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Motivation

Shortest path problems occur in many applications
Including:
 Transportation
Routing
Communications
Supply chain management
Models involving agents



Graph Definitions

A graph G = (V, E) consists of a set of vertices V and a
set of edges E.

In a directed graph, each edge is an ordered pair (1, j)
representing an arc connecting nodes 1 and j.

A path p;; Is a sequence p; = {1, (I, 1), Iy, ..., I, (1)), J}
of alternating nodes and arcs that connect two nodes i
and J.



Graph Definitions

For the shortest path problem, we define a source node s
with index 1, and choose t as the destination node.

We assume that there exists at least one path pg; In
G =(V, E) foreachnode i € V—{s}.
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Graph Definitions

Each arc (1, J) 1s assigned a value representing the cost,
time, distance, etc. required to traverse from i to j.

Formally, the SPP seeks to find the path corresponding
to the minimum cost of travel between the source and

destination nodes.




Graph Definitions

Traditionally, the arc weights are defined as real
numbers, giving rise to an optimally shortest path.

However, many practical applications may find fuzzy
numbers to be more appropriate for defining arc weights.

This requires the choice of a ranking function to
determine the smaller of two fuzzy numbers.



Fuzzy Numbers

Let us define a triangular fuzzy number @ = (m, a, 8)
with the membership function u;(x), defined as

Mg (x) =

fx<m— a,

fm—o<x <m,

ifx =m,

ifm<x <m-+p,

ifx>m+f

g (x)

> X
(m—a) m (m+p)



Fuzzy Addition

The sum of two fuzzy numbers @ = (m4, a4, ;) and
b = (m,,a,,B,) is given as

mq, a4, f1) D (ny, a3, )
my + my,ay + az, B + B2)

u(x)
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Fuzzy Ranking

Consider a simple network (303224, /’@\\69,41,3,6)”
with edge lengths defined by O/ 10
fuzzy numbers. D /%D

(20,20,10,10) .5 7 (38,40,3,5) 1

Fig. 1. Small example network.

The total length of each path
IS @ new fuzzy number.

How can we decide which
path is to be preferred?

ol

45 52 58 60 62 64 65 70 75 83

Fig. 2. Each membership function of the path distance.

From “A shortest path problem on a network with fuzzy arc lengths” by S. Okada and T. Soper



Fuzzy Ranking

We say that a is preferred to b (a@ < b) iff @ < b.

The following six ranking functions are considered:

Yager’s index

Liou and Wang index

Garcia and Lamata index

Okada and Soper relation

Nayeem and Pal acceptability index
Dubois and Prade’s possibility index



Yager's Index

Compare the centroids of the two fuzzy numbers.

[ xd, dx

f@=5

a, dx

a<biff f(a) < f(b)



Liou and Wang Index

Weight the left and right centroids.

LWA(@) = ASp (@) + (1 — 1)S;(@)
where

m+f 1 i
55 (@) =m+j FR(x) dx =j FE () dy
m 0

1
FEGx) dx = f 7 () dy
- 0

A € 10,1] represents the decision-maker’s optimism/pessimism

S;(a) = (m—a)+f

m

a < biff LwA(@) < Lw*(b)



Garcia and Lamata Index

Add a modality index 6 € [0,1] to the previous index, indicating a
weighted preference for the modal value of the fuzzy number.

(@) =A-9)[ASp(@) + (1 —A1)S;(@)] + dm

a<biffi(a) <1(b)



Okada and Soper Relation

Let @ = (mq, aq, f1) and b = (m,, a5, B,) be two triangular fuzzy
numbers and € € [0,1] be an optimism factor.

For a-cuts in [, 1], @ dominates b with a degree « (a@ <, b) iff

m4q < mo,
(my —aq)e < (M —ay)e,
(my + 1) < (]nz + B2)e
a+hb

~

a<biffa<.b



Nayeem and Pal Acceptability Index

For two triangular fuzzy numbers @ = (m,, @, ;) and b =
(M, az, B2),

m, —my

A(@<b) = o

a<biffA(a<b)>A(b<a)



Dubois and Prade’s Possibility Index

For two fuzzy numbers & and b,

Poss(@ < b) = sup min (fi(xi);g(xj))

Xi=Xj

i < b iff Poss(fi < E) > POSS(E < c’i)



Fuzzy Ranking

These six ranking indexes can be classified into two
groups:

* Indexes that map fuzzy numbers into crisp numbers
— Yager’s Index
— Liou and Wang index
— Garcia and Lamata index

* Indexes that compare the ordering of two fuzzy numbers
— Okada and Soper relation
— Nayeem and Pal acceptability index
— Dubois and Prade’s possibility index



Fuzzy Shortest Path Problem

Given the set of directed edges E, where each arc (I, J) € E Is
assigned a fuzzy number ¢;;, FSPP is formally defined as a linear

programming problem:
min f(x) = Z Eijx;j
(i,j)eE
[ 1 ifi =1,
st Y xj— Y xjp=40 ifiElLii=1,...r),
J J

k—l ifi =1,

xij=0orl for(i,j)ekE,

where r Is the number of nodes, t is the destination node and ) refers
to the addition of fuzzy numbers.



Fuzzy Shortest Path Problem

Because of the various ranking methods for fuzzy numbers, we
cannot solve the linear program directly.

This has lead to the development of several specialized algorithms.
 Dubois and Prade’s extension of the Floyd-Warshall and Bellman-Ford algorithms
* Klein’s dynamic programming method
 Lin and Chern searched for arcs that increase total cost when removed from the path
» Okada et al. extended Dijkstra’s algorithm to find a Pareto optimal path
* Blue et al. used a modified k-shortest path algorithm proposed by Eppstein
» Okada considered the possibility of an arc being on the shortest path

» Nayeem and Pal used an algorithm based on their acceptability index



Fuzzy Shortest Path Problem

These methods often present peculiarities and/or problems:
« They find costs without an existing path.

« They do not provide decision-makers with any guidelines for
choosing the best path.

« They can only be applied to graphs with fuzzy non-negative
parameters.



Bellman-Ford Algorithm (Crisp)

The Bellman-Ford algorithm finds the shortest paths in a graph G, given a source
vertex s and a set of weights w. For each vertex v, d[v] stores an upper bound on the
distance from s to v and n[v] stores the best path predecessor of v.

BELLMAN-FORD(G, w, s) INITIALIZE-SINGLE-SOURCE (G, s)

] INITIALIZE-SINGLE-SOURCE(G, s) | for each vertex v € V[G]
2 fori < 1to|V[G]| -1 2 do d[v] < o©

3 do for each edge (u,v) € E[G] 3 m[v] <= NIL

4 do RELAX (u, v, w) 4 d[s] <0

S5 foreachedge (u,v) € E[G]

6 do if d[v] > d[u] + w(u, v)
7 then return FALSE

8

RELAX(u, v, w)
return TRUE

1 if d[U] > d[.{.{] + w(u, v)
2 then d[v] < d[u] + w(u, v)
3 T[v] < u

From “Introduction to Algorithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein



Bellman-Ford Algorithm (Crisp)
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Figure 24.3 Relaxation of an edge (u, v) with weight w(u, v) = 2. The shortest-path estimate of
each vertex is shown within the vertex. (a) Because d[v] > d[u] + w(u, v) prior to relaxation, the
value of d[v] decreases. (b) Here, d[v] < d[u] + w(u, v) before the relaxation step, and so d[v] is
unchanged by relaxation.

From “Introduction to Algorithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein



Bellman-Ford Algorithm (Crisp)

Figure 24.4 The execution of the Bellman-Ford algorithm. The source is vertex s. The d val-
ues are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v)
is shaded, then w[v] = wu. In this particular example, each pass relaxes the edges in the order
(t,x), (t, v),(t,2), (x, 1), (v, x), (v, 2), (z,x), (2, 5), (5,1), (s, y). (a) The situation just before the
first pass over the edges. (b)—(e) The situation after each successive pass over the edges. The d and =
values in part (¢) are the final values. The Bellman-Ford algorithm returns TRUE in this example.

From “Introduction to Algorithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein



Fuzzy Shortest Path Algorithm

Notation:

r number of nodes;

it iteration counter;

E set of edges;

M=YE |(m+ B)Y| alarge number substituting oo;

Cji cost of arc (j, i);

D(1.6) path between nodes 1 and t;

=t set of predecessor nodes of i;

dif (o) distance along path p(4 ¢ of the k™ label in the iteration it;

dit (pr o) the ranking index applied to d¥ (p(1¢));



Fuzzy Shortest Path Algorithm

Step O: [Initialization]

(1) d? (P(1,1)) = (0,0,0)

2 A(payp) =M+211), j=23,..,r
()it « 1

Step 1: [Determination of distance paths, dominance check, and negative circuit]

(1) dit(P(m)) = (0,0,0)
(2) [Determination of fuzzy path distances: The distance between nodes 1 and i is
the fuzzy addition of the distance of the path with the predecessor node in the

previous iteration d;*~*(p(4 ;) and the cost of arc (j, i)]
- VvjerY i=23,..,1, do:
dic (Pan) = 4" () @ &



Fuzzy Shortest Path Algorithm

(3) [Dominance check: For each node i € N, the dominance is checked for all the
labels of the node i, being compared one to one]

« Ifdif(pap) > dif(ppy) = delete the label k
« 1fdi* (py) < dif(pewiy) = delete the label

(4) [Verification of a negative circuit: The verification of the existence of a negative
circuit is performed by means of the applied index on the distance of the path
p,j- |f the results are negative, the algorithm will be in an infinite loop]

- If there is at least one node i such that dif (p(y ;) < 0 then

— o to step 4 [negative circuit]
— Otherwise go to step 2 (next slide)



Fuzzy Shortest Path Algorithm

Step 2: [Stop criterion] For all nodes and all labels do:
(1) If (d,ict(p(l,i)) = d;ict_l(p(l'i))) or (it = r) do:

 Ifit =rand (d,if(p(l,i)) * d;;t_l(p(l,i))) then
— (o to step 4 [negative circuit]

— Otherwise go to step 3
(2) Otherwise it = it + 1, go to step 1.

Step 3: [Shortest paths composition: Find the shortest paths from 1to i (i =
2,3, ...,r). Itissufficient to store in block 1.2 the predecessor nodes of i that are
used to rebuild the shortest paths]

Step 4: [Termination: Finish the execution of the algorithm]



Complexity Analysis

The algorithm takes at most » — 1 iterations to converge.

In step 1 of each iteration a maximum of rVy 5% additions are
computed where Vijax 1S the maximum number of labels that can be
assigned to a node.

In step 2 of each iteration, a maximum of rV5 4% dominance
comparisons are required.

This gives an overall complexity of

0 ((r = D(rViax)) = 0(r?ViAax + ViAax) = 0(r?Vidax)



Example

E
M=Z|(m+ﬁ)i|=5+6+12=23
i=1

2 3

Initialization

it =0:

d?(pc,1) = (0,0,0)
d(pu2) = (251,1)
d?(pas) = (251,1)



Example

2 3

Determination of fuzzy path distances

it = 1:

di(pa) = (0,0,0)

di(pa2) = 251,1) d3(p12)) = 3,1,2)*

di(pamn) = 2511  di(pasn) =616  di(pas)=(2933)°



Example

Dominance check

it =1:

di(p11)) = (0,0,0)
di(p2)) = (3.1,2)1
di(p13)) = (6,1,6)*




Example

2 3

Determination of fuzzy path distances

it = 2:

di(pa) = (0,0,0)

di(pa2) = 3,1,2)!

d%(pa,3)) = (6,1,6)" d5(p,3) = (7,34)3



Example

Dominance check

it =2: Depends on the choice
d?(pc11y) = (0,0,0) of ranking function

di(pay) = 3,1,2)1 //

d?(p) = (61,6)" di(pas) = (7,3,4)?



Example

2 3

No change in 3™ iteration; algorithm terminates

it =3: Depends on the choice
d?(pc11y) = (0,0,0) of ranking function

di(pay) = 3,1,2)1 //

d?(p) = (61,6)" di(pas) = (7,3,4)?



Example

Table 1
Edge information—Example 1

Source node Destination node Arc cost
1 2 (82020 20)
1 3 (361 119)
1 6 (677 27 6)
1 9 (300 10 50)
1 10 (450 30 20)
2 3 (186 6 7)
2 5 (51015 15)
2 9 (930 30 30)
3 4 (667 17 216)
3 5 (748 18 22)
3 8 (443 18 22)
4 5 (1999 11)
4 6 (340 30 20)
4 11 (740 30 30)
5 6 (660 50 30)
6 11 (242 12 18)
7 6 (410 20 30)
7 11 (472 22 18)
8 4 (730 20 5)
8 7 (24212 13)
9 8 (1377 8)
9 7 (130 10 20)
Fig. 1. Example network. ]3 1{?] giﬁ ii ;;;)
10 11 (1310 60 130)




Example

Table 2

Results of Example 1

Destination node Shortest path Cost path Order relation
2 1 — 2 (820 20 20) All
3 1 — 3 (361 119) All
4 1l >3-4 (1028 28 225) All
4 ]l —-9—-8—=4 (1167 37 63) Okada and Soper (¢ = 0)
5 l—-3—5 (110929 31) All
6 1 —6 (677 27 6) All
7 1 —-9—->7 (430 20 70) All
8 l—-9—8 (437 17 58) All
9 1 —9 (300 10 50) All
10 1 — 10 (450 30 20) All
11 |l -9 —=7—= 11 (902 42 88) Yager; Liou and Wang (4 = 1); Garcia
and Lamata (4 = 1,6 = 0); Okada
and Soper (¢ = 0 and 0.5)
11 |l -6 — 11 (919 39 24) Liou and Wang (41 = 0 and 0.5); Gar-

cia and Lamata (except A = 1,9 =
0); Okada and Soper (¢ = 0 and 0.5);
Nayeem and Pal and Dubois and Prade




Example

5 )
COEN ST

Fig. 2. Acyclic network.

Table 3
Cost of acyclic network—Example 2

Source node Destination node Arc cost
1 2 211
1 3 (722)
2 3 (435)
2 4 (1111)
2 5 611
3 4 @10
4 5 (—811)
4 6 (1321
5 6 ©@10D




Example

Table 4
Results of acyclic network—Example 2

Destination node Shortest path Cost path Order relation

2 -2 211) All

3 1l — 3 (722) Okada and Soper (¢ = 0and 0.5); Liou
and Wang (4 = 1); Garcia and Lamata
(A=1,0=0and A=1,0=0.5)

3 ]l -2—3 (646) All, except Liou and Wang (4 = 1);
Garcfa and Lamata (A = 1, 0 = 0)

4 ] - 2—4 (1322) All

4 l—-2—-3—4 (1557) Okada and Soper (¢ = 0)

5 ]l ->2—-4—5 (533) All

5 ]l >2—=3—=4—5 (768) Okada and Soper (¢ = 0)

6 l >2—-4—-5—->6 (144 4) All

6 |l 253545 5->6 (1679) Okada and Soper (¢ = 0)




Conclusions

The fuzzy shortest path problem has a wide range of
applications.

Depending on the fuzzy ranking, the presented algorithm can
return a single path or a set of non-dominated paths.

The algorithm can work with fuzzy numbers of any type, so
long as an appropriate ordering is defined.

By extending the Bellman-Ford algorithm, this method can
handle graphs with negative arc weights and can detect negative
cycles.
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