzzy numbers using an extension of the rose 
diagram [7], which can be further extended to display fuzzy 
weighted graphs [8]. The proposed approach allows such 
vectors to be easily compared and used to guide human-led 
decision making processes. An example of this is the 
determination of a least-cost path through a partially known 
environment. In [9], we approach this problem using the 
principle of bounded rationality, using an alpha-level OWA 
operator to imitate how a human decision-maker might only be 
able to consider a few factors at a time. The ability to visualize 
large quantities of uncertain information and to reason with the 
resulting information could be of great use in practice. 

The remainder of this paper is organized as follows. 
Section II reviews the standard polar area diagram. Section III 
introduces our extension, the fuzzy rose diagram. Section IV 
shows how our method can be extended to show fuzzy 
weighted graphs. Section V gives an example of how our 
approach can be used in the decision-making problem of 
finding a least-cost path through an uncertain environment. 
Finally, our conclusions and ideas for future work are given in 
Section VI. 

II. POLAR AREA DIAGRAMS 

A standard rose diagram is a polar area diagram, first made 
popular by Florence Nightingale as a way to show how the 
death toll in an unsanitary Turkish hospital changed over the 
course of two years [10]. They are sometimes referred to as 
coxcombs and provide a way to show a histogram on a 
periodic domain. Given a vector of crisp feature values 𝑿 =
〈𝑥1, … , 𝑥𝑛〉, each feature is shown as a wedge arranged around 
the center of a polar plot. Each wedge has the same central 
angle, but the radius of each wedge differs to indicate the 
corresponding feature value. This is in contrast to a common 
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pie chart, which uses a constant radius and adjusts the central 
angle of each wedge to indicate the relative values. Although 
rose diagrams are typically used to show how the quantity of 
some value changes with direction or time, they can also be 
used as a compact way to display multiple unrelated features or 
categories. 

The guiding principle of the rose diagram is to adjust the 
radius of each wedge so that its area is proportional to its value. 
A direct mapping of the feature values to radius lengths would 
distort the final image, giving more area to larger values farther 
from the center and making small values appear 
disproportionately tiny. Since the objective is to provide an 
image that is perceptually proportional with respect to the 
features, the radius of each wedge is computed as 

 𝑟𝑖 = √
𝑁𝑥𝑖
𝜋
, (1) 

where 𝑥𝑖 is the feature value and 𝑁 is the number of features or 
wedges.  In the case when the input features are crisp, the 
radius remains constant for the entire wedge. However, if the 
features are fuzzy numbers, the radius length must reflect the 
additional uncertainty. There are several approaches to this 
problem, which we will discuss in the next section. An 
example of a crisp rose diagram and our proposed fuzzy rose 
diagram is given in Fig. 1. 

III. FUZZY ROSE DIAGRAMS 

We develop the fuzzy rose diagram as an extension of the 
crisp rose diagram that can display a vector of uncertain 

features represented as fuzzy numbers 𝑿̃ = 〈𝑋̃1, … , 𝑋̃𝑛〉  in a 
clear and compact manner. We aim to uphold the principle of 
perceptual proportionality so that large values will appear to 
have more area than small values, even with the added 
uncertainty. To accomplish this, we first describe two alternate 
approaches that build up to our final method. Examples of the 
three methods on various sets of fuzzy numbers are given in 
Fig. 3. Each row shows a different way of representing one of 
the fuzzy number sets. 

A. Alpha-mapped Arcs 

In this first naïve approach, we draw only the arc of each 
feature and do not fill in the area within the wedges. The arcs 
are each drawn with thicknesses equal to the widths of each 
feature’s support. Rather than a solid black or colored line, the 

alpha value changes with distance from the origin to indicate 
the feature’s membership function value. For feature 𝑖 , the 
alpha value of the arc at radius 𝑟 is defined as 

 𝐹𝑖(𝑟) = 𝜇𝑋𝑖(𝑟). (2) 

An alpha value of 1 indicates a completely opaque arc and 0 
indicates full transparency, allowing the background color to 
come through. Values between 0 and 1 are shown with varying 
degrees of transparency to indicate the strength of the 
membership function. Note that in this method the radius 
corresponds directly to the plotted value with no scaling. This 
is because arc lengths, rather than areas, are used to show 
relative magnitudes and the arc length of a wedge is directly 
proportional to the radius. A reference grid can be included to 
indicate the scale of the plot. 

While this approach may be intuitive and easy to create, it 
abandons the notion of proportional areas. In Fig. 3 row (a) it 
can be seen that the most prominent features are those with the 
most uncertainty. Crisp values are drawn as a single line, 
which can be difficult to see and may even be missed 
altogether. Large values have empty areas near the plot center 
which seems counterintuitive and distorts the perception of 
information. We include it here for its utility in developing the 
following methods and as a comparison to highlight their 
advantages. 

B. Cumulative Fuzzy Wedges 

In this approach, we address one of the major drawbacks of 
the previous method and aim to create filled wedges that 
uphold the concept of proportional areas. We still use alpha-
mapped arcs as before, but with alpha values that only decrease 
with additional distance from the origin. In this way, we can 
show completely opaque areas for values less than the 
minimum of the support and full transparency for values 
greater than the support maximum. The values within the 
support are shown with alpha values between 0 and 1, 
transitioning from opaque to transparent as the radial distance 
increases. 

The rationale for this approach is to think of each fuzzy 
feature as some unknown quantity, say the amount of water in 
a glass, for example. The membership function defines the 
degree to which each possible crisp value represents this 
feature. If the amount of water in a glass is defined by a  
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Fig. 2.  (a) An example fuzzy number with its normalized cumulative 

membership function. (b) The resulting radius length over the span of the 

wedge for the cumulative petal method. 

 

 (a) (b) 

Fig. 1.  (a) Example of a standard rose diagram. (b) A fuzzy rose diagram. 
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Fig. 3.  Examples of fuzzy rose diagrams drawn in three different styles. Each column represents a different set of fuzzy numbers represented in various ways. 

Each method has its own set of strengths and weaknesses. The membership functions plotted directly clearly show the function values, but are all overlapping and 

do not have proportional areas. The alpha-mapped arcs method (a) does not have proportional areas, and makes crisp values difficult to see. The cumulative fuzzy 
wedges method (b) and cumulative petals method (c) both preserve proportional area, with cumulative petals achieving this effect without relying on alpha-level 

mapping. 

 
 

  



triangular membership function with a peak of 100 mL and a 
support of [50 mL, 150 mL], we would expect there to be at 
least 50 mL of water in the glass and no more than 150 mL. 
For any given value 𝑥 within this range, we wish to know the 
confidence that the glass has at least 𝑥 amount of water. This is 
easily computed using the normalized cumulative membership 

function, defined for a fuzzy number 𝑋̃𝑖 as 

 𝐶𝑖(𝑥) =
1

𝐴𝑖

∫ 𝜇𝑋𝑖(𝑢)
𝑥

0

𝑑𝑢, (3) 

where 𝐴𝑖  is the total area under the membership function, 
defined as 

 𝐴𝑖 = ∫ 𝜇𝑋𝑖(𝑢)
∞

0

𝑑𝑢. (4) 

The normalized cumulative membership function is a non-
decreasing function with 𝐶𝑖(𝑥) = 0 for 𝑥 ≤ 𝑠𝑋𝑖

− , and 𝐶𝑖(𝑥) = 1 

for 𝑥 ≥ 𝑠𝑋𝑖
+ , where [𝑠𝑋𝑖

− , 𝑠𝑋𝑖
+ ] is the support of 𝑋̃𝑖. This is shown 

in Fig. 2 (a). We can get the corresponding alpha level value 
for a particular 𝑥 value by subtracting this function from one. 
In order to maintain proportional areas and reduce distortion, 
we solve Equation 1 for 𝑥𝑖 giving the value that should be used 
at a particular radius length. The final alpha value is given as 

 𝐹𝑖(𝑟) = 1 − 𝐶𝑖(𝑥) (5) 

where 

 𝑥 =
𝜋𝑟2

𝑁
. (6) 

This approach creates a pleasing image that is perhaps the 
easiest to interpret simply by looking at the resulting image 
(Fig. 3 row (b)). Area proportionality is preserved, making 
large values clearly visible and reducing the apparent size of 
small values. The uncertainty is represented by the “fuzziness” 
of the arc edge. Crisp values have a well-defined boundary, 
whereas more uncertain values have a wider gradient. While 
this may be easy to understand with little to no training, the 
fuzzy boundaries make it difficult to discern precise values. 
Also, the figure quality is highly dependent on the ability of the 
medium to accurately depict gradients and the interpretation is 
open to human subjectivity. We offer an alternative method in 
the next section to ameliorate these shortcomings. 

C. Cumulative Petals 

While the previous method captures the notion of fuzzy 
feature values and maintains proportional areas, it requires the 
ability to both draw and interpret alpha-mapped images. There 
are several reasons why this may not be possible or desirable. 
Some mediums, such as black and white photocopies, may not 
be able to display gray scale images. Furthermore, the 
reproduction accuracy of the gradated image depends greatly 
on the quality of the display, projector, or print medium. One 
solution is to use dithering to reduce the number of required 
colors, representing different shades with different quantities or 
sizes of dots, such as with newspaper or magazine printing. An 
alternate approach is to use the final method we describe next. 

This last method conveys the uncertainty associated with 
each feature without relying on alpha-mapped values. To do 

this, we plot the inverse normalized cumulative membership 

function directly for each feature. For each fuzzy number 𝑋̃𝑖, 
𝐶𝑖(𝑥) is a function that maps values from the support [𝑠𝑋𝑖

− , 𝑠𝑋𝑖
+ ] 

into the range [0,1]. Values outside the support are set to either 
0 if 𝑥 < 𝑠𝑋𝑖

−  or 1 if 𝑥 > 𝑠𝑋𝑖
+ . The inverse of this function, 

𝐶𝑖
−1(𝑦), maps values from the range [0,1] into the support. For 

each feature, we define the range of the central plot angle as 
[𝜃min, 𝜃max] and the mean of these two as 𝜃c . We divide the 
wedge into two symmetric halves and compute the values of 
the inverse normalized cumulative membership function as 𝜃 
changes from 𝜃min to 𝜃max, 

 𝑥𝑖(𝜃) = 𝐶𝑖
−1 (

2|𝜃 − 𝜃c|

𝜃max − 𝜃min

). (7) 

This is shown in Fig. 2 (b). To compensate for the polar area 
distortion, we apply Equation 1 to get the actual plotted radius 
length, 

 𝑟𝑖(𝜃) = √
𝑁𝑥𝑖(𝜃)

𝜋
. (8) 

This produces a petal-shaped wedge that spans the entire width 
of the wedge at the support minimum, and peaks in the middle 
at the support maximum. To improve interpretability, we add 
an extra arc for both the support minimum and maximum 
values. 

The resulting figure is a clear image with crisp lines, still 
capable of representing uncertain values (Fig. 3 row (c)). 
Multiple colors and transparency values can be used to enhance 
the image, but are not required for interpretation. In this 
method, the shape of the petal and the distance between the 
minimum and maximum arcs represents the uncertainty. Crisp 
values have no apparent petal shape and appear the same as in 
the previous method. Uncertain values are shown with various 
petal shapes, indicating the type of uncertainty. For example, 

the fuzzy number 𝑋̃=Tri(0,0,10)  has a very narrow petal, 
which creates a small area and indicates that small values are 
more likely to be observed than large values. In contrast, the 

fuzzy number 𝑋̃=Tri(0,10,10)  has the same support, but a 
much wider petal, which creates a larger area and suggests that 
large values are more likely. The original membership function 
could, in theory, be reconstructed from the petal shape by 
taking the derivative of the cumulative membership function. 
In practical terms, the width of the petal at a given radius is 
proportional to the confidence of observing at least that value. 

IV. FUZZY WEIGHTED GRAPHS 

The fuzzy rose diagram is useful for representing a single 
vector of fuzzy numbers, which is often sufficient for many 
applications. In this section, we show how the fuzzy rose 
diagram can be modified to display the weights on a fuzzy 
weighted graph. For vertex-weighted graphs, each vertex can 
simply be displayed as a separate fuzzy rose diagram. 
However, the more common edge-weighted graph requires 
some additional manipulation in order to display the fuzzy 
vector along a linear edge. 

There are several approaches for representing the weights 
of an edge-weighted graph visually. One approach commonly 



used when there is only a single crisp weight on each edge is to 
modify the length of each edge to be proportional to its value.  
This affects the layout of the graph and may not be an option 
when the vertices have fixed locations, as in a geospatial 
environment. Another commonly used approach is to adjust the 
width or opacity of each edge. While this works well when 
there is only one weight per edge, it becomes difficult to apply 
with multiple weights. 

We can create a linear version of the fuzzy rose diagram by 
plotting each feature as an equal-width segment along a linear 
axis. This is analogous to how a standard histogram plot could 
be created by “unwrapping” the rose diagram. Each segment is 

plotted as the inverse normalized cumulative membership 
function, with 𝜃 ranging from 𝜃min to 𝜃max over the span of the 
segment using Equation 7, as is shown in Fig. 2 (b). Because 
the values are drawn in a Cartesian coordinate system, there is 
no need to rescale the values before plotting, unless to achieve 
a uniform scale effect as will be described below. In order to 
improve the readability in small diagrams, the minimum and 
maximum lines may be omitted. 

For both directed and undirected fuzzy weighted graphs, 
we draw a linear version of the fuzzy rose diagram along each 
edge with the same width 𝑊 for each diagram. This ensures 
consistency in the apparent size of each fuzzy vector. If 
vertices are also weighted and drawn as fuzzy rose diagrams, 
then the scale of the edges should be consistent with that of the 
vertices. This can be accomplished by multiplying the values 
of the linear edge diagrams by an extra scale factor 

 𝛾 =
𝜆2𝑁

𝑊
, (9) 

where 𝜆 is the overall scale factor applied to the fuzzy rose 
diagrams on the vertices. Determining an appropriate overall 
scale is a matter of some subjectivity, as too large of a scale 
will cause overlapping, whereas a scale that is too small may 
become difficult to read. The edge routing can be adjusted as 
well to facilitate the placement of the diagrams, although a 
detailed discussion on edge placement is beyond the scope of 
this paper. Our method works best on planar graphs with well-
spaced vertices, allowing edges to be drawn as straight lines 
between vertices. 

For undirected graphs, we choose to mirror the fuzzy vector 
diagrams on both sides of the edge lines as shown in Fig. 4 (a). 
Additionally, we include a grid and a vertical reference axis 
along one side of each diagram to show how the features are 
ordered. Because the diagrams can be drawn with any 
orientation, it is important to include a way to determine which 
feature is first. Color helps to distinguish features, but color 
alone should not be relied upon, in case accurate color 
reproduction is unavailable. We use the convention of placing 
the axis on the leftmost side of each diagram, although 
alternate orientations could be used if appropriate. 

 
(a) 

 

 
(b) 

Fig. 4.  Examples of randomly generated undirected (a) and directed (b) fuzzy 

weighted graphs. 

 

Fig. 5.  Example of a fuzzy weighted directed graph with 10 uncertain 
features on each edge. There are four possible paths from vertex 1 to vertex 4: 

1–2–4, 1–2–3–4, 1–3–2–4, and 1–3–4. 



For directed graphs, we plot the fuzzy vector diagrams on 
only one side of each edge. We use a clockwise notation, 
placing right-directed edges on top, left-directed edges on 
bottom, up-directed edges on the left, and down-directed edges 
on the right. For bidirectional edges, the features are aligned to 
be across from their opposite-direction counterparts. This 
allows the features in both directions to be compared more 
easily, and ensures that the reference axis is always on the 
same side for both directions of an edge. To indicate the 
direction of each diagram, the reference axis is drawn as either 
an inward or outward facing arrow according to the clockwise 
notation. 

V. FUZZY ROSE DIAGRAMS FOR DECISION SUPPORT 

The fuzzy rose diagram excels at displaying vectors of 
uncertain information in a compact and organized manner. This 
is particularly useful for decision-support systems involving 

human decision-makers. It may be difficult to understand the 
tradeoff between alternate choices without first having a clear 
picture of a high-dimensional and uncertain environment. 
Fuzzy rose diagrams allow several options to be presented and 
compared visually, giving a more complete understanding of 
the decision to be made. 

As an example, consider the fuzzy weighted directed graph 
in Fig. 5. Suppose this graph represents some environment 
where vertices represent locations and edges represent the 
paths between them. Each path has a set of attributes that may 
only be known with some degree of certainty. For example, in 
[9] each path has a fuzzy number representing the perceived 
distance, elevation change, path quality, amount of shade, and 
difficulty of water crossings. We could also consider the 
amount of traffic, distance from some attractor or detractor, 
expected travel time, or any number of additional features. 
Consider the problem of a decision-maker planning a least-cost 

 

 

 (a) (b) (c) (d) 

Fig. 6.  Costs of the four paths through the example graph in Fig. 5 presented as a fuzzy rose decision tree. The vectors of fuzzy numbers along each path are 

summed together to create the fuzzy rose diagrams at each node. The fuzzy rose diagram at each leaf node represents the total sum of the vectors along that path. 

Below each leaf node, the final fuzzy rose diagrams are redrawn in the standard way by plotting the membership functions on a common set of axes.  



path from vertex 1 to vertex 4 in this graph. There are four 
possible paths: 1–2–4, 1–2–3–4, 1–3–2–4, and 1–3–4. Because 
there are many uncertain features on each edge and the 
decision-maker may weigh the features differently, it is not 
obvious which of these paths is best. To compare these options, 
we construct the decision tree shown in Fig. 6. 

Fig. 6 shows the path-planning problem as a fuzzy rose 
decision tree. The root node corresponds to the starting point 
(vertex 1) in the graph. The four possible routes are shown as 
the branches that end with leaf nodes corresponding to vertex 
4. We plot the tree as an undirected graph, since direction is 
implicit, with the reference axis on the side of the parent node. 
Each node is shown with a fuzzy rose diagram indicating the 
fuzzy sum of the features up to that node. In this example, we 
are using the fuzzy sum operator, based on the Extension 
Principle, which computes the sum of two fuzzy numbers using 
interval arithmetic for each alpha-cut. The nodes are shown 
with a solid center circle with a number to indicate the vertex at 
that point in the route. This effect is achieved by adding a 
constant value to the plotted radius lengths of each feature to 
compensate for the area hidden under the center circle. The 
reference grids must also be adjusted accordingly. 

The fuzzy rose diagrams at the leaf nodes in Fig. 6 clearly 
show the differences between the route choices. Route (b) 
minimizes the first few features in blue, but maximizes the last 
features in red. Alternately, route (c) minimizes the last 
features, but maximizes the first features. Routes (a) and (d) 
offer more of a balance across all features, although they are 
clearly different. The fuzzy rose diagrams help a human 
decision-maker choose between a set of options. For example, 
if our only criterion were to minimize the 7th feature in yellow, 
we would choose route (d). Alternately, if we wanted to 
minimize the 1st feature without getting too much of any one 
feature, we might choose route (a) because although there is 
more uncertainty in this feature for route (a) than route (d), 
there is the possibility of it being smaller than the very certain 
value observed in route (d). The nearly constant radius length 
of some features indicates that they are known with a high 
degree of certainty, whereas other features with more 
uncertainty are shown with various petal shapes. 

Below the leaf nodes in Fig. 6, we plot the resulting 
membership functions obtained by summing the vectors of 
fuzzy numbers along each route. These plots use the same 
information as the fuzzy rose diagrams drawn at each leaf 
node, but are arguably more difficult to interpret and to 
compare than their fuzzy rose counterparts. We can determine 
that routes (b) and (c) have some features that are larger than 
those of other routes, but it is difficult to see that they also 
minimize some features. The plots appear as a jumbled mess of 
lines with individual features distinguished only by color. 
Different line weights or patterns could be used to distinguish 
the different features, but this would not reduce the overall 

clutter. Plotting the features independently for each vector 
would improve readability, and would be better for a 
comparison where exact values are important, but would take 
up considerably more space and may not be as simple to 
interpret for an audience with low numeracy. 

VI. CONCLUSION 

We have shown how the fuzzy rose diagram can present 
vectors of fuzzy numbers in a compact yet descriptive manner. 
This can help a decision-maker choose between several options 
while evaluating the potential tradeoffs. Our method is also 
able to display fuzzy weighted graphs with multiple attributes 
on the graph edges and vertices. This can be used to depict 
uncertain environments and to display decision trees involving 
vectors of uncertain quantities. We have worked to design the 
fuzzy rose diagram to follow the principle of perceptual 
proportionality, which should allow those without a formal 
training in fuzzy set theory to understand the information. By 
using the shapes of the petals to represent uncertainty, we do 
not require extra colors or textures to represent the features, 
allowing color to simply enhance the interpretability of the 
image. 

While not applicable in all circumstances, the fuzzy rose 
diagram has many potential uses and should help in the 
presentation of high-dimensional uncertain data. Ideas for 
future work include showing how a shortest-path algorithm can 
operate on a fuzzy weighted graph, creating interactive 
displays of real-time uncertainty, and investigating perceptual 
similarity measures between fuzzy rose diagrams. 
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