
 

  

Abstract—In this paper, we present an approach for modeling 

and comparing small sets of 2D objects based on their spatial 

relationships. This situation can arise in the conflation of a hand 

or machine drafted map to a satellite image, or in the 

correspondence problem of matching two images taken under 

different viewing conditions. We focus here on the specific 

problem of matching a sketched map containing several 2D 

objects to hand-segmented satellite imagery. We define a 

similarity measure between the spatial configurations of two 

object sets which uses attributed relational graphs to represent 

scene information. Objects are represented as graph nodes and 

edges are defined by the histograms of forces between object 

pairs. We develop a memetic algorithm based on a (μ + λ) 

evolution strategy to solve this scene matching problem with 

three domain-specific local search operators which are compared 

experimentally. 

 
Index Terms—Attributed relational graphs, histograms of 

forces, memetic algorithms, scene matching, Text-to-Sketch.  

 

I. INTRODUCTION 

GEOGRAPHIC information system (GIS) which stores 

and manipulates spatial information is often required to 

perform the task of scene matching. A scene can be defined as 

a certain configuration of objects or image features that may 

have some real-world origin. Scene matching is a high-level 

task that applies computer vision and pattern recognition 

techniques to find corresponding regions in multiple images. 

From a GIS point of view, scene matching can be used to 

identify multiple views of the same scene [1] or to perform a 

query by sketch [2], in which a small target sketch must be  

found within a much larger image. For this application, a 

sketch is defined as a specific spatial configuration of 2D 

objects which is to be found in a much larger GIS database of 

annotated object locations. This can be used to match a 

sketched map of object locations to a real-world location using 

segmented satellite imagery (Fig. 1). 
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National Geospatial-Intelligence Agency (NGA) aimed at 

tackling the inverse problem of linguistic scene description, in 

which a set of one or more spatial descriptions is used to 

construct an approximate sketch of object locations [3]. This is 

called Text-to-Sketch (T2S) by the NGA. The input to the T2S 

system is a set of linguistic spatial descriptions. Descriptions 

often relate two objects based on their relative position, such 

as “I see a large building to the left,” or “There is a parking lot 

directly behind the building to my right.” Buildings, parking 

lots, and other descriptive entities which appear in the 

descriptions are drawn by the T2S system as 2D objects in an 

image. Apart from a small collection of labels, the only 

defining features of these sketches are the shapes, sizes, and 

spatial relationships between the objects. Being built from 

linguistic descriptions, the sketches are rarely a completely 

accurate representation of the actual ground-truth objects; thus 

our model must be tolerant of variations in shape, size, scale, 

and position. 

The core requirement of scene matching is the definition of 

a measure which assesses the similarity of two scenes. For 

GIS systems, this is usually done by evaluating the similarity 

of the two spatial configurations. Since sketches are often 

constructed from qualitative descriptions rather than exact 

dimensions, we seek ways in which to represent this 

qualitative spatial information. Most methods use some 

combination of topology, orientation, size, shape, and distance 

to represent spatial relationships [4]. Several crisp similarity 

measures have been defined between scenes using topological 

models based on minimum bounding rectangles [5], 

orientation graphs [6], and by counting the number of gradual 

changes required to transform one scene into another [7]. One 

drawback of these methods is that the basic topological 

framework must be substantially appended with notions of 

direction and distance in order to handle situations in which 

nearly all objects are disjoint. 

In contrast to these crisp methods, the histograms of forces 

(HoF) [8] provide a fuzzy framework for expressing the 

relative position between 2D objects based on directional 

relationships. The HoF have been shown to be affine-invariant 

[9], allowing for a robust similarity measure between two 

scenes which can handle arbitrary changes in rotation, scale, 

and translation. In [1] and [10] the HoF are used to generate 

scene descriptors representing all of the spatial relationships 

between objects in a scene. A correspondence map is built 
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using a possibilistic C-means clustering method which 

associates pairs of objects between scenes. The HoF method is 

compared to the Fourier-Mellin transform method of image 

registration [11], and shown to be more robust to variations in 

viewing geometries. These scene matching methods focus 

solely on establishing a correspondence and confidence value 

between two predefined scenes, however, and do not provide a 

way to search for the existence of one scene within another. 

Our method uses the descriptive power of the histograms of 

forces to define the object correspondence between scene 

objects within a larger evolutionary framework. 

In this paper, we focus exclusively on the HoF method of 

capturing spatial information in a scene and show how it can 

be used for the task of scene matching. We develop a 

similarity measure based on the concept of an attributed 

relational graph (ARG) [12], [13] in which scene objects 

become the nodes of a graph and the HoF relationships 

between objects become edges. By representing both a query 

sketch and a reference GIS database as ARGs, scene matching 

can be described as an approximate subgraph matching 

problem in which we seek to find a subgraph of the reference 

ARG which is has maximum similarity to the sketch ARG. 

This approach was used by Berretti et al. [14] to perform 

image retrieval and by Nedas and Egenhofer [15] for querying 

spatial scenes. In the latter, the search problem is cast as a 

constraint satisfaction problem (CSP) [16] in which a set of 

variables representing the scene objects must be mapped to a 

specific set of possible reference objects such that the induced 

ARG is isomorphic to the query ARG. The notion of an error-

tolerant subgraph isomorphism is used to allow for the types 

of partial constraints that arise in real searches. This represents 

a combinatorial optimization problem, for which an 

exhaustive search would quickly become intractable on large 

databases. 

Evolutionary algorithms have been shown to be well-suited 

to solving optimization problems, particularly in noisy or 

uncertain environments [17], which makes them attractive 

methods for searching spatial configurations. Rodríguez and 

Jarur [18] developed a genetic algorithm which uses a measure 

based on topological relationships and the distance between 

objects to evaluate the similarity of object pairs, but does not 

consider directional relationships. Papadias et al. [19] 

combined a hill-climbing strategy with an evolutionary 

approach for this problem using a crisp relation scheme. 

Although these methods were shown to be effective in their 

own domains, our work focuses on the application of the HoF 

to the problem of scene matching, and a thorough comparison 

is left for future work. The method used in [19] is similar to a 

memetic algorithm [20], which adds an individual refinement 

step to the standard evolutionary algorithm. This is an 

effective search strategy for many different types of problems 

[21], particularly those which operate on graphs. In [22], 

evidence is given that a domain-specific heuristic can improve 

a genetic algorithm for the maximum clique problem, and in 

[23] a memetic algorithm is used to find a solution to the 

capacitated arc routing problem. We have designed three 

novel local improvement search operators that are used within 

a memetic algorithm intended for searching spatial 

configurations. This allows for the incorporation of domain-

specific knowledge into a parallel search procedure with a 

population of candidate solutions covering a large geographic 

search area. 

The remainder of this paper is organized as follows. In 

Section II we define a similarity measure which uses a HoF-

ARG model for representing spatial relationships. Section III 

outlines the memetic framework with Section IV describing 

the local search methods in detail. Section V gives our 

experimental results using the proposed method, and our 

conclusions are made in Section VI. 

 

II. EVALUATING SPATIAL SIMILARITY 

In this section we discuss the development of a similarity 

measure between two spatial scenes. We use the notion of the 

histograms of forces as attributes for ARGs and define ways to 

compare both individual force histograms and complete 

ARGs. The issue of orientation independence is addressed and 

a novel comparison method which we call elastic angles is 

introduced. 

A. Histograms of Forces 

The relative position of a pair of two-dimensional objects 𝐴 

and 𝐵 can be represented by the set of forces acting between 

them. For every direction 𝜃, we calculate the sum of 

elementary forces acting between 𝐴 and 𝐵 in direction 𝜃 (Fig. 

2). These forces can be aggregated into the F-histogram 

𝐹𝑟
𝐴𝐵(𝜃), which maps ℝ → ℝ+ and represents the degree of 

support for the proposition, “𝐴 is in direction 𝜃 of 𝐵.” 

Provided that 𝐴 and 𝐵 are both non-empty regions and we 

compute 𝜃 on a fine enough scale, 𝐹𝑟
𝐴𝐵  should have at least 

one element greater than zero. We calculate the magnitude of 

the individual forces as an inverse ratio of 𝑑𝑟, where 𝑑 

represents the distance between the points of 𝐴 and 𝐵, and 𝑟 

provides a way of capturing different information. When 𝑟 =
0, we obtain the histogram of constant forces (𝐹0), which 

provides a global perspective, independent of the distance 

between 𝐴 and 𝐵. When 𝑟 = 2, we obtain the histogram of 

 
Fig. 1  An example of a machine-drafted sketch (a) and its corresponding 

match within a segmented satellite image (b). Buildings are shown in red 
(dark gray) and parking lots are shown in green (light gray). 

 



 

gravitational forces (𝐹2), which gives a local view, more 

sensitive to nearby points, but independent of global scale. 

B. Main Direction 

Often, we need to reduce the spatial relationship to a single 

scalar direction 𝜑𝐴𝐵 , which is the main direction between the 

objects 𝐴 and 𝐵. In [24], Matsakis et al. present a method 

which uses both the 𝐹0 and 𝐹2 histograms for assessing the 

degree of truth of the statement, “𝐴 is in direction 𝜃 of 𝐵.” 

This is especially important in cases where the 𝐹0 and 𝐹2 

histograms would by themselves indicate different primary 

directions such as in Fig. 3. By using a common value for the 

main direction, we can treat the 𝐹0 and 𝐹2 histograms as a pair 

with a single reference axis. For each angle 𝜃, the forces of 

𝐹𝑟
𝐴𝐵  are categorized as effective, contradictory, or 

compensatory. Contradictory forces are those which oppose 

the proposition, “𝐴 is in direction 𝜃 of 𝐵.” Compensatory 

forces are chosen from the non-contradictory forces to balance 

the pull of the contradictory forces. Any remaining forces are 

labeled as effective forces, and are used to compute four 

statistical values, 𝑎0
𝐴𝐵(𝜃), 𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃), and 𝑏2

𝐴𝐵(𝜃). Here, 

𝑎𝑟
𝐴𝐵  represents the combined degree of truth that “𝐴 is in 

direction 𝜃 of 𝐵” according to the F-histogram 𝐹𝑟
𝐴𝐵 , and 𝑏𝑟

𝐴𝐵 

represents the percentage of all forces which are effective. 

Details of this computation can be found in [24]. By 

evaluating all directions, we define the combined force 

histogram as 

 

 Φ𝐴𝐵(𝜃) = max{𝑎0
𝐴𝐵(𝜃), min{𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃)}}. (1) 

 

Skubic et al. [25] define the main direction 𝜑𝐴𝐵  as the 

direction 𝜃 for which Φ𝐴𝐵(𝜃) is maximum. We chose to use a 

more robust approach in which we define 𝜑𝐴𝐵  to be the 

direction of the centroid of the combined force histogram, 

Φ𝐴𝐵 . Because Φ𝐴𝐵  is defined on a periodic domain, we must 

use polar vector summation to ensure that all directions are 

treated equally [26]. This is especially true for cases in which 

𝐴 surrounds 𝐵 or vice versa in which there is no suitable 2𝜋 

range of Φ𝐴𝐵  which could serve as a linear mapping. We 

define the main direction as 

 

𝜑𝐴𝐵 = atan2 ( ∑ sin(Φ𝐴𝐵(𝜃))

𝜃∈[0,2𝜋]

, ∑ cos(Φ𝐴𝐵(𝜃))

𝜃∈[0,2𝜋]

) , 

 (2) 

 

where atan2(𝑦, 𝑥): ℝ × ℝ → [0,2𝜋) is the two-argument 

variation of the arctangent function. Although we could 

certainly use the centroid of either the 𝐹0 or 𝐹2 histogram to 

represent the primary direction, the main direction 

interpretation defined above gives a unified framework that is 

more consistent with the natural human interpretation. 

 
Fig. 2  (a) A force histogram 𝐹𝑟

𝐴𝐵 is the scalar resultant of elementary forces exerted by the points of 𝐴 on those of 𝐵. Each one pulls 𝐵 in direction 𝜃. (b) The 

histogram of constant forces (𝑟 = 0) is one representation of the spatial relationship between 𝐴 and 𝐵 providing a global perspective. (c) The histogram of 

gravitational forces (𝑟 = 2) is another possible representation, which is more sensitive to nearby points. 

 

 
Fig. 3  (a) A pair of objects for which the constant and gravitational force histograms indicate different primary directions. (b) The 𝐹0

𝐴𝐵 and 𝐹2
𝐴𝐵 histograms can 

be combined into the main direction histogram, Φ𝐴𝐵. The centroid of this histogram gives the scalar main direction 𝜑𝐴𝐵, which is a compromise between the 

primary directions of the two F-histograms. (c) 𝜑𝐴𝐵 is computed using polar vector summation where each angle of Φ𝐴𝐵 is treated as a vector. By summing all 

of the vectors and computing the resultant angle, we avoid the problem of the periodic boundary. 

 



 

C. Representing Object Sets 

Suppose that we have a set of 2D objects 𝒪 =
{𝑜1, 𝑜2, … , 𝑜𝑛}, each with a label defined by the function 

𝐿(𝑜𝑖) = 𝑙𝑖 ∈ ℒ, where ℒ is the set of all possible labels. For 

any pair of objects (𝑜𝑖 , 𝑜𝑗) ∈ 𝒪 we can represent the 

directional relationship between them with the F-histograms 

𝐹0

𝑜𝑖𝑜𝑗
 and 𝐹2

𝑜𝑖𝑜𝑗
, and we can also compute the main direction 

𝜑𝑜𝑖𝑜𝑗 . As the number of objects grows, it becomes convenient 

to represent the set as an ARG in which each vertex and edge 

is assigned a set of attributes. We can represent each object as 

a vertex in an ARG, and assign the relationships between 

objects as edge attributes. Let us define the ARG for a set of 

2D objects 𝒪 as 𝐺𝒪 = (𝑉𝒪 , 𝐸𝒪) where 𝑉𝒪 is the set of vertices 

and their attributes, and 𝐸𝒪 is the set of edges and their 

attributes. A vertex 𝑣𝑖 = (𝑜𝑖 , 𝑙𝑖) ∈ 𝑉𝒪 is a pair containing an 

object 𝑜𝑖 ∈ 𝒪 and its label 𝑙𝑖. An edge 𝑒𝑖𝑗 =

(𝐹0

𝑜𝑖𝑜𝑗
, 𝐹2

𝑜𝑖𝑜𝑗
, 𝜑𝑜𝑖𝑜𝑗) ∈ 𝐸𝒪  is a triple that connects two vertices 

in the graph and contains the histograms of constant and 

gravitational forces, as well as the main direction between 

those two objects. A complete ARG for a set of 𝑛 objects will 

have 𝑛 vertices and 𝑛 × (𝑛 − 1) edges, with a unique edge 

defined between each pair of vertices. An example ARG 

representation of an object set is given in Fig. 4. 

Obviously since each edge represents a spatial relationship, 

the order of the arguments is important. “𝐴 is in direction 𝜃 of 

𝐵” is not the same as “𝐵 is in direction 𝜃 of 𝐴.” However, the 

two statements contain largely the same information, and we 

can relate them with the semantic inverse property of the HoF 

[9], which states that 

 

 𝐹𝑟
𝐵𝐴(𝜃) = 𝐹𝑟

𝐴𝐵(𝜃 + 𝜋). (3) 

 

Since 𝐹𝑟
𝐴𝐵  is a periodic function, this is equivalent to a circular 

shifting of the histogram bins, in which no information is lost. 

We can reduce the storage requirement of our ARG 

representation by a factor of two if we only calculate edges 

(𝑜𝑖 , 𝑜𝑗) in which 𝑖 < 𝑗, and use the semantic inverse property 

for all other pairs. 

D. Comparing Histograms 

Toward the goal of developing a similarity measure 

between the spatial configurations of object sets, we begin by 

comparing a single pair of F-histograms. If two pairs of 

objects have a similar spatial configuration, then they should 

have similar F-histograms. Matsakis et al. [9] investigated 

several similarity measures for F-histograms, of which we 

choose the cross-correlation for its invariance to scale. The 

cross-correlation of two individual histograms ℎ1 and ℎ2 is 

defined as 

 

 𝜇𝐶(ℎ1, ℎ2) =
∑ ℎ1(𝜃)ℎ2(𝜃)𝜃

√∑ ℎ1
2(𝜃)𝜃 √∑ ℎ2

2(𝜃)𝜃

, (4) 

 

which is guaranteed to be in the range [0,1] provided that both 

ℎ1 and ℎ2 contain no elements less than zero, and at least one 

element greater than zero. A cross-correlation of 1 implies a 

perfect match, whereas 0 implies that the support of ℎ1 and ℎ2 

have no common elements. 

A special feature of the cross-correlation is that it is 

independent of the scale of ℎ1 and ℎ2. This means that we do 

not need to normalize the Y-axis values of the F-histograms. 

The X-axis values, however, are defined with respect to the 

reference angle where 𝜃 = 0. If two pairs of objects are 

defined with the same reference angle, then their F-histogram 

relationships can be compared directly. If, however, they are 

defined with different reference angles (e.g. by rotating one of 

the pairs) then one F-histogram must be shifted to match the 

other. We call upon the basic properties of the histograms of 

forces [8], [9], which state that if a pair of objects (𝐴, 𝐵) is 

rotated counter-clockwise by an angle 𝜑, its F-histogram 

becomes 

 

 𝐹𝑟
𝑟𝑜𝑡(𝐴,𝐵)(θ) = 𝐹𝑟

𝐴𝐵(𝜃 − 𝜑). (5) 

 

This is simply a circular shifting of the histogram bins, which 

allows us to compare spatial relationships defined with any 

orientation. Given two pairs of objects, (𝐴, 𝐵) and (𝐴′, 𝐵′) 

defined with reference angles 𝜙 and 𝜙′ respectively, we can 

compare their relative spatial relationships with the general 

equation 

 

 𝜇𝑃𝑎𝑖𝑟(𝐴, 𝐵, 𝜙, 𝐴′, 𝐵′ , 𝜙′) = 𝛽𝜇𝐶0 + (1 − 𝛽)𝜇𝐶2, (6) 

where 

𝜇𝐶0 = 𝜇𝐶 (𝐹0
𝐴𝐵(𝜃 − 𝜙), 𝐹0

𝐴′𝐵′
(𝜃 − 𝜙′)), 

𝜇𝐶2 = 𝜇𝐶(𝐹2
𝐴𝐵(𝜃 − 𝜙), 𝐹2

𝐴𝐵(𝜃 − 𝜙′)). 

 

Here 𝛽 is a weighting factor between the histograms of 

constant and gravitational forces, which is typically set at 0.5 

to give equal weight to both F-histograms. 

E. Comparing Object Sets 

Suppose that we are given two sets, each containing the 

same number of objects in a defined order, 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

and 𝑆′ = (𝑜1
′ , 𝑜2

′ , … , 𝑜𝑛
′ ). We can compare 𝑆 and 𝑆′ by 

measuring the average similarity of the spatial relationships 

 
Fig. 4  (a) An example of an object set 𝒪 = {𝑜1, 𝑜2, 𝑜3} (b) The ARG 

representation of 𝒪 is 𝐺𝒪 = (𝑉𝒪, 𝐸𝒪), where 𝑉𝒪 = {𝑣1, 𝑣2, 𝑣3} and 𝐸𝒪 =
{𝑒12, 𝑒13, 𝑒21, 𝑒23, 𝑒31, 𝑒32}. Each vertex 𝑣𝑖  is a pair (𝑜𝑖 , 𝑙𝑖) where 𝑙1 =
𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑡 and 𝑙2 = 𝑙3 = 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔. Each edge 𝑒𝑖𝑗 is a triple 

(𝐹
0

𝑜𝑖𝑜𝑗 , 𝐹
2

𝑜𝑖𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗) containing the calculated F-histograms and main direction 

between each object pair. 

 



 

between each pair of objects. Notice that we avoid the general 

correspondence problem and assume that the object order is 

the same in both sets. If we can guarantee that both 𝑆 and 𝑆′ 

are defined with the same orientation, then we can compute 

the similarity of the two object sets as 

 

ΨStatic(𝑆, 𝑆′) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖 , 𝑜𝑗 , 0, 𝑜𝑖

′, 𝑜𝑗
′, 0)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. 

 (7) 

 

Here both reference angles are defined as zero, implying that 

no shifting of the histograms is necessary. The output range of 

this similarity measure is in the range [0,1] and the complexity 

to compute it given 𝑆 and 𝑆′ is 𝑂(𝑛2𝜔), where 𝑛 is the 

number of objects in each set and 𝜔 is the number of angles 

computed for each F-histogram. 

Although the above expression is valid if both object sets 

are defined with respect to the same reference angle, we 

typically do not have any way to guarantee that this condition 

holds. Consider the case of matching a sketched map of roads 

and buildings to ground truth imagery. Maps are not always 

drawn with the same orientation as the ground truth, often out 

of convenience. Take, for example, the streets of Manhattan, 

which are commonly drawn on maps as perfectly horizontal 

and vertical lines, yet a satellite image of the city shows that 

the island is not actually aligned in one of the cardinal 

directions. In order to compensate for changes in orientation 

between the two object sets, we rotate all of the F-histograms 

from 𝑆′ by the angle 𝜑⋆ which would give the best overall 

alignment with the F-histograms from 𝑆. 

We define the angular difference between two pairs of 

objects (𝐴, 𝐵) and (𝐴′, 𝐵′) as the difference between their 

main directions, 𝜑𝐴𝐵 − 𝜑𝐴′𝐵′
. The angular difference between 

each unique pair of objects in 𝑆 and 𝑆′ makes a list of angular 

differences 

 

𝐷 = {𝑑11, 𝑑12, … , 𝑑𝑖𝑗 , … , 𝑑(𝑛−1)𝑛}, 𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑜𝑖
′𝑜𝑗

′

, 

 (8) 

 

which represents the total mismatch between the orientations 

of the two sets. The values of 𝐷 are shifted into the range 

[0, 2𝜋) and used to determine the optimal rotation angle 𝜑⋆ 

that will be applied to 𝑆′. The mean and median values of 𝐷 

are both reasonable choices for 𝜑⋆, with the median providing 

greater stability overall [27]. Because the angles are defined 

on a periodic domain, it may not be possible to define a 2𝜋 

range which can serve as a linear mapping to compute the 

median. Therefore, we pick the optimal rotation angle as the 

angle in 𝐷 which minimizes the angular distance to all other 

angles in 𝐷 using the following expression from [26]. 

 

 𝜑⋆ = arg min
𝑑𝑢𝑣∈𝐷

[𝑞(𝑑𝑢𝑣)], (9) 

where 

𝑞(𝑑𝑢𝑣) = 𝜋 − ∑ ∑ |𝜋 − |𝑑𝑖𝑗 − 𝑑𝑢𝑣||

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. 

 

Here, 𝑞 is a temporary list of the total angular distances 

evaluated for each angle in 𝐷. An example of this process is 

given in Fig. 5. Having found 𝜑⋆, we rotate all of the F-

histograms from 𝑆′ by a uniform angle to obtain an 

orientation-independent similarity measure, 

 

ΨRotate(𝑆, 𝑆′) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖 , 𝑜𝑗 , 0, 𝑜𝑖

′, 𝑜𝑗
′, 𝜑⋆)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. 

 (10) 

 

 

 
Fig. 5  An example of the calculation of the optimal rotation angle, 𝜑⋆. All 

angles are given in radians measured counterclockwise from the X-axis. The 

ground truth object set in (a) is approximated by the simplified sketch in (b), 

which has been rotated counterclockwise about one quarter-turn. The object 
correspondences between the sketch and ground truth are given, and the main 

direction between each unique object pair is given in (c). The first two 

columns of (c) list the individual object pairs, and the main directions 
calculated for the ground truth and sketch are given in the third and fourth 

columns respectively. The list of angular differences between main directions 

𝐷 is listed in the fifth column, which is used as the input to (9) for computing 

the list of angular distances, 𝑞. The angle which minimizes the angular 

distance to all other angles in 𝐷 is chosen as the optimal rotation angle, 𝜑⋆. 

Here, 𝜑⋆ is chosen as an 83° clockwise rotation of the sketch. 

 



 

F. Elastic Angles 

One problem with rotating one entire object set by a 

uniform angle is that there is not always a single angle that 

best represents the ideal rotation required to match two given 

object sets. Elastic angles are a way to be more flexible with 

the orientation normalization. Rather than rotating all of the F-

histograms from one set by the single optimal rotation angle, 

we rotate each F-histogram individually and apply a separate 

weight to each one based on how different each rotation is 

from the optimal angle. This gives each pair of histograms a 

tolerance to small directional differences. We begin by 

calculating the angular difference list 𝐷 in the same way as 

before to compute the best rotation angle, 𝜑⋆. Rather than 

rotating all histograms of one set by this angle, we compare 

the normalized histograms of both sets. A normalized F-

histogram is one that has been rotated clockwise by its main 

direction so that it becomes centered at 𝜃 = 0. Comparing 

normalized F-histograms removes all orientation biases, 

leaving only the shapes and sizes as distinguishing 

characteristics. To compensate for the loss of directional 

information, we apply a weighting factor to each histogram, 

defined by the fuzzy weighting function 𝜇𝑇𝑟𝑎𝑝(𝜃) shown in 

Fig. 6. The angular difference between the original histograms 

is used as the input to this weighting function, allowing only 

histograms that originally shared similar orientations to be 

considered with full weight and all others to have less weight. 

The overall similarity measure is defined as 

 

ΨElastic(𝑆, 𝑆′) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑇𝑟𝑎𝑝(𝜑⋆ − 𝑑𝑖𝑗)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

× 𝜇𝑃𝑎𝑖𝑟 (𝑜𝑖 , 𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗 , 𝑜𝑖
′, 𝑜𝑗

′, 𝜑𝑜𝑖
′𝑜𝑗

′

) . 

 (11) 

 

The elastic angle method allows for small imperfections 

between two object sets. The trapezoidal membership function 

allows F-histograms which would not otherwise be perfectly 

aligned to still be considered with full weight. This tends to 

result in higher similarity values overall [27], but allows for 

the small discrepancies between object sets that tend to arise 

when working with real data. Fig. 7 shows an example which 

highlights the differences between the elastic and non-elastic 

methods for evaluating object set similarity. 

 

III. THE MEMETIC ALGORITHM 

Having defined a similarity measure between two object 

sets, we now turn to the task of scene matching between a 

target sketch and a large reference database. With both object 

sets represented as ARGs, this can be viewed as an 

approximate subgraph matching problem, in which we seek to 

find a subgraph of the reference database which has a high 

degree of similarity to the target sketch. The optimal solution 

to this problem is the subgraph which has the highest 

similarity to the target sketch. Formally we define the problem 

as follows. Given a sketch 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) and a reference 

 
Fig. 6  The trapezoidal weighting function used for elastic angles. 
 

 
Fig. 7  Comparison of the elastic and non-elastic methods for evaluating 
object set similarity. The object set in (a) is a subset of the example in Fig. 1. 

The sketch in (b) is a simplification of (a) with object 𝐷 significantly 

misplaced. (c) shows the computation of the non-elastic similarity, where the 

numbers to the left of each histogram represent the individual cross-

correlation values. For clarity, only the histograms of constant forces are 
shown, although both the constant and gravitational F-histograms are used in 

computing the final similarity. The red (dark gray) histograms are computed 

from (a) and the blue (light gray) histograms are computed from (b). (d) and 
(e) show the computation of the elastic fitness. (d) is the weighting function 

𝜇𝑇𝑟𝑎𝑝(𝜃) and (e) shows the normalized histograms, where the numbers to the 

right of each histogram represent the weighted cross-correlation values. 

 



 

set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} in which 𝑚 ≫ 𝑛, we represent a 

potential solution to this problem as a vector of objects from 

the reference set, Γ⃑ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝑥(𝑖) ∈ ℛ for 1 ≤

𝑖 ≤ 𝑛. We use this vector to define the correspondence 

between sketch objects and reference objects such that sketch 

object 𝑜𝑖 ∈ 𝑆 is matched with reference object 𝑥(𝑖) ∈ Γ⃑, which 

we also notate as Γ𝑖. The solution to the optimization problem 

is the vector of reference set objects that maximizes the 

similarity measure, ΨElastic(𝑆, Γ⃑). 

First, the input sketch and reference set are modeled as the 

attributed relational graphs 𝐺𝑆 and 𝐺ℛ respectively. For the 

sketch, 𝐺𝑆 is completely defined with a vertex for each object 

and the full set of 𝑛 × (𝑛 − 1) edges. When constructing 𝐺ℛ, 

we create a vertex for each object, but only define some of the 

spatial relationships as edges. Typically ℛ contains many 

objects spread over a large area. Since the sketch represents 

only a small spatial region, we restrict the set of outgoing 

spatial relationships for each object in ℛ to its 𝐾 nearest 

neighbors. This prunes the search space considerably by 

eliminating edges between objects which are not near to each 

other. In [28], Bloch et al. investigate several techniques for 

measuring the degree to which an object is between two other 

objects. Object pairs which are too far apart or have too many 

objects between themselves can also be excluded from the 

edge list. Our experiments use a reference set of 2814 objects 

with a maximum of 50 neighbor connectivity shown in Fig. 8 

(a), which overlays 𝐺ℛ on the segmented image of Columbia, 

MO and Fig. 8 (b), which focuses on the subgraph which 

matches 𝐺𝑆, the ARG representation of the sketch given in 

Fig. 1. 

Removing edges from the reference ARG adds an important 

constraint to the optimization problem. Recall that our 

similarity measure ΨElastic requires two complete ARGs. If the 

induced ARG formed by the potential solution Γ⃑ is not a 

complete graph, we cannot evaluate its similarity to 𝑆 using 

this method. Additional F-histograms would need to be 

computed, which are typically all pre-computed for large 

reference graphs. Although there are ways for comparing 

incomplete graphs using subgraph homomorphism techniques 

that could prove useful for matching large sketches, we limit 

our discussion here to the case in which any potential solution 

Γ⃑ forms a complete graph in the reference ARG. Object labels 

provide another constraint that must be considered in the 

design of our matching algorithm. In this work, since we deal 

with only two labels, we require that the labels of any 

potential solution perfectly match the labels of the sketch such 

that 𝐿(𝑜𝑖) = 𝐿(Γi) for 1 ≤ 𝑖 ≤ 𝑛. An alternative approach 

would be to include label compatibility in the similarity 

measure. This could be done by using a fuzzy measure, which 

would provide greater flexibility when more labels are in use. 

However, our strict label-preserving requirement allows the 

search algorithm to explicitly seek out good solutions. As we 

shall see, these constraints provide the guiding principles for 

the design of the local search operators and affect how we 

design the memetic framework. 

There are several reasons why an evolutionary method is 

appropriate for this problem. From the viewpoint of a scene 

matching analyst, it is often desirable to be presented with a 

list of high ranking solutions rather than a single top scoring 

match. Furthermore, the best match for an analyst may not 

necessarily correspond exactly with the defined similarity 

measure. An iterative population-based approach allows many 

potential solutions to compete and improve over time, giving 

 
Fig. 8  (a) 𝐺ℛ, the ARG representation of the reference set used in our 

experiments containing 2814 objects from Columbia, MO. The graph is 
superimposed over the reference set with darker areas indicating regions of 

high connectivity. Buildings are shown in red (dark gray) and parking lots are 

shown in green (light gray). (b) A close-up view of 𝐺𝑆, the ARG 

representation of the sketch from Fig. 1, shown as a subgraph of 𝐺ℛ. 

 



 

an analyst the opportunity to provide user-driven input as to 

which matches are good and when to terminate the search. 

Although we do not use a human feedback component in our 

algorithm, this idea could be explored in future research. 

Lastly, an evolutionary method is inherently parallel, allowing 

it to be scaled to very large problems through the use of 

parallel hardware. Each execution of our search algorithm is 

single-threaded, but this also represents a potential future 

research direction. 

The term “memetic algorithm” (MA) was coined by 

Moscato [29] as a method of combining the general search 

strategy of an evolutionary algorithm with an individual 

refinement step. This allows for a population-based method 

with local search operators that can be designed to be 

problem-specific. In general, an evolutionary algorithm (EA) 

starts by creating a population of individual solutions, or 

chromosomes, which cooperate and compete over multiple 

iterations to find good solutions to a given problem. Each 

chromosome encodes a solution to the problem as a set of 

genes, or variables, which can be set to take on certain values. 

The basic operators in an EA are selection, which picks 

individuals for breeding and survival; recombination, which 

combines genetic material from multiple individuals; and 

mutation, which is used to introduce new genetic material. A 

memetic algorithm adds an additional local search operator 

which can be applied to individuals to improve their fitness 

value or solution quality. The ability to incorporate problem-

specific knowledge gives rise to many different adaptations of 

memetic algorithms to various problem domains [21]. To 

maximize the synergy of global exploration and local 

refinement, domain knowledge can be applied to the design of 

the problem representation, the evolutionary and local search 

operators, and the fitness evaluation [30]. 

The label-preserving and complete graph constraints 

described above limit our ability to use standard mutation and 

crossover operators for the scene matching problem. Recall 

that an individual solution is represented as a vector of 

reference objects, Γ⃑. Blindly swapping the genes of two 

individuals through crossover or introducing a new random 

object through mutation would likely result in an incomplete 

or mislabeled graph, which would violate our constraints. As 

discussed in [31], constraints can be handled either directly or 

indirectly in an evolutionary algorithm. Indirect methods tend 

to involve modifying the fitness values with a penalty 

function, whereas direct methods place restrictions on what 

types of solutions are allowed. Problem-specific operators are 

often created to repair infeasible individuals or prevent their 

creation [32]. Although graph-based crossover operators have 

been developed for the fields of genetic programming [33] and 

artificial neural networks [34], a crossover operator for this 

problem would need to produce children from parents that 

often form disjoint graphs in the reference ARG with no 

common nodes or edges. In order to ensure that the child 

chromosomes form complete graphs, they must be confined to 

a single region of the reference database. The children would 

only contain genetic material from both parents if the two 

parents were located very close to each other in the reference 

database. If the two parents were far apart, a child generated 

through crossover would need to be either very close to one of 

the parents or somewhere in the region between them. The 

former case is best left to the local search operator, which still 

maintains some degree of randomness, and the latter is 

essentially a new random individual. In the spirit of utilizing 

all possible domain knowledge, we have opted to design 

operators that are specific to this problem domain. 

Specifically, we have designed an initialization function for 

generating random individuals and three local search operators 

which take the place of crossover and mutation. The 

initialization function is used throughout the search process as 

a way of increasing exploration, whereas the local search 

operators are used for exploitation. Each local search operator 

takes a single parent and produces a set of multiple children 

that all share at least one common element with the parent. 

The details of these operators will be discussed in Section IV. 

The outline of our search procedure is given in Algorithm 1. 

The algorithm requires as inputs a reference set ℛ and a target 

sketch 𝑆 along with predefined constants, 𝜇 (population size), 

𝜆 (number of children generated each generation), 𝜏 

(maximum age of each individual), and 𝜇𝐸𝑙𝑖𝑡𝑒  (number of top-

ranking individuals preserved each generation). The search 

procedure starts by generating an initial population of 𝜇 

Algorithm 1 

Memetic Algorithm for Matching Spatial Configurations 

Input: 

ℛ and 𝑆 

Constants: 𝜇, 𝜆, 𝜏, 𝜇𝐸𝑙𝑖𝑡𝑒  

Initialize: 

Set 𝑡 = 0 

Create initial population of individuals: 𝑃(0) = (Γ⃑1, Γ⃑2, … , Γ⃑𝜇) 

While stopping criteria is not met 

For each individual Γ⃑𝑃 ∈ 𝑃(𝑡) 

If age(Γ⃑𝑃) > 𝜏 and Γ⃑𝑃 is not one of the top 𝜇𝐸𝑙𝑖𝑡𝑒  

individuals 

Replace Γ⃑𝑃 with a new random individual 

End If 

Generate list of children through local search: 

 𝒞 = local_search(Γ⃑𝑃) 

Add the top 𝜆 children in 𝒞 to 𝑃(𝑡) 

End For  

Sort 𝑃(𝑡) and remove duplicates 

Add top 𝜇𝐸𝑙𝑖𝑡𝑒  individuals to 𝑃(𝑡+1) 

While |𝑃(𝑡+1)| < 𝜇 

Pick Γ⃑𝑖 from 𝑃(𝑡) without replacement using roulette-

wheel selection 

Add Γ⃑𝑖 to 𝑃(𝑡+1) 

End While 

𝑡 = 𝑡 + 1  

Increment age of each Γ⃑ ∈ 𝑃(𝑡) 

End While 

Output: Top scoring individuals in 𝑃(𝑡) 

 



 

random individuals. Each random individual solution is 

chosen by first finding the label of the target sketch that 

appears the least often in the reference set, and then picking a 

random object from the reference set with that label. This 

object becomes the seed of the chromosome, and the 

remaining objects of the chromosome are chosen randomly 

from the nearest neighbors of this seed such that the labels 

match the objects of the sketch. Closer neighbors have a 

higher likelihood of being chosen in order to keep the 

chromosome spatially compact. If none of the seed’s nearest 

neighbors can satisfy the label requirements of the sketch, a 

new seed is chosen in a different location. 

During every generation 𝑡, each of the 𝜇 individuals in the 

population 𝑃(𝑡) generates a set of 𝜆 children through the local 

search operator, which are added to the current population. 

The population is then sorted based on individual fitness, 

defined by the similarity measure ΨElastic(𝑆, Γ⃑), and any 

duplicates are removed to prevent saturation. A few elite 

individuals, 𝜇𝐸𝑙𝑖𝑡𝑒 , are copied directly to the next generation 

𝑃(𝑡+1) and the remaining individuals are chosen using 

roulette-wheel selection until |𝑃(𝑡+1)| = 𝜇. The age of each 

surviving solution is incremented and should an individual’s 

age reach a certain threshold value 𝜏, it is replaced with a new 

random individual. Restarting certain individuals in this way 

can be seen as a type of strong or heavy mutation [20] which 

forces individuals that have converged to local optima to move 

to a new location. The new individuals are given an 

opportunity to perform a local search before being required to 

compete against the existing population. This strong mutation 

may be omitted for the top few individuals in the population in 

order to retain the global best solutions found. Once the 

stopping criteria have been met, the search terminates and the 

top-ranking individuals are returned as the solutions. 

The memetic algorithm we have designed loosely resembles 

a (𝜇 + 𝜆) evolution strategy [35]. A key difference is that we 

perform selection only when deciding which individuals 

survive to subsequent generations, and not in choosing which 

individuals to reproduce. This is done in order to give each 

chromosome an opportunity to perform a local search during 

each generation. In contrast to a simple parallel local search 

strategy, each parent produces multiple children which 

compete with one another for survival, ensuring that the pool 

of possible solutions for the next generation is larger than the 

set of each parent’s single best offspring. We remove 

duplicate solutions to maintain population diversity and to 

reduce the amount of redundant computation. Fitness-

proportionate selection is used after preserving a few elite 

individuals to allow lower scoring solutions a chance to 

survive. If a parent solution is chosen to survive, it will 

undergo the local search operation multiple times, possibly 

producing the same set of potential children. The age counter 

forces these individuals to move to a new location after a set 

number of repeat local searches so that the algorithm 

continues to search new locations. This jump away from local 

optima is performed for all but the top few elite individuals, 

which are allowed to survive intact as the best global 

solutions. A common convergence criterion is to terminate the 

search if the top solution does not change for a certain number 

of generations. 

 

IV. LOCAL SEARCH OPERATORS 

The local search operators developed for this memetic 

algorithm can be seen as a type of weak or light mutation. 

Given a parent chromosome, each operator produces a set of 

children that are confined within a local neighborhood of the 

parent. This is done by performing the core operations once 

for each possible choice of replacement objects or seed 

objects. The operators all use some random variation in 

producing offspring which are intended to be more similar to 

the target sketch than the parent. The following sections 

describe the three operators we have developed and provide an 

example of their application. 

A. Single-Object Replacement 

The single-object replacement (SOR) operator is based on 

the work presented in [27] and [36]. In this strategy, a single 

object from the parent is replaced by one of its nearest 

neighbors. Given a parent chromosome Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃), 

we cycle through each object Γ𝑖
𝑃 ∈ Γ⃑𝑃 and replace it with one 

of its nearest neighbors. Let 𝒳 be the set of nearest neighbors 

for the object Γ𝑖
𝑃, such that any object 𝑥⋆ ∈ 𝒳 could replace 

Γ𝑖
𝑃 and still ensure that Γ⃑𝑃 forms a complete subgraph of the 

reference ARG. For each neighbor object 𝑥⋆, we build a 

potential child solution Γ⃑𝐶 which is identical to Γ⃑𝑃  except that 

Γ𝑖
𝑃 has been replaced by 𝑥⋆. The potential child with the 

highest fitness is added to the list of output children, 𝒞. 

Our initial experiments with the SOR operator [27], [36] 

revealed that the algorithm can often have difficulty finding 

the ideal match in a region. Because each chromosome is an 

ordered vector, an individual solution can contain all of the 

objects of the ideal match, but not in the right order. The SOR 

operator must be applied to these solutions multiple times, 

swapping chromosome objects with their neighbors to allow 

different orderings of the chromosome. We therefore consider 

multiple different permutations of the parent vector before 

applying the SOR operator. This produces a larger set of 

children, but decreases the number of times the SOR operator 

must be applied to each individual in order to reach a local 

optimum. Clearly, evaluating all possible permutations would 

result in a large computational overhead, so we typically use 

only a small number of randomly chosen permutations. This 

offers a balance between performing an exhaustive search and 

maintaining a degree of randomness to help prevent premature 

convergence. The complete SOR method is given in 

Algorithm 2. Given that the complexity of each fitness 

evaluation is 𝑂(𝑛2𝜔), the SOR operator has a complexity of 

𝑂(𝑝𝑛3𝜔𝐾), where 𝑝 is the number of permutations 

considered, 𝑛 is the number of objects in the set, 𝜔 is the 

number of angles in each F-histogram, and 𝐾 is the maximum 

number of nearest neighbor connections used in the reference 

set ARG. 



 

B. One-Seed Set Reconstruction 

The set reconstruction methods are based on the idea that 

the best possible solution can be reconstructed from a small 

starting seed of just one or two objects. Given a complete 

sketch 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛), we define a partial sketch 𝑆′ =

(𝑜(1)
′ , 𝑜(2)

′ , … , 𝑜(𝑢)
′ ) ⊂ 𝑆 which only contains some of the 

original objects. Likewise, we define a partial solution as a 

vector Γ⃑′ = (𝑥(1), 𝑥(2), … , 𝑥(𝑢)), 𝑥(𝑖) ∈ ℛ for 1 ≤ 𝑖 ≤ 𝑢, 

which associates each object of the partial sketch with an 

object from the reference set. The partial fitness 𝑓(Γ⃑′) =

ΨElastic(𝑆′, Γ⃑′) only considers the specified subset of original 

sketch objects. The idea behind the one-seed method is to start 

with a single object 𝑆′ = (𝑜(1)
′ ) ⊂ 𝑆 and add objects one at a 

time until all of the objects in the sketch have been used. The 

overall outline of the one-seed set reconstruction method is 

given in Algorithm 3. Given a parent chromosome Γ⃑𝑃 =

(Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃), we cycle through each object Γ𝑖

𝑃 ∈ Γ⃑𝑃 and use 

it as the seed object for a partial sketch. We then consider all 

possible assignments of an object from the target sketch onto 

the seed object, and create a partial solution Γ⃑′ for each one. 

For each partial solution, we randomly pick an unassigned 

sketch object 𝑜𝑖 ∈ 𝑆 − 𝑆′ and find the set of nearest neighbors 

𝒳 ⊆ ℛ to which 𝑜𝑖  could be assigned while maintaining full 

connectivity. Similar to the approach of the SOR operator, we 

create a set of temporary partial solutions, each with 𝑜𝑖  

assigned to a different neighbor object 𝑥⋆ ∈ 𝒳. The neighbor 

that produces the greatest partial fitness is added to the partial 

sketch 𝑆′. We continue to match the unassigned sketch objects 

of 𝑆 to the best neighbor objects in this greedy manner until 

𝑆′ = 𝑆. Once we have a complete chromosome, we add it to 

the list of children, 𝒞. 

The one-seed set reconstruction method solves many of the 

problems faced by the SOR operator. Individuals rarely stay in 

a single area without converging to a locally optimal solution. 

Different orderings of buildings is less of an issue since the 

entire solution is reconstructed. The one-seed operator also 

tends to converge faster than the SOR operator since more of 

the solution is being replaced, although this can cause 

individuals to become trapped in sub-optimal local solutions. 

The complexity of the one-seed method can be derived as 

Algorithm 2 

Single-Object Replacement Search Operator 

Input: 

Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

Parent: Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) where each Γ𝑖

𝑃 ∈ ℛ 

Constant: 𝑝 

Initialize: 

𝒞 = ∅  

Add Γ⃑𝑃 to list of permutations, 𝒫 

Add 𝑝 random permutations of Γ⃑𝑃 to 𝒫 

For Each Γ⃑ ∈ 𝒫 

For 𝑖 = 1 to 𝑛 

Γ⃑𝐶 =  Γ⃑  

Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object Γ𝑖
𝑃 

𝑓𝑏𝑒𝑠𝑡 = 0  

For Each 𝑥⋆ ∈ 𝒳 

Replace a single object: Γ𝑖
𝐶 = 𝑥⋆ 

Evaluate the fitness: 𝑓(Γ⃑C) = ΨElastic(𝑆, Γ⃑𝐶) 

If 𝑓(Γ⃑ 𝐶) > 𝑓𝑏𝑒𝑠𝑡 Then 

𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆;  𝑓𝑏𝑒𝑠𝑡 = 𝑓(Γ⃑𝐶)  

End If 

End For 

Replace with best object: Γ𝑖
𝐶 = 𝑥𝑏𝑒𝑠𝑡  

Add to list of children: 𝒞 = 𝒞 ∪ Γ⃑𝐶 

End For 

End For 

Output: 𝒞 

 

Algorithm 3 

One-Seed Set Reconstruction Search Operator 

Input: 

Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

Parent: Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) where each Γ𝑖

𝑃 ∈ ℛ 

Initialize: 

𝒞 = ∅  

Initialize list of index locations: 𝐼 = {1,2, … , 𝑛} 

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝐿(𝑜𝑖) = 𝐿(Γ𝑗
𝑃) 

Clear Γ⃑′ 

Create the partial ordered sketch: 𝑆′ = (𝑜𝑖) 

Update remaining index locations: 𝐼′ = 𝐼 − 𝑖 

Set Γ𝑖
′ = Γ𝑗

𝑃 

Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object Γ𝑗
𝑃 

While |𝐼′| > 0 

Pick an index 𝑘 ∈ 𝐼′ randomly 

Add 𝑜𝑘 to the end of the partially ordered sketch: 𝑆′ =

(… , 𝑜𝑘) 

𝑓𝑏𝑒𝑠𝑡 = 0  

For Each 𝑥⋆ ∈ 𝒳 

Set Γ𝑘
′ = 𝑥⋆ 

Evaluate the partial fitness: 𝑓(Γ⃑′) = ΨElastic(𝑆′, Γ⃑′) 

If 𝑓(Γ⃑′) > 𝑓𝑏𝑒𝑠𝑡 Then 

𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆;  𝑓𝑏𝑒𝑠𝑡 = 𝑓(Γ⃑′)  

End If 

End For 

Set Γ𝑘
′ = 𝑥𝑏𝑒𝑠𝑡  

Remove this index location: 𝐼′ = 𝐼′ − 𝑘 

Update 𝒳 as the nearest neighbors of Γ⃑′ 

End While 

Add Γ⃑′ to list of children: 𝒞 = 𝒞 ∪ Γ⃑′ 

End For 

Output: 𝒞 

 



 

𝑂(𝑛5𝜔𝐾), which is greater than the SOR method, assuming 

that only a small number of permutations are used for the 

latter. Because of the exponential term on 𝑛, this method is 

limited to relatively small sketch sizes; our experiments use 

sketches of five objects. The greater complexity of the one-

seed method is compensated by the faster convergence rate, 

which we will show in Section V. 

Each partial solution is rotated to give the best alignment 

between the sketch and the chromosome. As the set 

reconstruction methods add additional objects to the partial 

sketch, the resulting orientation of each partial solution 

becomes increasingly more difficult to change. When there are 

only two objects, the partial solution is allowed to rotate to 

whichever angle best matches the corresponding objects of the 

sketch, essentially relying only on the shape of the F-

histograms to evaluate the fitness. This means that the second 

object of the partial solution mostly defines the initial 

orientation, and the remaining objects conform to this 

orientation. 

C. Two-Seed Set Reconstruction 

The two-seed set reconstruction method is almost identical 

to the one-seed method with the exception that two seed 

objects are used instead of just one. By using two seeds, we 

define an edge relationship between two objects, which 

determines the individual’s initial orientation. This allows a 

single run of the operator to explore many different possible 

orientations, but incurs a significant computational overhead. 

For a parent solution Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) we cycle through 

each pair of objects (Γ𝑖
𝑃 , Γ𝑗

𝑃) ∈ Γ⃑𝑃 × Γ⃑𝑃 and use them as the 

seed objects for a partial sketch. We then consider all possible 

assignments of a pair of objects from the target sketch onto the 

seed objects, and create a partial solution, Γ⃑′ for each one. 

This results in a complexity of 𝑂(𝑛7𝜔𝐾), significantly greater 

than the other two methods, but with the advantage of 

searching many more possible mappings. Again, the high 

complexity restricts this method to small sketch sizes. Unlike 

the one-seed method, the two-seed operator provides the 

option to check individual edges for compatibility. Although 

we do not make use of this property in our experiments, one 

could conceive of a representation which includes additional 

edge attributes and requires that all matched edges are 

compatible. This could greatly reduce the number of possible 

mappings and the overall complexity of the two-seed method. 

The remainder of the algorithm is the same as the one-seed 

method and is given in Algorithm 4. 

D. Mutation Example 

We now present an example which demonstrates each local 

search operator as a chromosome converges to the ideal 

solution. Fig. 9 (a) shows an example search space containing 

11 buildings shown in red (dark gray), and 3 parking lots 

shown in green (light gray), which form the reference set. The 

reference set ARG in this example is computed with an edge 

between every pair of objects. The sketch in Fig. 9 (b) is a 

simplified representation of the five objects in the lower-left of 

the reference set, rotated one quarter-turn to the left. Our goal 

is to recover the ideal solution Γ⃑⋆ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) from 

the current population. Fig. 9 (c) lists the penultimate 

population of chromosomes before the final local search 

operator. Notice that because the third object in the sketch is a 

parking lot, all of the chromosomes must also have a parking 

lot as the third object. 

Algorithm 4 

Two-Seed Set Reconstruction Search Operator 

Input: 

Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

Parent: Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) where each Γ𝑖

𝑃 ∈ ℛ 

Initialize: 

𝒞 = ∅  

Initialize list of index locations: 𝐼 = {1,2, … , 𝑛} 

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝑖 ≠ 𝑗 

For Each (𝑘, 𝑙) ∈ 𝐼 × 𝐼 such that 𝑘 ≠ 𝑙 

If 𝐿(𝑜𝑖) ≠ 𝐿(Γ𝑘
𝑃) Or 𝐿(𝑜𝑗) ≠ 𝐿(Γ𝑙

𝑃) Then 

Continue 

End If 

Clear Γ⃑′ 

Create the partial ordered sketch: 𝑆′ = (𝑜𝑖 , 𝑜𝑗) 

Update remaining index locations: 𝐼′ = 𝐼 − {𝑖, 𝑗} 

Set Γ𝑖
′ = Γ𝑘

𝑃 and Γ𝑗
′ = Γ𝑙

𝑃  

Get the set of nearest neighbors 𝒳 ⊆ ℛ of Γ⃑′ 

While |𝐼′| > 0 

Pick an index 𝑢 ∈ 𝐼′ randomly 

Add 𝑜𝑢 to the end of the partially ordered sketch: 𝑆′ =

(… , 𝑜𝑢) 

𝑓𝑏𝑒𝑠𝑡 = 0  

For Each 𝑥⋆ ∈ 𝒳 

Set Γ𝑢
′ = 𝑥⋆ 

Evaluate the partial fitness: 𝑓(Γ⃑′) = ΨElastic(𝑆′, Γ⃑′) 

If 𝑓(Γ⃑′) > 𝑓𝑏𝑒𝑠𝑡 Then 

𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆;  𝑓𝑏𝑒𝑠𝑡 = 𝑓(Γ⃑′)  

End If 

End For 

Set Γ𝑢
′ = 𝑥𝑏𝑒𝑠𝑡  

Remove this index location: 𝐼′ = 𝐼′ − 𝑢 

Update 𝒳 as the nearest neighbors of Γ⃑′ 

End While 

Add Γ⃑′ to list of children: 𝒞 = 𝒞 ∪ Γ⃑′ 

End For 

End For 

Output: 𝒞 

 



 

The SOR operator is applied to Γ⃑1 = (𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11), 

with the main events which lead to convergence shown in Fig. 

9 (d). First, several permutations of Γ⃑1 are chosen, of which 

Γ⃑ = (𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10) is the specific permutation which 

could potentially match the sketch. Only a single object is 

incorrect, and as we cycle through each object to test for 

replacement, we find that replacing 𝑥4 with 𝑥7 produces a 

child chromosome with very high fitness, which is returned as 

one of the possible offspring. The one-seed operator is applied 

to Γ⃑2 = (𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7) with the main events leading to 

convergence shown in Fig. 9 (e). Each object in the parent is 

considered as the seed object, and when 𝑜1 is assigned to the 

chromosome object 𝑥7, the remaining objects can be assigned 

one at a time such that the ideal solution is recovered. 

Similarly, the two-seed operator is applied to Γ⃑3 =
(𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8) in Fig. 9 (f). Note that in this case, two 

 
Fig. 9  Example of the three different local search operators on a simple matching problem. The ground truth reference set is shown in (a), and the sketch for this 

example is shown in (b). Buildings are shown in red (dark gray) and parking lots are shown in green (light gray). Our goal is to recover the ideal solution Γ⃑⋆ =
(𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) from the penultimate population shown in (c). We have chosen this population to illustrate the final search step before convergence for 

each of the operators. The SOR operator is applied to Γ⃑1 with the main steps leading to convergence listed in (d). Similarly, (e) and (f) show the main steps of 

the one-seed and two-seed methods as they are applied to Γ⃑2 and Γ⃑3 respectively. 

 



 

sketch objects must already be mapped to the ideal reference 

objects in order for a complete convergence to occur in a 

single operation. This occurs in this example when 𝑜1 is 

mapped to 𝑥7 and 𝑜4 is mapped to 𝑥11, allowing the ideal 

solution to be formed by adding the remaining objects one at a 

time. 

 

V. EXPERIMENTS AND RESULTS 

To verify the methods presented in this paper, we 

performed a series of experiments using a ground truth 

satellite image of Columbia, MO. The image was hand 

segmented into a reference set of 2467 buildings and 378 

parking lots, shown in Fig. 10. We chose to use a hand-

segmented reference database to ensure that the proposed 

method can work in a best-case scenario. Although the 

histograms of forces are very forgiving of small shape 

deformities and have been used in small-scale scene matching 

on real imagery [9], the use of an automatically segmented 

reference database introduces many new degrees of 

uncertainty and is an area of future research. The reference 

ARG was built by calculating the HoF relationships between 

each object and its 50 nearest neighbors, provided that the two 

objects are within 500 pixels of each other and do not contain 

more than 5 other objects in-between. The latter two 

restrictions are new for this study and significantly reduce the 

overall size of the search space. The neighborhood size is 

dependent on the largest expected sketch size. In order to 

ensure that a group of objects can be returned as a solution, 

they must all form a complete graph in the reference set. This 

means that the most distant objects in the sketch must still be 

neighbors in the reference ARG. On the other hand, a larger 

neighborhood size increases the overall complexity of the 

algorithm. We found that for our image, 50 nearest neighbors 

allowed most sketches of 5 objects to be represented as 

complete graphs in the reference set. 

The computational complexity of building the reference 

ARG depends on several factors, mainly the time to compute 

the nearest neighbors of each object (including the restrictions 

based on distance and objects in-between), and the time to 

compute the F-histograms. Assuming that we use the 

Euclidian distance between object centroids to evaluate 

distance, the 𝐾 nearest neighbors of each of 𝑚 reference 

objects can be computed with complexity 𝑂(𝐾𝑚 log 𝑚) [37]. 

Computation of the in-between relationship and F-histograms 

assumes that objects are represented in raster format; our 

reference image has dimensions of 4667 × 4467 pixels. For 

any pair of objects, we denote 𝑁 as the number of pixels in the 

bounding box which spans both objects, and 𝑁1 and 𝑁2 as the 

number of pixels belonging to the first and second objects 

respectively. The in-between relationship is computed using 

fuzzy visibilities, which has a complexity of 𝑂(𝑁𝑁1𝑁2) [28]. 

The maximum complexity of the F-histogram computation is 

given as 𝑂(𝑁√𝑁) [8]. The F-histograms in our experiments 

were calculated using a 2-degree interval, which we believe 

provides enough information to distinguish most spatial 

configurations. All of the calculations required to build the 

reference ARG were performed a priori, allowing the same 

reference ARG to be used for all of the experiments. 

Two sets of example sketches were created representing 

exact resubstitution and simplified search cases. For both 

types, we created 100 sketches of random locations from the 

satellite image, each containing 5 objects. First, a random 

object is selected from the reference set as the seed object, 

which can be either a building or a parking lot. The remaining 

objects are chosen from the neighbors of the seed object in 

such a way that closer objects are more likely to be chosen, 

and object labels have no effect. Each sketch set is guaranteed 

to be a complete subgraph of 𝐺ℛ, and the building to parking 

lot ratio of each set is determined by the overall distribution in 

the reference database. Because there are over seven times as 

many buildings as parking lots in our reference set, most of 

our example sketches have only one or two parking lots, if any 

at all. The resubstitution sketches contain objects exactly as 

they appear in the reference database, whereas the simplified 

sketches reduce each object to its bounding box and then 

rotate the entire sketch by a random angle. The sketch ARG is 

always a complete graph, so the computational complexity to 

construct 𝐺𝑆 for each example sketch can be given as 

𝑂(𝑛2𝑁√𝑁), where 𝑛 is the number of sketch objects and 𝑁 is 

the number of pixels in the sketch. Like the reference ARG, 

the sketch ARGs are computed a priori to allow for efficient 

testing of multiple search configurations. 

Our goal for each search is to recover the original sketch 

location using the proposed memetic algorithm. We record 

whether the original sketch location is found in the top 1, 5, 

10, and 50 results. This is an objective evaluation for a 

problem that often requires a subjective interpretation of the 

results. Often, many locations can match a given input sketch, 

 
Fig. 10  The reference set ℛ used for our experiments. The set contains 2467 

buildings shown in red (dark gray) and 347 parking lots shown in green (light 

gray) from downtown Columbia, MO and the University of Missouri campus. 

 



 

causing the true original location to appear lower in the ranked 

search results. Because the resubstitution sketches come 

directly from the reference database, the original locations of 

these sketches, if found, will always be the highest scoring 

result with maximum fitness. These experiments serve to 

verify our method, showing that we can find the original 

sketch location when there is no ambiguity in the spatial 

configuration. The simplified sketches, however, may not 

match to the original sketch location as well as some other 

locations, lowering the ranking of the original sketch location 

in the results. These experiments with simplified sketches are 

designed to show that our method can handle arbitrary sketch 

rotations and many of the ambiguities that appear in actual 

human queries or in the automatically generated output of the 

T2S system. 

In an analytical environment, the scene matching results 

may indicate regions that should be targeted for additional 

analysis. The best result according to an analyst may not 

correspond to the top match, as our simplified sketch 

experiments try to show. For this reason, it is important to 

always provide a list of top-scoring results that a human 

analyst can choose from. Ideally, these solutions will all be 

from different regions of the search space. This can be 

accomplished through the use of diversity mechanisms such as 

crowding, niching, and fitness sharing. These approaches 

ensure that the population remains diverse enough to 

continually explore new areas and allow the top-ranked results 

to contain less fit solutions that might otherwise be missed. 

We use a basic strategy in our experiments which explicitly 

prohibits the existence of duplicate solutions in the population, 

although this can still produce very similar solutions. The 

application of additional diversity mechanisms to our 

algorithm is an area of ongoing future research. 

We evaluated a total of 11 different search configurations, 

detailed in Table I. All of the test configurations were run 10 

times on each of the 100 sketches of the appropriate sketch 

type. The full list of common algorithm parameters is given in 

Table II. These parameters were chosen through initial 

experimentation to balance algorithm complexity and search 

time. We use a population of 50 chromosomes, which is large 

enough to have an individual in each neighborhood of the 

search area, but not so large that the search time becomes 

unreasonable. As was shown in [36], a larger population size 

leads to a greater percentage of the original locations being 

recovered, but results in a longer computation time. Our elite 

size is set to 5 individuals, which means that we always retain 

the top 5 solutions during each search. This value could be 

adjusted depending on how many results we are interested in 

observing at the end of the search. We allow a maximum of 6 

children to be created for each parent, which is a value 

suggested in [20], although this could likely be decreased 

since the top children are always returned for each parent. The 

maximum chromosome age is set to 10 generations, which 

gives most individuals enough time to find a local optimum, 

but does not spend too much time repeating searches in the 

same area. Finally, 5 permutations were chosen for the SOR 

operator to give a small number of alternate chromosome 

orderings without adding too much computational burden. 

The test configurations vary the sketch type, local search 

operator, and convergence criteria. The experiments with 

resubstitution sketches are intended to verify our search 

TABLE I 
TEST CONFIGURATIONS AND RESULTS 

Test 

Number 
Sketch Type 

Local Search 

Operator 

Min Stall 

Generations 

Max 

Generations 

% Found in 

Top 1 

% Found in 

Top 5 

% Found in 

Top 10 

% Found in 

Top 50 

Average 

Evaluations  

Average Time 

(seconds) 

1 Resubstitution SOR 1000 1000 62.0% 62.0% 62.0% 62.0% 
1.54×108 ± 

3.89×107 
3367 ± 849 

2 Resubstitution 1-Seed 1000 1000 99.8% 99.8% 99.8% 99.8% 
2.18×108 ± 

9.01×107 
7814 ± 3196 

3 Resubstitution 2-Seed 100 100 88.2% 88.2% 88.2% 88.2% 
1.24×108 ± 
6.90×107 

4703 ± 2660 

4 Simplified SOR 10 1000 4.6% 4.9% 4.9% 5.4% 
3.34×106 ± 

1.40×106 
72 ± 31 

5 Simplified SOR 100 1000 21.4% 23.0% 23.0% 23.0% 
2.57×107 ± 

1.15×107 
556 ± 249 

6 Simplified SOR 1000 1000 42.4% 48.3% 48.5% 48.5% 
1.54×108 ± 

3.64×107 
3423 ± 857 

7 Simplified 1-Seed 10 1000 39.7% 44.6% 44.8% 44.8% 
3.52×106 ± 
1.83×106 

125 ± 64 

8 Simplified 1-Seed 100 1000 59.1% 69.0% 69.0% 69.0% 
2.84×107 ± 

1.44×107 
1008 ± 508 

9 Simplified 1-Seed 1000 1000 68.9% 80.9% 80.9% 80.9% 
2.22×108 ± 

8.76×107 
7896 ± 3239 

10 Simplified 2-Seed 10 100 33.0% 38.6% 38.6% 38.7% 
2.08×107 ± 
1.37×107 

793 ± 522 

11 Simplified 2-Seed 100 100 59.9% 72.8% 73.0% 73.0% 
1.25×108 ± 

6.74×107 
4883 ± 2651 

 

TABLE II 

COMMON ALGORITHM PARAMETERS 

Population Size  𝜇 50 

Max Children per Parent  𝜆 6 

Elite Size  𝜇𝐸𝑙𝑖𝑡𝑒 5 

Max Chromosome Age 𝜏 10 

Number of  Sketch Objects 𝑛 5 

Nearest Neighbor Connectivity 𝐾 50 

SOR Permutations 𝑝 5 

 



 

method in an environment where the target sketch is the global 

best solution. We are interested in knowing whether or not the 

algorithm will ever converge to this result, so we run all of the 

resubstitution experiments for the maximum number of 

generations. For the SOR and one-seed operators this is set to 

1000 generations, but due to the added complexity, the two-

seed operator is set to a maximum of 100 generations. It 

should be noted that we could have used a target fitness 

threshold of 1.0 to stop searching since all of the resubstitution 

sketches are perfect matches, however to avoid potential 

rounding errors and to maintain consistency with the 

simplified experiments, we opted instead to use the generation 

limit. The simplified experiments vary the local search 

operator and the stop condition, set as the minimum number of 

stall generations in which the top solution does not change. 

When this is set equal to the maximum number of generations, 

the convergence criteria is the same as the resubstitution 

experiments. 

The experiments were run on three computers running 64-

bit versions of Windows 7, each with 8 logical processors 

clocked at 2.8-2.93 GHz and with 12 GB of RAM. To 

evaluate the computational complexity of each method, we 

measure the runtime of each search and the number of times 

the cross-correlation operator is called. Note that this does not 

include the time required to compute the reference and sketch 

ARGs, which are all computed a priori. We then evaluate the 

percentage of tests which found the original sketch location 

ranked in the top 1, 5, 10, and 50 results. We see from Table I 

that given the maximum amount of search time for the 

resubstitution experiments, the one-seed operator found the 

original sketch location nearly every time. The two-seed and 

SOR methods found the original sketch location less often, but 

also did not spend as much time searching. The two-seed 

method, however, only evaluated 100 generations as opposed 

to 1000 generations for the other two methods. Had the two-

seed experiments been allowed to run for 1000 generations, 

the search time would likely be 10 times longer. Because the 

two-seed operator considers all possible edge assignments 

rather than the single object assignments of the one-seed, the 

search time increases exponentially. 

The results of the experiments with simplified sketches 

show that if the original sketch location is found, it is usually 

within the top 5 results. Overall, we see that using a greater 

number of stall generations as our stop condition results in a 

higher recall rate, but longer search times. The two-seed 

method takes the most time, followed by the one-seed method, 

and finally the SOR method finishes in the shortest time. The 

one-seed and two-seed methods, however, found the original 

sketch location more often than the SOR method. This is 

likely due to the greater amount of change that occurs with 

each local search operation, allowing newly generated 

offspring to quickly compete with the existing population. The 

recall rate of the one-seed method is comparable to that of the 

two-seed method given the same convergence criteria, but the 

one-seed method takes far less time. This implies that the 

added complexity of the two-seed method to handle edge 

relationships is unjustified, as the flexibility of the elastic 

angle similarity measure allows the one-seed method to handle 

simplified sketches with arbitrary orientations. 

The total number of evaluations and runtime statistics for 

each of the experiments is shown in Fig. 11. An interesting 

observation seen in these results is that values tend to be 

skewed toward the high ranges of each test. This implies that a 

small portion of the tests performed much better than average. 

 
Fig. 11  (a) Average number of cross-correlation evaluations required for each 
of the experimental configurations. (b) Average runtime for each of the 

experimental configurations. Box plots give the minimum, maximum, upper 

and lower quartile, and the median values from all tests. 
 

TABLE III 
EFFECT OF PARKING LOTS ON SEARCH TIME USING TEST #2 

Number of 

Parking Lots 

Test Sketches 

(out of 100) 
Average Evaluations 

Average Time 

(seconds) 

0 61 2.88×108 ± 1.35×107 10102 ± 1609 

1 23 1.26×108 ± 5.36×106 4923 ± 758 

2 12 8.22×107 ± 2.48×106 3242 ± 475 

3 3 7.37×107 ± 2.26×106 3025 ± 480 

4 1 8.18×107 ± 6.87×105 3969 ± 613 

 



 

We propose that this may be due to the presence of parking 

lots in some of the sketches, which would place additional 

constraints on the search. To investigate this possibility, we 

look at test number 2, which had a near perfect recall rate, and 

separate the experimental results based on how many parking 

lots appear in the test sketches. This is shown in Table III, 

which shows that 61 out of 100 test sketches contained no 

parking lots at all, followed by 23 sketches with a single 

parking lot, and 16 sketches with two or more parking lots. 

These sketches were randomly sampled from the reference 

database and show that parking lots are relatively uncommon 

compared to buildings for our data. Because parking lots are 

less common in our reference set, sketches that contain more 

parking lots take less time to finish searching due to the 

additional constraints. This demonstrates how important 

additional labels can be in reducing the overall size of the 

search space. 

In Fig. 12 we show several examples of the scene matching 

experiments using the one-seed local search operator run for 

the maximum number of generations. The first two examples 

use resubstitution sketches which are exact copies of the 

ground truth location. In both of these, the top result is the 

original sketch location and all of the results share a similar 

spatial configuration. In the first example, all of the top 

matches could match the sketch via a rotation and the spacing 

between the buildings is well-preserved. The top results of the 

second example show only two different locations, but with a 

slightly different set of buildings in each one. In the alternate 

location, the building which is completely surrounded by a 

parking lot in the sketch is surrounded by a parking lot on 

three sides. In the last two examples, the sketch is a simplified 

and rotated version of the ground truth. The third example 

contains all rectangular objects, so the simplification process 

is just a rotation. In this case, the original sketch location is 

 
Fig. 12  Examples of the top matches found for the scene matching experiments using the one-seed local search operator run for the maximum number of 

generations. Buildings are shown in red (dark gray) and parking lots are shown in green (light gray). In the top two examples with resubstitution sketches and 
the third example with a simplified sketch, the top match is the correct mapping to the ground truth set. In the last example, the ground truth set is the third 

result because there are other locations that better match the simplified sketch. All of the top matches have very high fitness values and share similar spatial 

configurations. 
 



 

recovered as the top match. However, the sketch in the last 

example is a significantly simplified and rotated version of the 

ground truth location. Here, the original sketch location is the 

third best match because there are other locations which 

evaluate to a higher similarity with the simplified sketch. 

 

VI. CONCLUSIONS AND FUTURE WORK 

The histograms of forces provide a useful framework for 

representing the relative position between a pair of objects 

using directional relationships. In this paper, we presented a 

method of representing the spatial configuration of a group of 

objects using an attributed relational graph composed of object 

labels and HoF relations. We developed a similarity measure 

to compare two sets of object configurations based on the 

concept of elastic angles, which seeks to normalize the 

orientation differences between two sketches using the main 

direction between pairs of objects. Lastly, we defined three 

local search operators that can be used in a memetic 

framework to perform the task of scene matching between a 

target sketch and a reference database. Of these three local 

search operators, the one-seed set reconstruction method gives 

the best tradeoff between complexity and recall rate. 

Being a population-based method, the evolutionary 

algorithm we have developed can scale relatively easily to 

larger problems. The overall complexity of each generation of 

the algorithm can be given as 𝑂(𝜇𝑂𝐿𝑆𝑂), where 𝑂𝐿𝑆𝑂 is the 

complexity of the chosen local search operator. The overall 

complexity is not dependent on the size of the reference set, 

but instead depends mainly on the population size, sketch size, 

and number of nearest neighbor connections in the reference 

set. This means that with adequate hardware, the reference set 

could be several orders of magnitude larger than our 

experimental database. Multiple searches could also be run in 

parallel, with the final results aggregated at the end. This 

could be used to search a larger geospatial area or a large 

collection of separate images. 

Our proposed use of the memetic spatial matching 

algorithm is to take sketches created by the T2S system and 

anchor them to real world ground truth locations. A complete 

T2S system would be a useful tool for geospatial data analysts, 

as it could provide several possible locations for a person 

based on a linguistic description of their surroundings. 

Obviously this presents an opportunity for additional 

ambiguity in the scene description and sketch construction. 

Along with imperfections in automatically segmented satellite 

imagery, the complete T2S pipeline presents several sources of 

uncertainty, leading to our use of fuzzy-based methods such as 

the histograms of forces. Alternate applications, such as 

automated printed circuit analysis, may also find this scene 

matching method useful. The memetic framework presented in 

this paper can be applied to those problems in which a specific 

spatial configuration is to be found from within a larger 

database of objects. 

There are several directions for future work in this area. 

Some diversity mechanisms could be integrated into our 

existing algorithm relatively easily, and alternate algorithms 

for approximate subgraph matching could provide additional 

search strategies. Uncertainty is already modeled to some 

degree through the use of force histograms, and our model 

could be extended to include incomplete information in the 

target sketch. Error-correcting subgraph homomorphisms offer 

one possible way to make use of incomplete sketches, which 

may contain unlabeled or missing objects. Additional 

attributes on the nodes and edges of the ARG have been 

shown to improve search performance by pruning the search 

space, and features such as road networks and additional 

object labels could be added to further improve the matching 

accuracy of the algorithm. 
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