
A Graph-Based Memetic Approach to
Sketch Geolocation

Andrew R. Buck, Student Member, IEEE, and James M. Keller, Fellow, IEEE
Department of Electrical and Computer Engineering

University of Missouri
Columbia, Missouri, USA

Abstract—This paper presents a memetic algorithm for the
task of sketch geolocation. Small sets of 2D objects having real-
world origin are depicted as sketches, which capture their spatial
configuration. These are matched to a much larger geospatial
reference scene using a memetic algorithm, which combines
both global and local search strategies. Sets are represented as
attributed relational graphs in which objects are graph nodes
and the spatial relationships between objects, defined by the
histograms of forces, are graph edges. We define a similarity
measure between two such graphs and describe two local search
operators. The first is a greedy operator based on our previous
work and the second is a new approach based on the VF2
subgraph isomorphism algorithm. Our experiments show that
both methods can be successfully applied to this domain.

Keywords—attributed relational graphs; histograms of forces;
memetic algorithm; scene matching; Text-to-Sketch

I. INTRODUCTION

Scene matching is the process of finding a correspondence
between the objects of two scenes. For geographic information
systems (GIS), this is a common task which, for example, may
be used to identify multiple views of the same scene [1] or
to perform a query by sketch [2]. In this paper we focus on
the second task, in which a small target sketch representing
a specific spatial configuration of 2D objects must be found
within a much larger geospatial reference database.

This work is motivated by a recent grant from the U.S.
National Geospatial Intelligence Agency (NGA) aimed at
tackling the inverse problem of linguistic scene description.
Given a set of one or more spatial descriptions, the Text-
to-Sketch (T2S) system constructs an approximate sketch of
object locations [3]. Descriptions often relate two objects based
on their relative position, such as “I see a large building to the
left,” or “There is a parking lot directly behind the building to
my right.” Buildings, parking lots, and other entities used in
the descriptions are drawn by the T2S system as objects in an
image. The objects themselves are only rough estimates of the
actual ground truth, so most of the scene information is stored
as relative spatial information.

We use the histograms of forces (HoF) [4] to capture the
relative position between two objects. The HoF have been
shown to be affine-invariant [5], allowing for the development
of a robust similarity measure that can handle arbitrary changes
in rotation, scale, and translation. The HoF have also been

This work is funded by the U.S. National Geospatial Agency NURI grant
HM 1582-08-1-0020.

shown to be tolerant of shape variations, which is important
for matching approximate sketches. We use an attributed
relational graph (ARG) representation [6], [7] to describe the
spatial configuration of a set of objects, which stores object
attributes as graph nodes and the spatial relationship between
objects as graph edges. Scene matching can then be viewed as
an approximate subgraph matching problem in which we seek
to find a subgraph of the reference ARG that has maximum
similarity to the target sketch ARG.

This is an extension of our previous work in [8], where
we developed a memetic algorithm to perform this task. An
evolutionary framework was used in conjunction with several
local search operators, including a single object replacement
strategy [9], [10], and two set reconstruction operators. In this
paper, we introduce a new local search operator based on the
VF2 subgraph isomorphism algorithm [11], which utilizes the
relational structure of this problem. The top performing one-
seed set reconstruction operator from our previous work is
compared to the VF2 operator to identify the strengths and
weaknesses of each one.

The remainder of this paper is organized as follows. In
Section II, we define a similarity measure which uses a HoF-
ARG model for representing spatial relationships. Section III
outlines the memetic algorithm with Section IV describing the
local search operators in detail. Section V gives our experimen-
tal results using the proposed method, and our conclusions are
made in Section VI.

II. GRAPHS OF SPATIAL RELATIONSHIPS

In this section, we define a graph representation of the
spatial content of a scene using the histograms of forces.
This representation encodes each scene object as graph node
and uses the graph edges to represent the spatial relationship
between objects. These graphs are called attributed relational
graphs, and we define a similarity measure between two such
graphs.

A. Histograms of Forces

The histograms of forces [4], [5], provide a measure of the
spatial relationship between a pair of 2D objects. For every
direction θ, we calculate the sum of elementary forces acting
between objects A and B and aggregate these forces into
the force histogram FABr (θ), shown in Fig. 1. This function
maps R → R+ and represents the degree of support for the
statement “A is in direction θ from B.” The magnitude of the

Fig. 1. (a) A force histogram FAB
r is the scalar resultant of elementary forces exerted by the points of A on those of B. Each one pulls B in direction θ.

(b) The histogram of constant forces (r = 0) is one representation of the spatial relationship between A and B providing a global perspective. (c) The histogram
of gravitational forces (r = 2) is another possible representation, which is more sensitive to nearby points.

Fig. 2. An example scene (a) and its corresponding ARG (b).

forces is calculated as an inverse ratio of dr, where d is the
distance between objects and r provides a way of capturing
different information. When r = 0, we obtain the histogram
of constant forces (F0), which provides a global perspective,
independent of the distance between objects. When r = 2, we
obtain the histogram of gravitational forces (F2), which gives
a local view, more sensitive to nearby points, but independent
of global scale.

We represent a force histogram (F-histogram) as a vector
of 180 real numbers indicating the magnitude of the histogram
for every direction θ, discretized into 2 degree intervals. For
every pair of constant and gravitational F-histograms, we
compute the main direction ϕAB which is the single scalar
direction that best represents the direction between A and B.
This value can be chosen as a weighted centroid of the two
histograms, or as is the case with our experiments, it can be
chosen using the method described in [8] and [12], which
decomposes the two histograms into effective, contradictory,
and compensatory forces. To facilitate the comparison of two
F-histograms, we define a normalized F-histogram FABr where
FABr (0) = FABr

(
ϕAB

)
. This amounts to a shifting of the

histogram bins, which, according to he properties defined in
[5], is equivalent to rotating the pair of objects such that the
degree to which A is to the right of B is maximized. The
triple

(
FAB0 , FAB2 , ϕAB

)
then represents the entirety of our

knowledge regarding the spatial relationship between A and
B.

B. Attributed Relational Graphs

Given a scene XS consisting of a spatial configuration of N
2D objects, we define an index oi and label li for each object.
Additionally, we define the spatial relationship between the
pair of objects (oi, oj) as the triple hij =

(
F ij0 , F

ij
2 , ϕ

ij
)
. The

attributed relational graph representing the scene XS is defined
as the 4-tuple GS = (VS , ES , LS , HS), where VS is the node
set of object indices, ES is the set of edges between vertices,
LS is the set of node attributes containing a label li for each
node oi ∈ VS , and HS is the set of edge attributes containing
a spatial relationship hij for each edge eij = (oi, oj) ∈ ES .
Fig. 2 shows an example of a scene and its corresponding
ARG.

Depending on the magnitude of N , we may decide to
compute the edge relationship between only some of the scene
objects. This is the case for the reference scene XR, which
may contain several thousand objects. When computing GR,
we restrict the set of outgoing edges from each node to that
object’s K nearest neighbors. We can provide other pruning
heuristics, such as limiting the distance between object pairs
and restricting the number of objects which can lie between the
two objects in question. For an overview of how to compute
the latter, we refer readers to [13].

An ARG is complete if there is an edge relationship
between every pair of nodes. A target scene XT that is to be
found within the reference scene XR is defined as a complete
ARG GT . A potential solution to the scene matching problem
is a subgraph of the reference ARG GR that could match
GT . A subgraph of GR is defined as GΓ ⊂ GR, where GΓ

contains only some of the objects defined in GR and the
corresponding edges and attributes. In order to evaluate the
quality of a potential solution, we require it to be isomorphic
to the target ARG—that is, each potential solution must be a
complete ARG. Were it not for the attributes associated with
each graph, we could define our scene matching problem as
a subgraph isomorphism search. Since the definition of iso-
morphism between two ARGs is somewhat vague, we instead
refer to the scene matching problem as that of approximate
subgraph matching, in which we seek to find a subgraph of
the reference ARG GR which has a high degree of similarity
to the target ARG GT . We define a similarity measure between
two ARGs in the following section.

Fig. 3. Trapezoidal weighting function.

C. Comparing Graphs

We now define a similarity measure that we call elastic
angles [10], which can be applied to two ARGs under the
following circumstances:

• Both ARGs must be complete graphs of the same size.

• The correspondence between objects is assumed to be
defined by the vector order of the object indices.

Under these conditions, the two ARGs G1 and G2 will each
contain N nodes and N(N−1) edges. Because of the semantic
inverse property of the histograms of forces [5], which states
that an inverse relationship is equivalent to a 180 degree shift
of the histograms, we can reduce the required computation
by considering only edges eij for which i < j. The resulting
two lists of edge attributes are notated as H̃1 and H̃2, each of
length N(N − 1)/2. The ith element of H̃1 is referenced as
h̃1i =

(
F̃ 1i

0 , F̃
1i
2 , ϕ̃

1i
)

with a similar notation for H̃2.

We begin by defining the similarity between two normal-
ized F-histograms F̃ 1i

r and F̃ 2i
r as their cross-correlation,

ψCC
(
F̃ 1i
r , F̃

2i
r

)
=

∑
θ F̃

1i
r (θ)F̃ 2i

r (θ)√∑
θ

(
F̃ 1i
r (θ)

)2∑
θ

(
F̃ 2i
r (θ)

)2
. (1)

The similarity of the constant and gravitational F-histograms
are weighted equally, giving a histogram similarity score that
does not yet include orientation information from the main
directions,

ψHist

(
h̃1i, h̃2i

)
= 1

2ψCC
(
F̃ 1i

0 , F̃
2i
0

)
+ 1

2ψCC
(
F̃ 1i

2 , F̃
2i
2

)
. (2)

The main direction terms of each ARG encode the scene
orientation with respect to a global reference angle. In order to
compare two ARGs that may have been defined with different
reference angles, we must determine the optimal rotation angle
that produces the best alignment. We compute a vector of
angular differences by subtracting the corresponding main
direction angles between ARGs,

D =
(
d1, . . . , dN(N−1)/2

)
, di = ϕ̃1i − ϕ̃2i. (3)

We choose the optimal rotation angle ϕ? as the median
value of D, computed on a periodic domain. This is equivalent

to picking the angle from D which minimizes the distance to
all other angles [14],

ϕ? = arg min
di∈D

180◦ −
∑
dj∈D

∣∣180◦ − |dj − di|
∣∣ . (4)

The similarity between the two ARGs is defined as a
weighted average of the histogram similarity scores, where
the weight for each one is defined by how far the histograms
would need to be rotated in order to be aligned with the optimal
rotation angle. We define a symmetric trapezoidal function
ψTrap (Fig. 3) to determine the weighting factor and define
the overall ARG similarity as

Ψ(G1, G2) =

∑N(N−1)/2
i=1 ψTrap (ϕ? − di)ψHist

(
h̃1i, h̃2i

)
N(N − 1)/2

.

(5)

This measure takes a value between 0 and 1, with 1 indicating
a perfect match between ARGs. The complexity of computing
the similarity is on the order of O(N2).

III. A MEMETIC ALGORITHM

Given a geospatial reference database as a reference scene
XR and a target scene XT , which is constructed from an input
sketch, our goal is to find a region of the reference database
that closely matches the target scene. Because the single top
scoring match according to our similarity measure may not
coincide with the best match according to an analyst, we
are interested in returning a list of the top scoring matches,
which may come from several different regions of the reference
database. An evolutionary algorithm (EA) is an appropriate
tool for this problem, as it can maintain a population of
potential solutions, and also have an adjustable stop condition
based on factors decided by the analyst. In this paper, we use
a memetic algorithm for matching spatial configurations [8]
that combines the global search strategy of an EA with an
individual local search operator.

A memetic algorithm [15] is an extension of an EA that
adds a local refinement step to improve individual solutions
during the evolutionary process. In general, an EA starts by
creating a population of random individuals that cooperate
and compete over time to find good solutions to a given
problem. The basic operators of an EA are selection, recom-
bination, and mutation. The selection operator ensures that
good solutions survive to subsequent generations while still
allowing individuals of lower fitness to occasionally survive.
Recombination serves to improve the existing population by
combining the best attributes of individuals, and mutation is
performed occasionally to maintain population diversity and to
search unexplored areas of the search space. The local search
operator introduced by the memetic approach increases the
fitness of an individual solution by utilizing domain-specific
knowledge. Proper algorithm design requires a good balance
between exploration provided by mutation, and exploitation
provided by recombination and the local search operator.

Prior to the start of the algorithm, the reference ARG GR is
computed from the reference scene XR and the target ARG GT
is computed from the target scene XT . We define the number of
target objects in XT as N and the number of reference objects
in XR as M with M � N . For convenience, we represent the
objects of the reference scene as the vector R = (x1, . . . , xM)
and those of the target scene as the vector T = (o1, . . . , oN).
A potential solution, or individual, is represented as the vector
Γ =

(
x(1), . . . , x(N)

)
⊂ R where each x(i) is an object in

R that should be matched with the target object oi. The ith
object of the individual is notated as Γi, and we define the
label attribute of an object xi as L(xi). Given a potential
solution in vector form, it is straightforward to build the ARG
representation GΓ as a subgraph of GR and compute the
similarity with the target ARG, which we use as the fitness
function for the memetic algorithm, f(Γ) = Ψ(GT , GΓ).

Ultimately, this is a combinatorial optimization problem
with a specific set of constraints. Only potential solutions that
form complete ARGs can be compared to the target scene,
and we also require that the labels of the target objects match
those of the potential solution. We enforce these constraints by
ensuring that the population always contains valid individuals.
This implies that solutions will be spatially compact, due to the
pruning of distant object relationships in the reference ARG.
Recombination is difficult in this domain because the solutions
can be spaced far apart in the search space. Swapping some of
the objects from two individuals with standard crossover op-
erators will almost always yield an invalid solution. Similarly,
mutation cannot blindly replace an object from an individual
with a random one from the reference scene, as this will also
tend to result in an invalid solution. We therefore delegate
the role of exploration to the random initialization operator,
which returns a valid solution at a random location in the
search space, and the role of exploitation to the local search
operator, which uses domain-specific knowledge to improve a
single solution.

The outline of our search procedure is given in Algo-
rithm 1. The algorithm requires reference and target ARGs as
input along with predefined constants µ (population size), τ
(replacement rate), and ρ (replacement percent). The search
procedure starts by generating an initial population of µ
random individuals. Each random individual is chosen by first
finding the label of a target object that appears least often in
the reference scene, and then picking a random object from
the reference scene with that label. This becomes the base
object of the individual, and the remaining objects are chosen
from its nearest neighbors such that the labels match those of
the target scene. Closer neighbors have a higher likelihood of
being chosen in order to keep the individual spatially compact.
If none of the base object’s neighbors can satisfy the label
requirements of the target scene, a new base object is chosen
in a different location.

After creating the initial population, the local search oper-
ator is applied to each individual. These newly formed child
solutions replace their parents if they have a greater fitness
value, utilizing domain knowledge to move closer to a locally
optimal solution. After a few generations, the repeated use
of the local search operator makes it likely that many of the
individuals in the population have converged to local optima.
To encourage exploration, we replace the least fit fraction

Algorithm 1 Memetic Algorithm for Scene Matching

Input:
GR and GT
Constants: µ, τ, ρ

Initialize:
t = 0

Create initial population of individuals:
P (0) =

(
Γ1, . . . ,Γµ

)
While stopping criteria is not met Do
P (t+1) = P (t)

t = t+ 1

If t is a multiple of τ Then
Replace the lowest scoring fraction ρ of P (t) with

new random individuals
Else

For Each individual ΓP ∈ P (t) Do
Generate child ΓC = local search

(
ΓP
)

If f
(
ΓC
)
> f

(
ΓP
)

Then
Replace ΓP with ΓC

End If
End For

End If
End While
Output: Top scoring individuals in P (t)

ρ of the population with new random individuals every τ
generations. This can be seen as a type of strong mutation,
which allows new regions of the search space to be explored
while ensuring that the best solutions remain in the population.
The algorithm can be summarized as a parallel local search
procedure that keeps a record of the best results. By casting it
in a memetic framework, we can better understand how each
operator affects the balance of exploration and exploitation.

IV. LOCAL SEARCH OPERATORS

The local search operators we have designed for scene
matching in this domain each take a target and reference scene
as input, along with a single parent solution, and return a
child solution from the reference scene that should be more
similar to the target scene. Each operator is restricted to the
local neighborhood of the parent, and while the algorithms are
mostly deterministic, both contain some degree of randomness.
This implies that although the best solution is usually found,
repeated applications of the algorithm on the same solution
may yield different results. The following sections describe
the greedy one-seed set reconstruction operator introduced in
[8], and a new operator based on the VF2 algorithm for finding
subgraph isomorphisms [11].

A. One-Seed Set Reconstruction

The one-seed set reconstruction method is based on the
idea that the best solution in a local region can be reconstructed
from a small starting seed of a single object. Given a complete

Algorithm 2 One-Seed Set Reconstruction Search Operator

Input:
Target scene: T = (o1, . . . , oN)

Reference scene: R = (x1, . . . , xM)

Parent: ΓP =
(
ΓP1 , . . . ,Γ

P
N

)
where each ΓPi ∈ R

Initialize:
Cbest = 0

Initialize list of index locations: I = {1, . . . , N}
For Each (i, j) ∈ I × I such that L(oi) = L(ΓPj) Do

Clear Γ′

Create the partial target scene: T′ = (oi)

Update remaining index locations: I ′ = I − i
Set Γ′i = ΓPj
Get the set of valid nearest neighbors N ⊆ R of ΓPj
While |I ′| > 0 Do

Pick an index k ∈ I ′ randomly
Add ok to the partial target scene: T′ = (. . . , ok)

fbest = 0

For Each x? ∈ N Do
Set Γ′k = x?

Evaluate the partial fitness f(Γ′) = Ψ(GT ′ , GΓ′)

If f(Γ′) > fbest Then
xbest = x?; fbest = f(Γ′)

End If
End For
Set Γ′k = xbest

Remove this index location: I ′ = I ′ − k
Update N as the nearest neighbors of Γ′

End While
If f(Γ′) > Cbest Then

ΓC = Γ′; Cbest = f(Γ′)

End If
End For
Output: ΓC

target scene T = (o1, . . . , oN), we define a partial target scene
T′ =

(
o(1), . . . , o(n)

)
⊂ T, which only contains some of

the original objects. Likewise, we define a partial solution
as a vector Γ′ =

(
x(1), . . . , x(n)

)
⊂ R, which associates

each object of the partial target scene with an object from
the reference scene. The partial fitness f(Γ′) = Ψ(GT ′ , GΓ′)
only considers the specified subset of original target objects.

The overall outline of the one-seed set reconstruction
method is given in Algorithm 2. Given a parent solution
ΓP =

(
ΓP1 , . . . ,Γ

P
N

)
, we cycle through each object ΓPi ∈ ΓP

and use it as the seed object. We then consider all target objects
with the same label attribute and create a partial solution Γ′

for each one. For each partial solution, we randomly pick an
unassigned target object oi ∈ T−T′ and find the set of valid
nearest neighbors N ⊆ R to which oi could be assigned while
keeping GΓ′ a complete ARG. For each neighbor, we create a

Algorithm 3 VF2 Subgraph Isomorphism Search Operator

Input:
Target graph: GT
Reference scene: R = (x1, . . . , xM)

Parent: ΓP =
(
ΓP1 , . . . ,Γ

P
N

)
where each ΓPi ∈ R

Constants: fmin, δ,K

Initialize:
ΓC = ∅
While ΓC = ∅ Do

Get the set of K valid nearest neighbors N ⊆ R of ΓP

Build the neighbor graph GN with random node order
Run the VF2 algorithm to find the set of subgraphs
C ⊂ GN that are compatible with GT using fitness
threshold fmin

If C is empty Then
fmin = fmin − δ

Else
Set ΓC as the vector form of the best solution in C

End If
End While
Output: ΓC

set of temporary partial solutions, each with oi assigned to
a different neighbor object x? ∈ N . The neighbor which
produces the greatest partial fitness is added to the partial
solution and oi is added to the partial target scene. We continue
to match the unassigned target objects in this greedy manner
until all target objects have been assigned. The complete
solution with the highest fitness among all solutions generated
from different starting seeds is returned as the child solution.

Given that the complexity of a single fitness evaluation is
O(N2), the worst-case complexity of the one-seed method can
be derived as O(N5K), where K is the maximum neighbor-
hood size of the reference scene. In practice, the complexity
tends to be lower since object labels prune the number of
possible seeds, and evaluating the fitness of a partial solution
requires fewer operations than for a complete solution. Even
so, this method is only appropriate for relatively small values
of N .

B. VF2 Subgraph Isomorphism

The VF2 subgraph isomorphism algorithm [11] is well
suited for matching attributed graphs. The algorithm uses a
state space representation that encodes each possible mapping
between two graphs as a search state. A set of syntactic fea-
sibility rules based on graph structure and semantic feasibility
rules based on attribute compatibility are employed to prune
the search tree. Given a reference graph GR and a target
graph GT , the VF2 algorithm begins by exploring all feasible
mappings of a single object from the target graph onto an
object from the reference graph. Feasible object pairs are added
to each mapping one at a time using a depth-first search until
no more feasible pairs exist, or a subgraph isomorphism is
found. To prevent visiting the same state multiple times, an

arbitrary total order relation is defined on the graph nodes so
that any potential mapping is reachable from only a single
previous state.

The success of the VF2 algorithm depends on the ability to
prune the search tree by ignoring the addition of infeasible ob-
ject pairs. A key assumption is that the overall compatibility of
two graphs can be determined by evaluating the compatibility
of each node and edge pair independently via node and edge
compatibility functions. This is not possible for our similarity
measure since each edge in the graph contributes to the overall
orientation. We therefore modify the VF2 algorithm slightly
so that the feasibility of a new object pair is computed by
evaluating the partial fitness of the partial solution resulting
from the addition of the object pair. The pair is considered
feasible if the partial fitness is greater than a minimum fitness
threshold, fmin. Evaluating the feasibility in this way changes
the assumptions of the VF2 algorithm and no longer guarantees
that all compatible subgraph isomorphisms will be found. For
example, a complete solution may be feasible, but it will not be
reached if an intermediate state is determined to be infeasible.
To ameliorate this effect, we randomize the index order of the
graph nodes for each run of the algorithm, which changes the
search path to any mapping state.

Our VF2 local search operator is outlined in Algorithm 3.
Given a parent solution ΓP =

(
ΓP1 , . . . ,Γ

P
N

)
, we construct a

neighbor graph GN ⊆ GR containing the K nearest neighbors
of GΓ. The VF2 algorithm is then used to find all subgraphs
of GN which are compatible with the target graph GT using
a fitness threshold fmin. If no solutions are found, the fitness
threshold is decremented by a value δ and the VF2 algorithm
is run again. This continues until at least one solution is found,
and of these, the solution with the highest fitness is returned
as the child solution.

The complexity of the VF2 algorithm can be stated in terms
of the best and worst cases. For a neighbor graph with K
nodes and a target graph with N nodes, the cost of exploring
a single state can be done with a complexity of O(K+N) with
an additional complexity of O(N2) for the fitness evaluation.
The algorithm will visit N states in the best case scenario and
K! states in the worst case. This gives best-case and worst-
case complexities of O

(
N(K + N2)

)
and O

(
K!(K + N2)

)
respectively. We rely on experimental evaluation to determine
the average complexity.

V. EXPERIMENTS

We test our method on a hand-segmented database of
Columbia, MO containing 2467 buildings and 378 parking
lots shown in Fig. 4. The reference ARG was built a priori
by calculating the HoF relationships between each object and
its 50 nearest neighbors, provided that the two objects are
within 500 pixels of each other and do not contain more
than 5 other objects in-between. Two sets of test sketches
were randomly generated representing direct resubstitution and
transformed input sketches. The direct resubstitution sketches
contain objects taken directly from the reference scene with
no transformation applied. These sketches verify that a match
can be found under ideal conditions. The transformed sketches
take a direct resubstitution sketch and reduce all of the objects
to their bounding boxes before applying a global random

Fig. 4. The geospatial reference database used for our experiments. The set
contains 2467 buildings shown in red (dark gray) and 378 parking lots shown
in green (light gray) from downtown Columbia, MO and the University of
Missouri campus.

TABLE I. ALGORITHM PARAMETERS

1-Seed VF2
Population Size (µ) 50 10

Replacement Frequency (τ) 10 Gen. 2 Gen.
Replacement Percent (ρ) 80% 80%

Nearest Neighbor Connectivity (K) 50 50

Initial Minimum Fitness Threshold (fmin) N/A 0.95

Fitness Threshold Step Size (δ) N/A 0.95

Maximum Number of Generations 100 Gen. 100 Gen.

rotation to the whole scene. These sketches approximate the
imprecision that would be present in a sketch generated by
hand or by the T2S system. For both types we consider
sketches of 4, 6, 8, 10, and 12 objects, and for each sketch
size, we generate 100 test sketches from random locations in
the reference scene.

The memetic algorithm is run with the reference scene
10 times for each sketch using either the one-seed or VF2
local search operators. The search stops when the original
sketch location is found or after 100 generations. We then
record how many of the tests were correctly matched to the
original location within the allowed search time. The complete
list of algorithm parameters is given in Table I. For the one-
seed operator, we use a population size of 50 individuals
with a replacement rate of 80% every 10 generations. For the
VF2 operator, due to the greater computational overhead, we
use a smaller population size of 10 individuals with a more
aggressive replacement strategy of 80% every 2 generations.
Additionally, for the VF2 operator we start with a minimum
fitness threshold of 0.95 and a fitness step size of 0.05.
Although these parameters are not identical, they are good
choices for each operator based on preliminary experiments,
and allow our comparison to evaluate a best-case scenario for

TABLE II. RESULTS OF THE MEMETIC ALGORITHM FOR MATCHING SPATIAL CONFIGURATIONS

Direct Resubstitution Sketches Transformed Sketches

Local Search
Method

Objects in
Sketch

% Correctly
Matched

Generations Time (seconds) % Correctly
Matched

Generations Time (seconds)
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1-Seed

4 95.1% 22 16 89 77 80.6% 36 30 151 139

6 98.5% 12 13 207 183 95.6% 16 18 318 367

8 99.6% 9 8 494 460 93.4% 18 22 771 998

10 94.8% 13 21 1258 1531 81.7% 28 35 2171 2790

12 86.2% 20 32 3304 4282 87.2% 20 31 4317 6012

VF2

4 98.7% 16 12 26 33 80.4% 32 33 97 176

6 96.6% 19 15 81 104 94.3% 22 20 143 183

8 98.1% 19 12 189 259 86.0% 31 28 744 1086

10 90.8% 26 24 1777 2705 69.2% 43 38 5927 9809

12 76.5% 39 33 4986 4864 78.8% 38 32 11 009 15 040

Fig. 5. Average runtime of the experiments with direct resubstitution sketches,
showing the minimum, maximum, upper and lower quartile, and median values
for each configuration.

each operator. All of our experiments were implemented in
C++ and conducted in parallel on a 64-bit computer running
Windows 7 with 8 logical processors clocked at 2.8 GHz and
12 GB of RAM.

The results of our experiments are given in Table II. In
general, the direct resubstitution sketches had a greater number
of tests that found the correct match and also had faster
runtimes. This is to be expected since the transformed sketches
will not always find the original sketch location to be the most
similar match. This is especially true if the sketch contains
only a few objects, or if it is a common configuration such
as a row of buildings. Another observation is that the match
rate tends to decrease if the number of sketch objects is very
large or small. Large sketches can be difficult to match in the
allotted time due to the greater number of variables, whereas
small sketches often match to so many places in the reference
scene that the correct match is less likely to be found.

The average runtimes of the experiments with direct resub-

Fig. 6. Average runtime of the experiments with transformed sketches,
showing the minimum, maximum, upper and lower quartile, and median values
for each configuration.

stitution sketches are given in Fig. 5 and the average runtimes
of the experiments with transformed sketches are given in
Fig. 6. These box plots show the minimum, maximum, upper
and lower quartile, and median values of the 1000 tests in
each configuration. In general larger sketches have a greater
runtime, although there is a very large spread between the
best and worst cases. The VF2 method also appears to perform
slightly better than the one-seed method for small sketch sizes,
whereas the one-seed method is slightly better for large sketch
sizes.

Finding the original sketch location is only one measure
of success for this algorithm. An analyst may wish to find
all of the close-matching locations or the input sketch may
not originate from the reference scene. This requires a more
qualitative assessment of the results. Two example search
results are given in Fig. 7. The first row shows the top five
results of the algorithm on a direct resubstitution sketch using
the VF2 operator and the second row shows the top five results

Ground Truth Sketch Fitness: 1.0 Fitness: 0.946 Fitness: 0.939 Fitness: 0.935 Fitness: 0.902

Ground Truth Sketch Fitness: 0.993 Fitness: 0.986 Fitness: 0.982 Fitness: 0.980 Fitness: 0.976

Fig. 7. Examples of the top matches found using our memetic algorithm. The top row shows a direct resubstitution sketch and the top five results found with
the VF2 local search operator, and the bottom row shows a transformed sketch and the top five results found with the one-seed local search operator.

on a transformed sketch using the one-seed operator. In both
examples, the ground truth location is returned as the top
result and the remaining solutions all share a similar spatial
configuration with the input sketch. Note that the results are
all independent of the scale and rotation of the input sketch.

VI. CONCLUSIONS AND FUTURE WORK

Our experiments have demonstrated the capability of the
HoF-ARG model for representing spatial relationships. The
memetic algorithm for matching spatial configurations is a
useful framework that allows separate development of local
and global search strategies. Both the one-seed and VF2 local
search operators work well on this problem with the one-seed
operator performing slightly better for transformed sketches
and the VF2 operator performing slightly better for small
sketches. The runtime of both methods becomes prohibitive
as the sketch size grows large.

There are several directions for future work in this area.
The effect of neighborhood size on the VF2 operator has
not been fully explored. As the size of the neighborhood
approaches the size of the search space, scene matching can
be done with a single run of the VF2 algorithm, however we
suspect this approach may not scale to very large reference
scenes. The global search portion of the memetic algorithm
could be improved by employing a (µ+ λ) evolution strategy
with appropriate diversity mechanisms. Finally, additional at-
tributes on the nodes and edges of the ARG would help prune
the search space and improve search performance.

REFERENCES

[1] O. Sjahputera and J. M. Keller, “Scene matching using F-histogram-
based features with possibilistic C-means optimization,” Fuzzy Sets and
Systems, vol. 158, no. 3, pp. 253–269, Feb. 2007.

[2] M. J. Egenhofer, “Query processing in spatial-query-by-sketch,” J. of
Visual Languages and Computing, vol. 8, no. 4, pp. 403–424, Aug.
1997.

[3] I. J. Sledge and J. M. Keller, “Mapping natural language to imagery:
Placing objects intelligently,” in Proc. 2009 IEEE Int. Conf. Fuzzy
Systems (FUZZ-IEEE 2009), Jeju Island, Korea, Aug. 2009, pp. 518–
523.

[4] P. Matsakis and L. Wendling, “A new way to represent the relative
position between areal objects,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 21, no. 7, pp. 634–643, Jul. 1999.

[5] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa, “The use of
force histograms for affine-invariant relative position description,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 1–18, Jan. 2004.

[6] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed
relational graphs for pattern analysis,” IEEE Trans. Syst., Man, Cybern.,
vol. 9, no. 12, pp. 757–768, Dec. 1979.

[7] M. A. Eshera and K.-S. Fu, “An image understanding system using
attributed symbolic representation and inexact graph-matching,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 5, pp. 604–618, Sep. 1986.

[8] A. R. Buck, J. M. Keller, and M. Skubic, “A memetic algorithm for
matching spatial configurations with the histograms of forces,” IEEE
Trans. Evol. Comput., Nov. 2012, in press.

[9] ——, “A modified genetic algorithm for matching building sets with
the histograms of forces,” in Proc. 2010 IEEE Congr. Evolutionary
Computation (CEC), Barcelona, Spain, Jul. 2010, pp. 1–7.

[10] A. R. Buck, J. M. Keller, M. Skubic, M. Detyniecki, and T. Baerecke,
“Object set matching with an evolutionary algorithm,” in Proc. 2011
IEEE Symp. Computational Intell. Security and Defense Applicat.
(CISDA), Paris, France, Apr. 2011, pp. 43–50.

[11] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, no. 10, pp. 1367–1372, Oct. 2004.

[12] P. Matsakis, J. M. Keller, L. Wendling, J. Marjamaa, and O. Sjahputera,
“Linguistic description of relative positions in images,” IEEE Trans.
Syst., Man, Cybern. B, vol. 31, no. 4, pp. 573–588, Aug. 2001.

[13] I. Bloch, O. Colliot, and R. M. Cesar Jr., “On the ternary spatial relation
‘between’,” IEEE Trans. Syst., Man, Cybern. B, vol. 36, no. 2, pp. 312–
327, Apr. 2006.

[14] N. I. Fisher, Statistical Analysis of Circular Data. Cambridge, England;
New York, NY: Cambridge University Press, 1993.

[15] P. Moscato, “On evolution, search, optimization, genetic algorithms
and martial arts: Toward memetic algorithms,” Caltech Concurrent
Computation Program, California Inst. Technol., Pasadena, CA, Tech.
Rep. 826, 1989.

