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Abstract— Human geography is a concept used to indicate the 

augmentation of standard geographic layers of information 

about an area with behavioral variations of the people in the 

area.  In particular, the actions of people can be attributed to 

both local and regional variations in physical (i.e., terrain) and 

human (e.g., income, political, cultural) variables. In this paper, 

we study the utility of a human geographic data cube coupled 

with computational intelligence as a means to predict conditions 

across a geographic area. This becomes a Big data problem. In 

this sense, we are using genotype information to predict 

phenotype states. We demonstrate the approach on the 

prediction of medically underserved areas in Missouri. 

Keywords—Human Geography, Predictive Analytics, Medically 

Underserved, Computational Intelligence, Human Geographic 
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I. INTRODUCTION 

eography is concerned with the systematic spatial or 

spatio-temporal analysis of the patterns, distributions, 

variations, and relationships of natural and human 

phenomena; human geography, in particular is focused on 

how behavioral variations can vary spatially as a resulting 

interplay between local and regional variations in physical 

(i.e., terrain) and human (i.e., income, political, cultural) 

variables. 

Using Agent-Based Modeling (ABM), we studied disaster 
evacuation scenarios [1-3] within a human geographic 
framework.  This included decision making via bounded 
rationality and several communication schemes implemented 
as rumor spreading models.  These simulations were dynamic 
representations of individuals or groups of people trying to 
move to an evacuation shelter during a natural disaster.  
Emotion patterns were added to agents and linguistic 
summaries of the emotional states of agents who made it to 
shelters were analyzed [4].  

Recently, we have assembled a human geographic data 
cube of the State of Missouri, containing over 300 feature 
layers of mixed data that encompass economic, educational, 

religious, cultural attributes across the state, collected by the 
Geography members of our research team [5].  There are 24 
basic categories of attributes: Ability to speak English, Athletic 
association class, Citizenship, Disability, Euclidean distances 
to selected places (schools, libraries, etc.), Employment, Food 
stamps, Geo mobility, Heating fuel, Hispanic population, 
Household income, Industry, Language spoken, Means of 
transportation, Network analysis (derived features), 
Occupation, Place of birth, Poverty, Income taxes, Religion, 
Social security assistance, Transportation, Vehicles owned, and 
House age, each with several associated layers.  For example, 
Household income is broken up into 11 different groups with a 
layer representing the distribution of each.  This data cube is 
treated much like one would consider a hyperspectral image 
except that the information is not sampled from the 
electromagnetic spectrum, but from numeric, ordinal and 
categorical aspects of the population.  The data layers are not 
inherently co-registered, but must be aligned through GIS 
functions.  
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Fig.1  Human geographic data cube with human geography layers of Missouri 

with over 300 continuous, discrete, and categorical feature layers. 
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Fig. 1 depicts the Human geographic data cube with human 
geography layers of Missouri with a size of 1,127,957 vectors.  
A companion paper [6] explores the concept of human 
hyperspectral unmixing and the meanings of endmembers in 
this new domain. Fig. 2 is an example of one of the layers in 
the Human geographic data cube, population density.  The 
layer values contain considerable uncertainty and should be 
treated as such. With this increased layer complexity, 
extending the predictive analysis over larger geographic areas, 
and looking at more dynamic problems (disease spread, 
disasters), this fits the model of Big Data.  It has the volume, 
variety, velocity, veracity, and value attributes characteristic of 
Big Data. 

 

Our goal is to construct a framework to utilize the rich 
nature of this data to perform predictive analysis of conditions 
across the geographic area represented by the human 
geographic data cube with human geography layers.  
Geospatial predictive analytics (GPA) represent a large array 
of machine learning, statistics, pattern recognition and data 
mining methods employed to compute future events in a given 
geospatial context based on available historical information 
[7,8]. GPA present specific challenges related to the geospatial 
and sociopolitical aspects of the domain data such as size, 
heterogeneity, missing values and complexity of human 
behavior models. While domain experts are able to make 
reasonable predictions for particular situations or populations, 
their mental models are not able to deal with large amount of 
data over large geospatial areas during a rapid changing 
context. Here, we present a predictive analytic framework 
(PRAF) that intends to assist the domain expert in analyzing a 
large amount of human geographic data in a timely manner. 
PRAF is a general technique based on computational 
intelligence algorithms able to attack many problems even with 
fairly sparse training data.  In order to understand the 
generalizability, we utilize PRAF to study a problem where 
ground truth information is available. 

In this paper, we employ PRAF to predict underserved 
medical areas in the geographic region of the human 
geographic data cube.  A federal Medically Underserved Area 
(MUA) is defined by scoring the following 4 criteria [10]: 

1. percentage of population below 100% poverty 

2. percentage of population age 65 and over 

3. infant mortality rate 

4. primary care physicians per 1,000 population 

The four resulting scores are added and the sum is 
identified as the Index of Medical Underservice (IMU). An 
area with a score less than 62 is generally eligible for 
designation as an MUA.  This is a problem that attracts much 
research [11-16], and provides an effective way to test the 
efficacy of our PRAF.  We demonstrate our approach on an 
example that consists in predicting medically underserved 
areas (MUA) in Missouri based on data compiled from the 
United States Census Bureau (http://www.census.gov/), 
American community survey (http://factfinder2.census.gov), 
Health Resources and Services Administration 
(http://muafind.hrsa.gov/) and Missouri Department of Health 
& Senior Services (http://health.mo.gov/data/brfss/index.php). 
Predicting MUA in a given state can assist the local 
government in the strategic planning of allocation of medical 
resources such as clinical personnel, clinics and hospitals.  
Fig.3 is the generated ground truth image for the State of 
Missouri, obtained from the Health Resources and Services 
Administration web site [10]. In this figure, the scores above 
62 are set to 100 indicating fully medically served areas, while 
those below 62 are kept at their original values, providing 
degrees of being medically underserved. 

 

II. PREDICTIVE ANALYTIC FRAMEWORK 

A. Feature Selection 

The first step of our framework consists in feature (layer, 
band) selection. Feature selection (FS) is challenging in a 
human geographic data cube with human geography layers due 
to the image size (large number of data points) and to ever-
increasing number of layers (features) available [18]. Since FS 
is NP-hard, most problems are solved using heuristic 
approaches. There are two main types of FS methods: filters 
and wrappers. Filter methods are based on some estimation of 
the discriminatory power of features, while wrappers use a 

 

Fig.2  Population density layer from the human human geographic data cube 

of Missouri. 
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Fig.3  Medically Underserved Areas of Missouri to test PRAF. The values 

above 62 have been thresholded into the full membership category of 

Medically Served whereas the medically underserved regions are represented 

by their degree. 



 

classifier in the evaluation process. Filter methods tend to be 
faster, while wrapper ones are usually more accurate. Most 
popular wrapper methods are Sequential Floating/Forward 
Selection (SFS)[19]. Some examples of filters are RELIEF [20] 
and feature clustering [18]. Typically, for large datasets, 
several filters are applied first to reduce the number of features 
to a manageable number (typically 100 [18]), followed by a 
wrapper method. 

As part of the PRAF framework, in this work we 
investigate several feature selection methods for large datasets. 
Initially, we considered RELIEF and a Neural Network 
wrapper method for feature selection.  

1) RELIEF Feature Selection 
The RELIEF algorithm assigns a weight wj to each feature j 

based on how well it separates point xiRP, i[1,M], from the 
closest point from opposite class (call “miss”) and, in the same 
time, on how well it unifies (resembles) it with the closest 
point from the same class (call “hit”), that is: 

   𝑤𝑗 = ∑ (|𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑠𝑠,𝑗| − |𝑥𝑖𝑗 − 𝑥ℎ𝑖𝑡,𝑗|)
𝑀
𝑖=1 , j = 1, P.    (1) 

Although the RELIEF algorithm is many times classified as 
a filter, it is in fact a wrapper based method in disguise since it 
is based on the nearest neighbor (NN) classifier (that is, for 
each xi it finds a point xhit – NN from the same class, and a 
point xmiss- NN from the other class). We mention that the M 
xi’s are sampled from the entire dataset of N points, where N 
>> M. Since we have to sort the data for each sample point 

i[1,M], RELIEF complexity is of the order O(N2MP). Since 

we are using calculations based on real numbers (like equation 
(1)), we pruned from the human geographic data cube several 
feature layers that contained terse categorical information (like 
the layers that showed religions).  This resulted in a 270 layer 
image.  The procedure implemented for RELIEF on this image 
is shown as Algorithm 1. 

 

2) The artificial neural network (ANN) wrapper method 
The ANN-wrapper method uses a classifier (in this case a 

small 2 layer perceptron) for quickly selecting a number of R 
most relevant features. The ground truth MUA data shown in 
Fig.3 are linearly scaled to the interval [0,1], since they 
represent the target values for the neural network function 
approximator.  For each feature value, an artificial neural 
network ANNi is trained using randomly chosen data and a 

single feature i, i[1,P], as input. The performance si of 
network ANNi is obtained by computing the Mean Squared 
Error (MSE) of a testing set of vectors. After this procedure, 
shown in Algorithm 2, completes the training/testing of a small 
ANN each feature, the scoring vector is sorted to provide an 
ordered list of relevant features. 

B. Computational Intelligence Prediction Method 

The method used to test the ability of PRAF to predict 
medically underserved areas was a simple multilayer 
perceptron. We picked this simple regression function 
approximator because it is simple and well-studied, and will 
provide information on the efficacy of the features in the 
human geographic data cube.  The training data was sampled 

Algorithm 1: 

RELIEF Feature Selection 

Input: 

X: <N x P> input data matrix, where N is the number of 

sample points (1,127,957) and P is the number of 

features (270). 

T: <N x 1> target data matrix containing the raw MUA 

score in the range [0, 1]. MUAs are samples with a 

value <= 0.62. 

 

Initialize: 

Normalize each feature column in X to have 0 mean and a 

standard deviation of 1. 

Initialize a weight vector w = <1 x P> of all zeros. 

For i = 1 to M: (M = 5000) 

Pick a random sample row xi from the input data 

matrix. 

Compute the Euclidean distance from this point to the 

N-1 other points in feature space. 

Find the nearest point from the same class (Hit) and 

from the other class (Miss). 

Update the weight vector according to equation (1). 

End For 

Sort the weight vector from largest to smallest weights. 

 

Output: 

w: <1 x P> weight vector. The most significant features 

will have the highest weights. 

 

 

Algorithm 2: 

NN Wrapper Feature Selection 

Input: 

X: <N x P> input data matrix, where N is the number of 

sample points (1,127,957) and P is the number of 

features (270). 

T: <N x 1> target data matrix containing the raw MUA 

score in the range [0, 1]. MUAs are samples with a 

value <= 0.62. 

 

Initialize: 

Initialize a score vector s = <1 x P> of all zeros. 

For i = 1 to P: 

Randomly pick 90% of the sample points to use as 

training data. The remaining 10% will be used for 

testing. 

Construct a 1x5x1 neural network, containing 5 

hidden units. 

Train the network using only feature i as input for 10 

epochs. 

Compute the MSE of the ith feature of the testing data 

set and save in the score vector si. 

End For 

Sort the score vector from smallest to largest MSE. 

 

Output: 

s: <1 x P> MSE score vector. The most significant 

features will have the lowest MSE values. 

 



 

randomly from the raster data cube and was varied for each 
run.  The remaining data vectors were used to test.  Mean 
Squared Error (MSE) was calculated and since the output of 
the ANN varied in the interval [0,1], Receiver Operating 
Characteristic (ROC) curves were calculated. 

III. RESULTS 

1) Feature selection 
After running both feature selection approaches, it is 

interesting that each method focused on different aspects of the 
human geographic data cube.  In the top 25 weighted attributes, 
RELIEF emphasized Disability (7 layers chosen), Poverty (3 
layers), and then features that included Home age, Travel time 
to work, Occupation, Place of birth, Geo-mobility, and Heating 
choice among a few others.  The Wrapper top 25 zeroed-in on 
attributes like Income levels (6 layers), Taxes (4 layers), 
Employment, Mobility and Poverty.  The only layer in 
common among the top 25 was one of the Income layers.  
Looking at the choices, these two methods only share one 
common attribute in their top 25, an income layer.  Both of the 
sets of preferred layers, however, make sense intuitively for an 
attempt to predict medically underserved areas.   

2) Prediction of Medically Underserved Areas 
Now that we have ranked sets of feature layers, the final 

step is to determine if subsets of the features can be used 
effectively to predict Medically Underserved Areas.  In these 
experiments, we considered the top 10, top 25, top 50 and top 
100 feature layers from each of the two selection (ranking) 
approaches.  Since the generalizability of PRAF to many 
geographic areas requires the generation of fairly detailed 
human geographic attributes, we are not only interested in 
finding small but predictive feature sets, but also in learning 
how small of a training set is needed to give good 
predictability.  So, for each subset of features, we trained 
multilayer perceptrons with 10%, 1% and 0.1% of the available 
data, testing on the remaining.  Again, the ground truth data 
shown in Fig.3 is linearly scaled to [0,1].  Each neural network 
configuration was trained and tested 10 times with random 
sampling of training sets and initialization.  The hidden layer of 

the perceptron had nn +  neurons and was trained with the 

Levenberg-Marquardt algorithm for 50 epochs.  We considered 
two different types of estimation of MUAs.  

Table I displays a summary of all of the experiments for the 
semi continuous ground truth, i.e., vales calculated according 
to [10] that were under 62 were preserved while those of 62 
and above were considered medically served and set to 100 
(before scaling).  For each trial – choice of number of inputs 
and size of the training set – the table contains the average 
MSE on the test sets together with the standard deviations 
across the 10 runs.  With ground truth values in the interval 
[0,1] the average error per pixel ranges from around 7% up to a 
high of 43%.  Both extreme cases were for features selected by 
the wrapper method.  From the standpoint of MSE, across all 
of the experiments summarized in Table I, RELIEF provided a 
better predictive capability than did the wrapper method. This 
summary information is somewhat misleading.  Recall that we 
are trying to predict the scaled values displayed in Fig. 3.  
These areas represent geographical blocks (county and census 
track information), not individual pixels in the rasterized 

version of Missouri.  Since the function approximator is 
accepting inputs that have been manipulated though a GIS 
system to co-register the layers, some bleeding of feature 
values is to be expected.  This will show itself mostly at the 
crisp boundaries of the ground truth map.  In fact, the ANN 
produces a soft prediction.  This can be seen in Fig. 4, where 
the prediction output of one trial of each experiment is 
displayed as image with the same color scale as Fig. 3.  It’s 
easy to see the closeness between Fig.3 and the output image 
for 10% training data with 100 features.  The ANN output 
images become fuzzier as the size of the training sets and the 
number of features decrease.  Is this really bad?  We might 
argue that in fact it is no worse than assuming that every point 
in the geographic block shares the same level of medical 
service.  This is an issue that we have no ability to investigate, 
but it opens interesting questions.  Generally speaking, this 
collection of output images supports the utility of PRAF even 
with limited training data and feature layers. 

TABLE I.  MEAN SQUARED ERROR (MSE) OF MUA PREDICTION 

 

NN Wrapper RELIEF 

Training Size Training Size 

10% 1% 0.1% 10% 1% 0.1% 

#
 o

f 
F

ea
tu

re
s 

10 
0.0344 ± 

0.0012 

0.0353 ± 

0.0013 

0.0483 ± 

0.0052 

0.0353 ± 

0.0009 

0.0361 ± 

0.0003 

0.0524 ± 

0.0079 

25 
0.0149 ± 
0.0008 

0.0175 ± 
0.0008 

0.1340 ± 
0.0153 

0.0135 ± 
0.0005 

0.0158 ± 
0.0004 

0.1190 ± 
0.0127 

50 
0.0075 ± 

0.0003 

0.0152 ± 

0.0011 

0.1852 ± 

0.0451 

0.0079 ± 

0.0004 

0.0150 ± 

0.0005 

0.1657 ± 

0.0233 

100 
0.0049 ± 
0.0001 

0.0310 ± 
0.0073 

0.0794 ± 
0.0147 

0.0055 ± 
0.0001 

0.0274 ± 
0.0065 

0.1030 ± 
0.0195 

 

An alternate way to describe the results of these prediction 
experiments is to examine the resulting ROC curves.  For this, 
the values in Fig. 3 are completely thresholded into a binary 
image so that each geographic block is classified as either 
Medically Served or Medically Underserved.  Then each 
output image is thresholded at varying levels and compared to 
this binary ground truth.  The Probability of Detection and the 
Probability of False Alarm (PFA) are calculated as functions of 
the confidence threshold level.  The ten ROC curves for each 
experiment are shown in Fig. 5.  The area under the ROC curve 
(AUC) is a standard metric to compare outputs.  These 
statistics are displayed in Table II. 

TABLE II.  AREA UNDER ROC CURVE (AUC) FOR MUA PREDICTION 

 

NN Wrapper RELIEF 

Training Size Training Size 

10% 1% 0.1% 10% 1% 0.1% 

#
 o

f 
F

ea
tu

re
s 

10 
0.8786 ± 

0.0087 

0.8761 ± 

0.0104 

0.8326 ± 

0.0117 

0.8735 ± 

0.0062 

0.8692 ± 

0.0033 

0.8145 ± 

0.0085 

25 
0.9774 ± 

0.0025 

0.9719 ± 

0.0026 

0.8205 ± 

0.0096 

0.9817 ± 

0.0015 

0.9760 ± 

0.0012 

0.8208 ± 

0.0110 

50 
0.9936  ± 

0.0004 

0.9844 ± 

0.0015 

0.7994 ± 

0.0142 

0.9931 ± 

0.005 

0.9836 ± 

0.0011 

0.8024 ± 

0.0138 

100 
0.9961 ± 

0.0001 

0.9703 ± 

0.0055 

0.8661 ± 

0.0189 

0.9956 ± 

0.0001 

0.9744 ± 

0.0048 

0.8499 ± 

0.0189 

 
As can be seen from both Table II and Fig. 5, PRAF does a 

good job of estimating Medical Service for binary 



 

classification of this condition.  The main message is that 
human geographicl layers can be used to predict geographic 
conditions not directly related to the collected layers and can 
do so with limited training exemplars.  Certainly, more 
sophisticated function approximators/classifiers and better 

training methodologies will increase the accuracy of the 
predictions.   
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Fig. 4.  MUA Prediction of NN Wrapper and RELIEF Feature Selection. 
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Fig. 5.  ROC Curve Comparison of NN Wrapper and RELIEF Feature Selection 



 

IV. CONCLUSIONS 

In this paper, we discussed an automatic predictive 
analytics framework (PRAF) for geospatial human 
geographic data that consists in a feature selection procedure 
and a predictor based on a neural network. The framework 
handles problems that fit into a Big Data environment.  To 
test our framework we predicted medically underserved areas 
in Missouri based on a 270 layer data cube. A series of cross 
fold validations experiment showed that excellent predictive 
capabilities were found as the size of the training set was 
reduced to 1% of the available data. More work needs to be 
done to refine the feature selection procedures and test more 
classifiers. We are investigating extensions of RELIEF to 
take into account soft memberships of the training data to 
deal with overlap of training sets.  Future work will also 
include investigation into methods used in the hyperspectral 
band selection literature as an alternative to feature selection.  
We intend to study initialization approaches (including “pre-
training” methods) for the function approximators/classifiers. 
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