

Abstract—In this paper, we present an approach for modeling

and comparing small sets of 2D objects based on their spatial

relationships. This situation can arise in the conflation of a hand

or machine drafted map to a satellite image, or in the

correspondence problem of matching two images taken under

different viewing conditions. We focus here on the specific

problem of matching a sketched map containing several 2D

objects to hand-segmented satellite imagery. We define a

similarity measure between the spatial configurations of two

object sets which uses attributed relational graphs to represent

scene information. Objects are represented as graph nodes and

edges are defined by the histograms of forces between object

pairs. We develop a memetic algorithm based on a (μ + λ)

evolution strategy to solve this scene matching problem with

three domain-specific local search operators which are compared

experimentally.

Index Terms—Attributed relational graphs, histograms of

forces, memetic algorithms, scene matching, Text-to-Sketch.

I. INTRODUCTION

GEOGRAPHIC information system (GIS) which stores

and manipulates spatial information is often required to

perform the task of scene matching. A scene can be defined as

a certain configuration of objects or image features that may

have some real-world origin. Scene matching is a high-level

task that applies computer vision and pattern recognition

techniques to find corresponding regions in multiple images.

From a GIS point of view, scene matching can be used to

identify multiple views of the same scene [1] or to perform a

query by sketch [2], in which a small target sketch must be

found within a much larger image. For this application, a

sketch is defined as a specific spatial configuration of 2D

objects which is to be found in a much larger GIS database of

annotated object locations. This can be used to match a

sketched map of object locations to a real-world location using

segmented satellite imagery (Fig. 1).

This work is motivated by a recent grant from the U.S.

Manuscript received November 25, 2011. This work is funded by the U.S.

National Geospatial Agency NURI grant HM 1582-08-1-0020.

A. R. Buck, J. M. Keller, and M. Skubic are with the Department of

Electrical and Computer Engineering, University of Missouri, Columbia, MO
65211, USA (e-mail: arb9p4@mail.missouri.edu; kellerj@missouri.edu;

skubicm@missouri.edu).

Copyright © 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

National Geospatial-Intelligence Agency (NGA) aimed at

tackling the inverse problem of linguistic scene description, in

which a set of one or more spatial descriptions is used to

construct an approximate sketch of object locations [3]. This is

called Text-to-Sketch (T2S) by the NGA. The input to the T2S

system is a set of linguistic spatial descriptions. Descriptions

often relate two objects based on their relative position, such

as “I see a large building to the left,” or “There is a parking lot

directly behind the building to my right.” Buildings, parking

lots, and other descriptive entities which appear in the

descriptions are drawn by the T2S system as 2D objects in an

image. Apart from a small collection of labels, the only

defining features of these sketches are the shapes, sizes, and

spatial relationships between the objects. Being built from

linguistic descriptions, the sketches are rarely a completely

accurate representation of the actual ground-truth objects; thus

our model must be tolerant of variations in shape, size, scale,

and position.

The core requirement of scene matching is the definition of

a measure which assesses the similarity of two scenes. For

GIS systems, this is usually done by evaluating the similarity

of the two spatial configurations. Since sketches are often

constructed from qualitative descriptions rather than exact

dimensions, we seek ways in which to represent this

qualitative spatial information. Most methods use some

combination of topology, orientation, size, shape, and distance

to represent spatial relationships [4]. Several crisp similarity

measures have been defined between scenes using topological

models based on minimum bounding rectangles [5],

orientation graphs [6], and by counting the number of gradual

changes required to transform one scene into another [7]. One

drawback of these methods is that the basic topological

framework must be substantially appended with notions of

direction and distance in order to handle situations in which

nearly all objects are disjoint.

In contrast to these crisp methods, the histograms of forces

(HoF) [8] provide a fuzzy framework for expressing the

relative position between 2D objects based on directional

relationships. The HoF have been shown to be affine-invariant

[9], allowing for a robust similarity measure between two

scenes which can handle arbitrary changes in rotation, scale,

and translation. In [1] and [10] the HoF are used to generate

scene descriptors representing all of the spatial relationships

between objects in a scene. A correspondence map is built

A Memetic Algorithm for Matching Spatial

Configurations with the Histograms of Forces

Andrew R. Buck, Student Member, IEEE, James M. Keller, Fellow, IEEE, and Marjorie Skubic,

Member IEEE

A

mailto:arb9p4@mail.missouri.edu
mailto:kellerj@missouri.edu
mailto:skubicm@missouri.edu
mailto:pubs-permissions@ieee.org

using a possibilistic C-means clustering method which

associates pairs of objects between scenes. The HoF method is

compared to the Fourier-Mellin transform method of image

registration [11], and shown to be more robust to variations in

viewing geometries. These scene matching methods focus

solely on establishing a correspondence and confidence value

between two predefined scenes, however, and do not provide a

way to search for the existence of one scene within another.

Our method uses the descriptive power of the histograms of

forces to define the object correspondence between scene

objects within a larger evolutionary framework.

In this paper, we focus exclusively on the HoF method of

capturing spatial information in a scene and show how it can

be used for the task of scene matching. We develop a

similarity measure based on the concept of an attributed

relational graph (ARG) [12], [13] in which scene objects

become the nodes of a graph and the HoF relationships

between objects become edges. By representing both a query

sketch and a reference GIS database as ARGs, scene matching

can be described as an approximate subgraph matching

problem in which we seek to find a subgraph of the reference

ARG which is has maximum similarity to the sketch ARG.

This approach was used by Berretti et al. [14] to perform

image retrieval and by Nedas and Egenhofer [15] for querying

spatial scenes. In the latter, the search problem is cast as a

constraint satisfaction problem (CSP) [16] in which a set of

variables representing the scene objects must be mapped to a

specific set of possible reference objects such that the induced

ARG is isomorphic to the query ARG. The notion of an error-

tolerant subgraph isomorphism is used to allow for the types

of partial constraints that arise in real searches. This represents

a combinatorial optimization problem, for which an

exhaustive search would quickly become intractable on large

databases.

Evolutionary algorithms have been shown to be well-suited

to solving optimization problems, particularly in noisy or

uncertain environments [17], which makes them attractive

methods for searching spatial configurations. Rodríguez and

Jarur [18] developed a genetic algorithm which uses a measure

based on topological relationships and the distance between

objects to evaluate the similarity of object pairs, but does not

consider directional relationships. Papadias et al. [19]

combined a hill-climbing strategy with an evolutionary

approach for this problem using a crisp relation scheme.

Although these methods were shown to be effective in their

own domains, our work focuses on the application of the HoF

to the problem of scene matching, and a thorough comparison

is left for future work. The method used in [19] is similar to a

memetic algorithm [20], which adds an individual refinement

step to the standard evolutionary algorithm. This is an

effective search strategy for many different types of problems

[21], particularly those which operate on graphs. In [22],

evidence is given that a domain-specific heuristic can improve

a genetic algorithm for the maximum clique problem, and in

[23] a memetic algorithm is used to find a solution to the

capacitated arc routing problem. We have designed three

novel local improvement search operators that are used within

a memetic algorithm intended for searching spatial

configurations. This allows for the incorporation of domain-

specific knowledge into a parallel search procedure with a

population of candidate solutions covering a large geographic

search area.

The remainder of this paper is organized as follows. In

Section II we define a similarity measure which uses a HoF-

ARG model for representing spatial relationships. Section III

outlines the memetic framework with Section IV describing

the local search methods in detail. Section V gives our

experimental results using the proposed method, and our

conclusions are made in Section VI.

II. EVALUATING SPATIAL SIMILARITY

In this section we discuss the development of a similarity

measure between two spatial scenes. We use the notion of the

histograms of forces as attributes for ARGs and define ways to

compare both individual force histograms and complete

ARGs. The issue of orientation independence is addressed and

a novel comparison method which we call elastic angles is

introduced.

A. Histograms of Forces

The relative position of a pair of two-dimensional objects 𝐴

and 𝐵 can be represented by the set of forces acting between

them. For every direction 𝜃, we calculate the sum of

elementary forces acting between 𝐴 and 𝐵 in direction 𝜃 (Fig.

2). These forces can be aggregated into the F-histogram

𝐹𝑟
𝐴𝐵(𝜃), which maps ℝ → ℝ+ and represents the degree of

support for the proposition, “𝐴 is in direction 𝜃 of 𝐵.”

Provided that 𝐴 and 𝐵 are both non-empty regions and we

compute 𝜃 on a fine enough scale, 𝐹𝑟
𝐴𝐵 should have at least

one element greater than zero. We calculate the magnitude of

the individual forces as an inverse ratio of 𝑑𝑟, where 𝑑

represents the distance between the points of 𝐴 and 𝐵, and 𝑟

provides a way of capturing different information. When 𝑟 =
0, we obtain the histogram of constant forces (𝐹0), which

provides a global perspective, independent of the distance

between 𝐴 and 𝐵. When 𝑟 = 2, we obtain the histogram of

Fig. 1 An example of a machine-drafted sketch (a) and its corresponding

match within a segmented satellite image (b). Buildings are shown in red
(dark gray) and parking lots are shown in green (light gray).

gravitational forces (𝐹2), which gives a local view, more

sensitive to nearby points, but independent of global scale.

B. Main Direction

Often, we need to reduce the spatial relationship to a single

scalar direction 𝜑𝐴𝐵 , which is the main direction between the

objects 𝐴 and 𝐵. In [24], Matsakis et al. present a method

which uses both the 𝐹0 and 𝐹2 histograms for assessing the

degree of truth of the statement, “𝐴 is in direction 𝜃 of 𝐵.”

This is especially important in cases where the 𝐹0 and 𝐹2

histograms would by themselves indicate different primary

directions such as in Fig. 3. By using a common value for the

main direction, we can treat the 𝐹0 and 𝐹2 histograms as a pair

with a single reference axis. For each angle 𝜃, the forces of

𝐹𝑟
𝐴𝐵 are categorized as effective, contradictory, or

compensatory. Contradictory forces are those which oppose

the proposition, “𝐴 is in direction 𝜃 of 𝐵.” Compensatory

forces are chosen from the non-contradictory forces to balance

the pull of the contradictory forces. Any remaining forces are

labeled as effective forces, and are used to compute four

statistical values, 𝑎0
𝐴𝐵(𝜃), 𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃), and 𝑏2

𝐴𝐵(𝜃). Here,

𝑎𝑟
𝐴𝐵 represents the combined degree of truth that “𝐴 is in

direction 𝜃 of 𝐵” according to the F-histogram 𝐹𝑟
𝐴𝐵 , and 𝑏𝑟

𝐴𝐵

represents the percentage of all forces which are effective.

Details of this computation can be found in [24]. By

evaluating all directions, we define the combined force

histogram as

 Φ𝐴𝐵(𝜃) = max{𝑎0
𝐴𝐵(𝜃), min{𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃)}}. (1)

Skubic et al. [25] define the main direction 𝜑𝐴𝐵 as the

direction 𝜃 for which Φ𝐴𝐵(𝜃) is maximum. We chose to use a

more robust approach in which we define 𝜑𝐴𝐵 to be the

direction of the centroid of the combined force histogram,

Φ𝐴𝐵 . Because Φ𝐴𝐵 is defined on a periodic domain, we must

use polar vector summation to ensure that all directions are

treated equally [26]. This is especially true for cases in which

𝐴 surrounds 𝐵 or vice versa in which there is no suitable 2𝜋

range of Φ𝐴𝐵 which could serve as a linear mapping. We

define the main direction as

𝜑𝐴𝐵 = atan2 (∑ sin(Φ𝐴𝐵(𝜃))

𝜃∈[0,2𝜋]

, ∑ cos(Φ𝐴𝐵(𝜃))

𝜃∈[0,2𝜋]

) ,

 (2)

where atan2(𝑦, 𝑥): ℝ × ℝ → [0,2𝜋) is the two-argument

variation of the arctangent function. Although we could

certainly use the centroid of either the 𝐹0 or 𝐹2 histogram to

represent the primary direction, the main direction

interpretation defined above gives a unified framework that is

more consistent with the natural human interpretation.

Fig. 2 (a) A force histogram 𝐹𝑟

𝐴𝐵 is the scalar resultant of elementary forces exerted by the points of 𝐴 on those of 𝐵. Each one pulls 𝐵 in direction 𝜃. (b) The

histogram of constant forces (𝑟 = 0) is one representation of the spatial relationship between 𝐴 and 𝐵 providing a global perspective. (c) The histogram of

gravitational forces (𝑟 = 2) is another possible representation, which is more sensitive to nearby points.

Fig. 3 (a) A pair of objects for which the constant and gravitational force histograms indicate different primary directions. (b) The 𝐹0

𝐴𝐵 and 𝐹2
𝐴𝐵 histograms can

be combined into the main direction histogram, Φ𝐴𝐵. The centroid of this histogram gives the scalar main direction 𝜑𝐴𝐵, which is a compromise between the

primary directions of the two F-histograms. (c) 𝜑𝐴𝐵 is computed using polar vector summation where each angle of Φ𝐴𝐵 is treated as a vector. By summing all

of the vectors and computing the resultant angle, we avoid the problem of the periodic boundary.

C. Representing Object Sets

Suppose that we have a set of 2D objects 𝒪 =
{𝑜1, 𝑜2, … , 𝑜𝑛}, each with a label defined by the function

𝐿(𝑜𝑖) = 𝑙𝑖 ∈ ℒ, where ℒ is the set of all possible labels. For

any pair of objects (𝑜𝑖 , 𝑜𝑗) ∈ 𝒪 we can represent the

directional relationship between them with the F-histograms

𝐹0

𝑜𝑖𝑜𝑗
 and 𝐹2

𝑜𝑖𝑜𝑗
, and we can also compute the main direction

𝜑𝑜𝑖𝑜𝑗 . As the number of objects grows, it becomes convenient

to represent the set as an ARG in which each vertex and edge

is assigned a set of attributes. We can represent each object as

a vertex in an ARG, and assign the relationships between

objects as edge attributes. Let us define the ARG for a set of

2D objects 𝒪 as 𝐺𝒪 = (𝑉𝒪 , 𝐸𝒪) where 𝑉𝒪 is the set of vertices

and their attributes, and 𝐸𝒪 is the set of edges and their

attributes. A vertex 𝑣𝑖 = (𝑜𝑖 , 𝑙𝑖) ∈ 𝑉𝒪 is a pair containing an

object 𝑜𝑖 ∈ 𝒪 and its label 𝑙𝑖. An edge 𝑒𝑖𝑗 =

(𝐹0

𝑜𝑖𝑜𝑗
, 𝐹2

𝑜𝑖𝑜𝑗
, 𝜑𝑜𝑖𝑜𝑗) ∈ 𝐸𝒪 is a triple that connects two vertices

in the graph and contains the histograms of constant and

gravitational forces, as well as the main direction between

those two objects. A complete ARG for a set of 𝑛 objects will

have 𝑛 vertices and 𝑛 × (𝑛 − 1) edges, with a unique edge

defined between each pair of vertices. An example ARG

representation of an object set is given in Fig. 4.

Obviously since each edge represents a spatial relationship,

the order of the arguments is important. “𝐴 is in direction 𝜃 of

𝐵” is not the same as “𝐵 is in direction 𝜃 of 𝐴.” However, the

two statements contain largely the same information, and we

can relate them with the semantic inverse property of the HoF

[9], which states that

 𝐹𝑟
𝐵𝐴(𝜃) = 𝐹𝑟

𝐴𝐵(𝜃 + 𝜋). (3)

Since 𝐹𝑟
𝐴𝐵 is a periodic function, this is equivalent to a circular

shifting of the histogram bins, in which no information is lost.

We can reduce the storage requirement of our ARG

representation by a factor of two if we only calculate edges

(𝑜𝑖 , 𝑜𝑗) in which 𝑖 < 𝑗, and use the semantic inverse property

for all other pairs.

D. Comparing Histograms

Toward the goal of developing a similarity measure

between the spatial configurations of object sets, we begin by

comparing a single pair of F-histograms. If two pairs of

objects have a similar spatial configuration, then they should

have similar F-histograms. Matsakis et al. [9] investigated

several similarity measures for F-histograms, of which we

choose the cross-correlation for its invariance to scale. The

cross-correlation of two individual histograms ℎ1 and ℎ2 is

defined as

 𝜇𝐶(ℎ1, ℎ2) =
∑ ℎ1(𝜃)ℎ2(𝜃)𝜃

√∑ ℎ1
2(𝜃)𝜃 √∑ ℎ2

2(𝜃)𝜃

, (4)

which is guaranteed to be in the range [0,1] provided that both

ℎ1 and ℎ2 contain no elements less than zero, and at least one

element greater than zero. A cross-correlation of 1 implies a

perfect match, whereas 0 implies that the support of ℎ1 and ℎ2

have no common elements.

A special feature of the cross-correlation is that it is

independent of the scale of ℎ1 and ℎ2. This means that we do

not need to normalize the Y-axis values of the F-histograms.

The X-axis values, however, are defined with respect to the

reference angle where 𝜃 = 0. If two pairs of objects are

defined with the same reference angle, then their F-histogram

relationships can be compared directly. If, however, they are

defined with different reference angles (e.g. by rotating one of

the pairs) then one F-histogram must be shifted to match the

other. We call upon the basic properties of the histograms of

forces [8], [9], which state that if a pair of objects (𝐴, 𝐵) is

rotated counter-clockwise by an angle 𝜑, its F-histogram

becomes

 𝐹𝑟
𝑟𝑜𝑡(𝐴,𝐵)(θ) = 𝐹𝑟

𝐴𝐵(𝜃 − 𝜑). (5)

This is simply a circular shifting of the histogram bins, which

allows us to compare spatial relationships defined with any

orientation. Given two pairs of objects, (𝐴, 𝐵) and (𝐴′, 𝐵′)

defined with reference angles 𝜙 and 𝜙′ respectively, we can

compare their relative spatial relationships with the general

equation

 𝜇𝑃𝑎𝑖𝑟(𝐴, 𝐵, 𝜙, 𝐴′, 𝐵′ , 𝜙′) = 𝛽𝜇𝐶0 + (1 − 𝛽)𝜇𝐶2, (6)

where

𝜇𝐶0 = 𝜇𝐶 (𝐹0
𝐴𝐵(𝜃 − 𝜙), 𝐹0

𝐴′𝐵′
(𝜃 − 𝜙′)),

𝜇𝐶2 = 𝜇𝐶(𝐹2
𝐴𝐵(𝜃 − 𝜙), 𝐹2

𝐴𝐵(𝜃 − 𝜙′)).

Here 𝛽 is a weighting factor between the histograms of

constant and gravitational forces, which is typically set at 0.5

to give equal weight to both F-histograms.

E. Comparing Object Sets

Suppose that we are given two sets, each containing the

same number of objects in a defined order, 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

and 𝑆′ = (𝑜1
′ , 𝑜2

′ , … , 𝑜𝑛
′). We can compare 𝑆 and 𝑆′ by

measuring the average similarity of the spatial relationships

Fig. 4 (a) An example of an object set 𝒪 = {𝑜1, 𝑜2, 𝑜3} (b) The ARG

representation of 𝒪 is 𝐺𝒪 = (𝑉𝒪, 𝐸𝒪), where 𝑉𝒪 = {𝑣1, 𝑣2, 𝑣3} and 𝐸𝒪 =
{𝑒12, 𝑒13, 𝑒21, 𝑒23, 𝑒31, 𝑒32}. Each vertex 𝑣𝑖 is a pair (𝑜𝑖 , 𝑙𝑖) where 𝑙1 =
𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑡 and 𝑙2 = 𝑙3 = 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔. Each edge 𝑒𝑖𝑗 is a triple

(𝐹
0

𝑜𝑖𝑜𝑗 , 𝐹
2

𝑜𝑖𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗) containing the calculated F-histograms and main direction

between each object pair.

between each pair of objects. Notice that we avoid the general

correspondence problem and assume that the object order is

the same in both sets. If we can guarantee that both 𝑆 and 𝑆′

are defined with the same orientation, then we can compute

the similarity of the two object sets as

ΨStatic(𝑆, 𝑆′) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖 , 𝑜𝑗 , 0, 𝑜𝑖

′, 𝑜𝑗
′, 0)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

.

 (7)

Here both reference angles are defined as zero, implying that

no shifting of the histograms is necessary. The output range of

this similarity measure is in the range [0,1] and the complexity

to compute it given 𝑆 and 𝑆′ is 𝑂(𝑛2𝜔), where 𝑛 is the

number of objects in each set and 𝜔 is the number of angles

computed for each F-histogram.

Although the above expression is valid if both object sets

are defined with respect to the same reference angle, we

typically do not have any way to guarantee that this condition

holds. Consider the case of matching a sketched map of roads

and buildings to ground truth imagery. Maps are not always

drawn with the same orientation as the ground truth, often out

of convenience. Take, for example, the streets of Manhattan,

which are commonly drawn on maps as perfectly horizontal

and vertical lines, yet a satellite image of the city shows that

the island is not actually aligned in one of the cardinal

directions. In order to compensate for changes in orientation

between the two object sets, we rotate all of the F-histograms

from 𝑆′ by the angle 𝜑⋆ which would give the best overall

alignment with the F-histograms from 𝑆.

We define the angular difference between two pairs of

objects (𝐴, 𝐵) and (𝐴′, 𝐵′) as the difference between their

main directions, 𝜑𝐴𝐵 − 𝜑𝐴′𝐵′
. The angular difference between

each unique pair of objects in 𝑆 and 𝑆′ makes a list of angular

differences

𝐷 = {𝑑11, 𝑑12, … , 𝑑𝑖𝑗 , … , 𝑑(𝑛−1)𝑛}, 𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑜𝑖
′𝑜𝑗

′

,

 (8)

which represents the total mismatch between the orientations

of the two sets. The values of 𝐷 are shifted into the range

[0, 2𝜋) and used to determine the optimal rotation angle 𝜑⋆

that will be applied to 𝑆′. The mean and median values of 𝐷

are both reasonable choices for 𝜑⋆, with the median providing

greater stability overall [27]. Because the angles are defined

on a periodic domain, it may not be possible to define a 2𝜋

range which can serve as a linear mapping to compute the

median. Therefore, we pick the optimal rotation angle as the

angle in 𝐷 which minimizes the angular distance to all other

angles in 𝐷 using the following expression from [26].

 𝜑⋆ = arg min
𝑑𝑢𝑣∈𝐷

[𝑞(𝑑𝑢𝑣)], (9)

where

𝑞(𝑑𝑢𝑣) = 𝜋 − ∑ ∑ |𝜋 − |𝑑𝑖𝑗 − 𝑑𝑢𝑣||

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

.

Here, 𝑞 is a temporary list of the total angular distances

evaluated for each angle in 𝐷. An example of this process is

given in Fig. 5. Having found 𝜑⋆, we rotate all of the F-

histograms from 𝑆′ by a uniform angle to obtain an

orientation-independent similarity measure,

ΨRotate(𝑆, 𝑆′) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖 , 𝑜𝑗 , 0, 𝑜𝑖

′, 𝑜𝑗
′, 𝜑⋆)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

.

 (10)

Fig. 5 An example of the calculation of the optimal rotation angle, 𝜑⋆. All

angles are given in radians measured counterclockwise from the X-axis. The

ground truth object set in (a) is approximated by the simplified sketch in (b),

which has been rotated counterclockwise about one quarter-turn. The object
correspondences between the sketch and ground truth are given, and the main

direction between each unique object pair is given in (c). The first two

columns of (c) list the individual object pairs, and the main directions
calculated for the ground truth and sketch are given in the third and fourth

columns respectively. The list of angular differences between main directions

𝐷 is listed in the fifth column, which is used as the input to (9) for computing

the list of angular distances, 𝑞. The angle which minimizes the angular

distance to all other angles in 𝐷 is chosen as the optimal rotation angle, 𝜑⋆.

Here, 𝜑⋆ is chosen as an 83° clockwise rotation of the sketch.

F. Elastic Angles

One problem with rotating one entire object set by a

uniform angle is that there is not always a single angle that

best represents the ideal rotation required to match two given

object sets. Elastic angles are a way to be more flexible with

the orientation normalization. Rather than rotating all of the F-

histograms from one set by the single optimal rotation angle,

we rotate each F-histogram individually and apply a separate

weight to each one based on how different each rotation is

from the optimal angle. This gives each pair of histograms a

tolerance to small directional differences. We begin by

calculating the angular difference list 𝐷 in the same way as

before to compute the best rotation angle, 𝜑⋆. Rather than

rotating all histograms of one set by this angle, we compare

the normalized histograms of both sets. A normalized F-

histogram is one that has been rotated clockwise by its main

direction so that it becomes centered at 𝜃 = 0. Comparing

normalized F-histograms removes all orientation biases,

leaving only the shapes and sizes as distinguishing

characteristics. To compensate for the loss of directional

information, we apply a weighting factor to each histogram,

defined by the fuzzy weighting function 𝜇𝑇𝑟𝑎𝑝(𝜃) shown in

Fig. 6. The angular difference between the original histograms

is used as the input to this weighting function, allowing only

histograms that originally shared similar orientations to be

considered with full weight and all others to have less weight.

The overall similarity measure is defined as

ΨElastic(𝑆, 𝑆′) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑇𝑟𝑎𝑝(𝜑⋆ − 𝑑𝑖𝑗)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

× 𝜇𝑃𝑎𝑖𝑟 (𝑜𝑖 , 𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗 , 𝑜𝑖
′, 𝑜𝑗

′, 𝜑𝑜𝑖
′𝑜𝑗

′

) .

 (11)

The elastic angle method allows for small imperfections

between two object sets. The trapezoidal membership function

allows F-histograms which would not otherwise be perfectly

aligned to still be considered with full weight. This tends to

result in higher similarity values overall [27], but allows for

the small discrepancies between object sets that tend to arise

when working with real data. Fig. 7 shows an example which

highlights the differences between the elastic and non-elastic

methods for evaluating object set similarity.

III. THE MEMETIC ALGORITHM

Having defined a similarity measure between two object

sets, we now turn to the task of scene matching between a

target sketch and a large reference database. With both object

sets represented as ARGs, this can be viewed as an

approximate subgraph matching problem, in which we seek to

find a subgraph of the reference database which has a high

degree of similarity to the target sketch. The optimal solution

to this problem is the subgraph which has the highest

similarity to the target sketch. Formally we define the problem

as follows. Given a sketch 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) and a reference

Fig. 6 The trapezoidal weighting function used for elastic angles.

Fig. 7 Comparison of the elastic and non-elastic methods for evaluating
object set similarity. The object set in (a) is a subset of the example in Fig. 1.

The sketch in (b) is a simplification of (a) with object 𝐷 significantly

misplaced. (c) shows the computation of the non-elastic similarity, where the

numbers to the left of each histogram represent the individual cross-

correlation values. For clarity, only the histograms of constant forces are
shown, although both the constant and gravitational F-histograms are used in

computing the final similarity. The red (dark gray) histograms are computed

from (a) and the blue (light gray) histograms are computed from (b). (d) and
(e) show the computation of the elastic fitness. (d) is the weighting function

𝜇𝑇𝑟𝑎𝑝(𝜃) and (e) shows the normalized histograms, where the numbers to the

right of each histogram represent the weighted cross-correlation values.

set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} in which 𝑚 ≫ 𝑛, we represent a

potential solution to this problem as a vector of objects from

the reference set, Γ⃑ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝑥(𝑖) ∈ ℛ for 1 ≤

𝑖 ≤ 𝑛. We use this vector to define the correspondence

between sketch objects and reference objects such that sketch

object 𝑜𝑖 ∈ 𝑆 is matched with reference object 𝑥(𝑖) ∈ Γ⃑, which

we also notate as Γ𝑖. The solution to the optimization problem

is the vector of reference set objects that maximizes the

similarity measure, ΨElastic(𝑆, Γ⃑).

First, the input sketch and reference set are modeled as the

attributed relational graphs 𝐺𝑆 and 𝐺ℛ respectively. For the

sketch, 𝐺𝑆 is completely defined with a vertex for each object

and the full set of 𝑛 × (𝑛 − 1) edges. When constructing 𝐺ℛ,

we create a vertex for each object, but only define some of the

spatial relationships as edges. Typically ℛ contains many

objects spread over a large area. Since the sketch represents

only a small spatial region, we restrict the set of outgoing

spatial relationships for each object in ℛ to its 𝐾 nearest

neighbors. This prunes the search space considerably by

eliminating edges between objects which are not near to each

other. In [28], Bloch et al. investigate several techniques for

measuring the degree to which an object is between two other

objects. Object pairs which are too far apart or have too many

objects between themselves can also be excluded from the

edge list. Our experiments use a reference set of 2814 objects

with a maximum of 50 neighbor connectivity shown in Fig. 8

(a), which overlays 𝐺ℛ on the segmented image of Columbia,

MO and Fig. 8 (b), which focuses on the subgraph which

matches 𝐺𝑆, the ARG representation of the sketch given in

Fig. 1.

Removing edges from the reference ARG adds an important

constraint to the optimization problem. Recall that our

similarity measure ΨElastic requires two complete ARGs. If the

induced ARG formed by the potential solution Γ⃑ is not a

complete graph, we cannot evaluate its similarity to 𝑆 using

this method. Additional F-histograms would need to be

computed, which are typically all pre-computed for large

reference graphs. Although there are ways for comparing

incomplete graphs using subgraph homomorphism techniques

that could prove useful for matching large sketches, we limit

our discussion here to the case in which any potential solution

Γ⃑ forms a complete graph in the reference ARG. Object labels

provide another constraint that must be considered in the

design of our matching algorithm. In this work, since we deal

with only two labels, we require that the labels of any

potential solution perfectly match the labels of the sketch such

that 𝐿(𝑜𝑖) = 𝐿(Γi) for 1 ≤ 𝑖 ≤ 𝑛. An alternative approach

would be to include label compatibility in the similarity

measure. This could be done by using a fuzzy measure, which

would provide greater flexibility when more labels are in use.

However, our strict label-preserving requirement allows the

search algorithm to explicitly seek out good solutions. As we

shall see, these constraints provide the guiding principles for

the design of the local search operators and affect how we

design the memetic framework.

There are several reasons why an evolutionary method is

appropriate for this problem. From the viewpoint of a scene

matching analyst, it is often desirable to be presented with a

list of high ranking solutions rather than a single top scoring

match. Furthermore, the best match for an analyst may not

necessarily correspond exactly with the defined similarity

measure. An iterative population-based approach allows many

potential solutions to compete and improve over time, giving

Fig. 8 (a) 𝐺ℛ, the ARG representation of the reference set used in our

experiments containing 2814 objects from Columbia, MO. The graph is
superimposed over the reference set with darker areas indicating regions of

high connectivity. Buildings are shown in red (dark gray) and parking lots are

shown in green (light gray). (b) A close-up view of 𝐺𝑆, the ARG

representation of the sketch from Fig. 1, shown as a subgraph of 𝐺ℛ.

an analyst the opportunity to provide user-driven input as to

which matches are good and when to terminate the search.

Although we do not use a human feedback component in our

algorithm, this idea could be explored in future research.

Lastly, an evolutionary method is inherently parallel, allowing

it to be scaled to very large problems through the use of

parallel hardware. Each execution of our search algorithm is

single-threaded, but this also represents a potential future

research direction.

The term “memetic algorithm” (MA) was coined by

Moscato [29] as a method of combining the general search

strategy of an evolutionary algorithm with an individual

refinement step. This allows for a population-based method

with local search operators that can be designed to be

problem-specific. In general, an evolutionary algorithm (EA)

starts by creating a population of individual solutions, or

chromosomes, which cooperate and compete over multiple

iterations to find good solutions to a given problem. Each

chromosome encodes a solution to the problem as a set of

genes, or variables, which can be set to take on certain values.

The basic operators in an EA are selection, which picks

individuals for breeding and survival; recombination, which

combines genetic material from multiple individuals; and

mutation, which is used to introduce new genetic material. A

memetic algorithm adds an additional local search operator

which can be applied to individuals to improve their fitness

value or solution quality. The ability to incorporate problem-

specific knowledge gives rise to many different adaptations of

memetic algorithms to various problem domains [21]. To

maximize the synergy of global exploration and local

refinement, domain knowledge can be applied to the design of

the problem representation, the evolutionary and local search

operators, and the fitness evaluation [30].

The label-preserving and complete graph constraints

described above limit our ability to use standard mutation and

crossover operators for the scene matching problem. Recall

that an individual solution is represented as a vector of

reference objects, Γ⃑. Blindly swapping the genes of two

individuals through crossover or introducing a new random

object through mutation would likely result in an incomplete

or mislabeled graph, which would violate our constraints. As

discussed in [31], constraints can be handled either directly or

indirectly in an evolutionary algorithm. Indirect methods tend

to involve modifying the fitness values with a penalty

function, whereas direct methods place restrictions on what

types of solutions are allowed. Problem-specific operators are

often created to repair infeasible individuals or prevent their

creation [32]. Although graph-based crossover operators have

been developed for the fields of genetic programming [33] and

artificial neural networks [34], a crossover operator for this

problem would need to produce children from parents that

often form disjoint graphs in the reference ARG with no

common nodes or edges. In order to ensure that the child

chromosomes form complete graphs, they must be confined to

a single region of the reference database. The children would

only contain genetic material from both parents if the two

parents were located very close to each other in the reference

database. If the two parents were far apart, a child generated

through crossover would need to be either very close to one of

the parents or somewhere in the region between them. The

former case is best left to the local search operator, which still

maintains some degree of randomness, and the latter is

essentially a new random individual. In the spirit of utilizing

all possible domain knowledge, we have opted to design

operators that are specific to this problem domain.

Specifically, we have designed an initialization function for

generating random individuals and three local search operators

which take the place of crossover and mutation. The

initialization function is used throughout the search process as

a way of increasing exploration, whereas the local search

operators are used for exploitation. Each local search operator

takes a single parent and produces a set of multiple children

that all share at least one common element with the parent.

The details of these operators will be discussed in Section IV.

The outline of our search procedure is given in Algorithm 1.

The algorithm requires as inputs a reference set ℛ and a target

sketch 𝑆 along with predefined constants, 𝜇 (population size),

𝜆 (number of children generated each generation), 𝜏

(maximum age of each individual), and 𝜇𝐸𝑙𝑖𝑡𝑒 (number of top-

ranking individuals preserved each generation). The search

procedure starts by generating an initial population of 𝜇

Algorithm 1

Memetic Algorithm for Matching Spatial Configurations

Input:

ℛ and 𝑆

Constants: 𝜇, 𝜆, 𝜏, 𝜇𝐸𝑙𝑖𝑡𝑒

Initialize:

Set 𝑡 = 0

Create initial population of individuals: 𝑃(0) = (Γ⃑1, Γ⃑2, … , Γ⃑𝜇)

While stopping criteria is not met

For each individual Γ⃑𝑃 ∈ 𝑃(𝑡)

If age(Γ⃑𝑃) > 𝜏 and Γ⃑𝑃 is not one of the top 𝜇𝐸𝑙𝑖𝑡𝑒

individuals

Replace Γ⃑𝑃 with a new random individual

End If

Generate list of children through local search:

 𝒞 = local_search(Γ⃑𝑃)

Add the top 𝜆 children in 𝒞 to 𝑃(𝑡)

End For

Sort 𝑃(𝑡) and remove duplicates

Add top 𝜇𝐸𝑙𝑖𝑡𝑒 individuals to 𝑃(𝑡+1)

While |𝑃(𝑡+1)| < 𝜇

Pick Γ⃑𝑖 from 𝑃(𝑡) without replacement using roulette-

wheel selection

Add Γ⃑𝑖 to 𝑃(𝑡+1)

End While

𝑡 = 𝑡 + 1

Increment age of each Γ⃑ ∈ 𝑃(𝑡)

End While

Output: Top scoring individuals in 𝑃(𝑡)

random individuals. Each random individual solution is

chosen by first finding the label of the target sketch that

appears the least often in the reference set, and then picking a

random object from the reference set with that label. This

object becomes the seed of the chromosome, and the

remaining objects of the chromosome are chosen randomly

from the nearest neighbors of this seed such that the labels

match the objects of the sketch. Closer neighbors have a

higher likelihood of being chosen in order to keep the

chromosome spatially compact. If none of the seed’s nearest

neighbors can satisfy the label requirements of the sketch, a

new seed is chosen in a different location.

During every generation 𝑡, each of the 𝜇 individuals in the

population 𝑃(𝑡) generates a set of 𝜆 children through the local

search operator, which are added to the current population.

The population is then sorted based on individual fitness,

defined by the similarity measure ΨElastic(𝑆, Γ⃑), and any

duplicates are removed to prevent saturation. A few elite

individuals, 𝜇𝐸𝑙𝑖𝑡𝑒 , are copied directly to the next generation

𝑃(𝑡+1) and the remaining individuals are chosen using

roulette-wheel selection until |𝑃(𝑡+1)| = 𝜇. The age of each

surviving solution is incremented and should an individual’s

age reach a certain threshold value 𝜏, it is replaced with a new

random individual. Restarting certain individuals in this way

can be seen as a type of strong or heavy mutation [20] which

forces individuals that have converged to local optima to move

to a new location. The new individuals are given an

opportunity to perform a local search before being required to

compete against the existing population. This strong mutation

may be omitted for the top few individuals in the population in

order to retain the global best solutions found. Once the

stopping criteria have been met, the search terminates and the

top-ranking individuals are returned as the solutions.

The memetic algorithm we have designed loosely resembles

a (𝜇 + 𝜆) evolution strategy [35]. A key difference is that we

perform selection only when deciding which individuals

survive to subsequent generations, and not in choosing which

individuals to reproduce. This is done in order to give each

chromosome an opportunity to perform a local search during

each generation. In contrast to a simple parallel local search

strategy, each parent produces multiple children which

compete with one another for survival, ensuring that the pool

of possible solutions for the next generation is larger than the

set of each parent’s single best offspring. We remove

duplicate solutions to maintain population diversity and to

reduce the amount of redundant computation. Fitness-

proportionate selection is used after preserving a few elite

individuals to allow lower scoring solutions a chance to

survive. If a parent solution is chosen to survive, it will

undergo the local search operation multiple times, possibly

producing the same set of potential children. The age counter

forces these individuals to move to a new location after a set

number of repeat local searches so that the algorithm

continues to search new locations. This jump away from local

optima is performed for all but the top few elite individuals,

which are allowed to survive intact as the best global

solutions. A common convergence criterion is to terminate the

search if the top solution does not change for a certain number

of generations.

IV. LOCAL SEARCH OPERATORS

The local search operators developed for this memetic

algorithm can be seen as a type of weak or light mutation.

Given a parent chromosome, each operator produces a set of

children that are confined within a local neighborhood of the

parent. This is done by performing the core operations once

for each possible choice of replacement objects or seed

objects. The operators all use some random variation in

producing offspring which are intended to be more similar to

the target sketch than the parent. The following sections

describe the three operators we have developed and provide an

example of their application.

A. Single-Object Replacement

The single-object replacement (SOR) operator is based on

the work presented in [27] and [36]. In this strategy, a single

object from the parent is replaced by one of its nearest

neighbors. Given a parent chromosome Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃),

we cycle through each object Γ𝑖
𝑃 ∈ Γ⃑𝑃 and replace it with one

of its nearest neighbors. Let 𝒳 be the set of nearest neighbors

for the object Γ𝑖
𝑃, such that any object 𝑥⋆ ∈ 𝒳 could replace

Γ𝑖
𝑃 and still ensure that Γ⃑𝑃 forms a complete subgraph of the

reference ARG. For each neighbor object 𝑥⋆, we build a

potential child solution Γ⃑𝐶 which is identical to Γ⃑𝑃 except that

Γ𝑖
𝑃 has been replaced by 𝑥⋆. The potential child with the

highest fitness is added to the list of output children, 𝒞.

Our initial experiments with the SOR operator [27], [36]

revealed that the algorithm can often have difficulty finding

the ideal match in a region. Because each chromosome is an

ordered vector, an individual solution can contain all of the

objects of the ideal match, but not in the right order. The SOR

operator must be applied to these solutions multiple times,

swapping chromosome objects with their neighbors to allow

different orderings of the chromosome. We therefore consider

multiple different permutations of the parent vector before

applying the SOR operator. This produces a larger set of

children, but decreases the number of times the SOR operator

must be applied to each individual in order to reach a local

optimum. Clearly, evaluating all possible permutations would

result in a large computational overhead, so we typically use

only a small number of randomly chosen permutations. This

offers a balance between performing an exhaustive search and

maintaining a degree of randomness to help prevent premature

convergence. The complete SOR method is given in

Algorithm 2. Given that the complexity of each fitness

evaluation is 𝑂(𝑛2𝜔), the SOR operator has a complexity of

𝑂(𝑝𝑛3𝜔𝐾), where 𝑝 is the number of permutations

considered, 𝑛 is the number of objects in the set, 𝜔 is the

number of angles in each F-histogram, and 𝐾 is the maximum

number of nearest neighbor connections used in the reference

set ARG.

B. One-Seed Set Reconstruction

The set reconstruction methods are based on the idea that

the best possible solution can be reconstructed from a small

starting seed of just one or two objects. Given a complete

sketch 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛), we define a partial sketch 𝑆′ =

(𝑜(1)
′ , 𝑜(2)

′ , … , 𝑜(𝑢)
′) ⊂ 𝑆 which only contains some of the

original objects. Likewise, we define a partial solution as a

vector Γ⃑′ = (𝑥(1), 𝑥(2), … , 𝑥(𝑢)), 𝑥(𝑖) ∈ ℛ for 1 ≤ 𝑖 ≤ 𝑢,

which associates each object of the partial sketch with an

object from the reference set. The partial fitness 𝑓(Γ⃑′) =

ΨElastic(𝑆′, Γ⃑′) only considers the specified subset of original

sketch objects. The idea behind the one-seed method is to start

with a single object 𝑆′ = (𝑜(1)
′) ⊂ 𝑆 and add objects one at a

time until all of the objects in the sketch have been used. The

overall outline of the one-seed set reconstruction method is

given in Algorithm 3. Given a parent chromosome Γ⃑𝑃 =

(Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃), we cycle through each object Γ𝑖

𝑃 ∈ Γ⃑𝑃 and use

it as the seed object for a partial sketch. We then consider all

possible assignments of an object from the target sketch onto

the seed object, and create a partial solution Γ⃑′ for each one.

For each partial solution, we randomly pick an unassigned

sketch object 𝑜𝑖 ∈ 𝑆 − 𝑆′ and find the set of nearest neighbors

𝒳 ⊆ ℛ to which 𝑜𝑖 could be assigned while maintaining full

connectivity. Similar to the approach of the SOR operator, we

create a set of temporary partial solutions, each with 𝑜𝑖

assigned to a different neighbor object 𝑥⋆ ∈ 𝒳. The neighbor

that produces the greatest partial fitness is added to the partial

sketch 𝑆′. We continue to match the unassigned sketch objects

of 𝑆 to the best neighbor objects in this greedy manner until

𝑆′ = 𝑆. Once we have a complete chromosome, we add it to

the list of children, 𝒞.

The one-seed set reconstruction method solves many of the

problems faced by the SOR operator. Individuals rarely stay in

a single area without converging to a locally optimal solution.

Different orderings of buildings is less of an issue since the

entire solution is reconstructed. The one-seed operator also

tends to converge faster than the SOR operator since more of

the solution is being replaced, although this can cause

individuals to become trapped in sub-optimal local solutions.

The complexity of the one-seed method can be derived as

Algorithm 2

Single-Object Replacement Search Operator

Input:

Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

Parent: Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) where each Γ𝑖

𝑃 ∈ ℛ

Constant: 𝑝

Initialize:

𝒞 = ∅

Add Γ⃑𝑃 to list of permutations, 𝒫

Add 𝑝 random permutations of Γ⃑𝑃 to 𝒫

For Each Γ⃑ ∈ 𝒫

For 𝑖 = 1 to 𝑛

Γ⃑𝐶 = Γ⃑

Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object Γ𝑖
𝑃

𝑓𝑏𝑒𝑠𝑡 = 0

For Each 𝑥⋆ ∈ 𝒳

Replace a single object: Γ𝑖
𝐶 = 𝑥⋆

Evaluate the fitness: 𝑓(Γ⃑C) = ΨElastic(𝑆, Γ⃑𝐶)

If 𝑓(Γ⃑ 𝐶) > 𝑓𝑏𝑒𝑠𝑡 Then

𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆; 𝑓𝑏𝑒𝑠𝑡 = 𝑓(Γ⃑𝐶)

End If

End For

Replace with best object: Γ𝑖
𝐶 = 𝑥𝑏𝑒𝑠𝑡

Add to list of children: 𝒞 = 𝒞 ∪ Γ⃑𝐶

End For

End For

Output: 𝒞

Algorithm 3

One-Seed Set Reconstruction Search Operator

Input:

Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

Parent: Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) where each Γ𝑖

𝑃 ∈ ℛ

Initialize:

𝒞 = ∅

Initialize list of index locations: 𝐼 = {1,2, … , 𝑛}

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝐿(𝑜𝑖) = 𝐿(Γ𝑗
𝑃)

Clear Γ⃑′

Create the partial ordered sketch: 𝑆′ = (𝑜𝑖)

Update remaining index locations: 𝐼′ = 𝐼 − 𝑖

Set Γ𝑖
′ = Γ𝑗

𝑃

Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object Γ𝑗
𝑃

While |𝐼′| > 0

Pick an index 𝑘 ∈ 𝐼′ randomly

Add 𝑜𝑘 to the end of the partially ordered sketch: 𝑆′ =

(… , 𝑜𝑘)

𝑓𝑏𝑒𝑠𝑡 = 0

For Each 𝑥⋆ ∈ 𝒳

Set Γ𝑘
′ = 𝑥⋆

Evaluate the partial fitness: 𝑓(Γ⃑′) = ΨElastic(𝑆′, Γ⃑′)

If 𝑓(Γ⃑′) > 𝑓𝑏𝑒𝑠𝑡 Then

𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆; 𝑓𝑏𝑒𝑠𝑡 = 𝑓(Γ⃑′)

End If

End For

Set Γ𝑘
′ = 𝑥𝑏𝑒𝑠𝑡

Remove this index location: 𝐼′ = 𝐼′ − 𝑘

Update 𝒳 as the nearest neighbors of Γ⃑′

End While

Add Γ⃑′ to list of children: 𝒞 = 𝒞 ∪ Γ⃑′

End For

Output: 𝒞

𝑂(𝑛5𝜔𝐾), which is greater than the SOR method, assuming

that only a small number of permutations are used for the

latter. Because of the exponential term on 𝑛, this method is

limited to relatively small sketch sizes; our experiments use

sketches of five objects. The greater complexity of the one-

seed method is compensated by the faster convergence rate,

which we will show in Section V.

Each partial solution is rotated to give the best alignment

between the sketch and the chromosome. As the set

reconstruction methods add additional objects to the partial

sketch, the resulting orientation of each partial solution

becomes increasingly more difficult to change. When there are

only two objects, the partial solution is allowed to rotate to

whichever angle best matches the corresponding objects of the

sketch, essentially relying only on the shape of the F-

histograms to evaluate the fitness. This means that the second

object of the partial solution mostly defines the initial

orientation, and the remaining objects conform to this

orientation.

C. Two-Seed Set Reconstruction

The two-seed set reconstruction method is almost identical

to the one-seed method with the exception that two seed

objects are used instead of just one. By using two seeds, we

define an edge relationship between two objects, which

determines the individual’s initial orientation. This allows a

single run of the operator to explore many different possible

orientations, but incurs a significant computational overhead.

For a parent solution Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) we cycle through

each pair of objects (Γ𝑖
𝑃 , Γ𝑗

𝑃) ∈ Γ⃑𝑃 × Γ⃑𝑃 and use them as the

seed objects for a partial sketch. We then consider all possible

assignments of a pair of objects from the target sketch onto the

seed objects, and create a partial solution, Γ⃑′ for each one.

This results in a complexity of 𝑂(𝑛7𝜔𝐾), significantly greater

than the other two methods, but with the advantage of

searching many more possible mappings. Again, the high

complexity restricts this method to small sketch sizes. Unlike

the one-seed method, the two-seed operator provides the

option to check individual edges for compatibility. Although

we do not make use of this property in our experiments, one

could conceive of a representation which includes additional

edge attributes and requires that all matched edges are

compatible. This could greatly reduce the number of possible

mappings and the overall complexity of the two-seed method.

The remainder of the algorithm is the same as the one-seed

method and is given in Algorithm 4.

D. Mutation Example

We now present an example which demonstrates each local

search operator as a chromosome converges to the ideal

solution. Fig. 9 (a) shows an example search space containing

11 buildings shown in red (dark gray), and 3 parking lots

shown in green (light gray), which form the reference set. The

reference set ARG in this example is computed with an edge

between every pair of objects. The sketch in Fig. 9 (b) is a

simplified representation of the five objects in the lower-left of

the reference set, rotated one quarter-turn to the left. Our goal

is to recover the ideal solution Γ⃑⋆ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) from

the current population. Fig. 9 (c) lists the penultimate

population of chromosomes before the final local search

operator. Notice that because the third object in the sketch is a

parking lot, all of the chromosomes must also have a parking

lot as the third object.

Algorithm 4

Two-Seed Set Reconstruction Search Operator

Input:

Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

Parent: Γ⃑𝑃 = (Γ1
𝑃 , Γ2

𝑃 , … , Γ𝑛
𝑃) where each Γ𝑖

𝑃 ∈ ℛ

Initialize:

𝒞 = ∅

Initialize list of index locations: 𝐼 = {1,2, … , 𝑛}

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝑖 ≠ 𝑗

For Each (𝑘, 𝑙) ∈ 𝐼 × 𝐼 such that 𝑘 ≠ 𝑙

If 𝐿(𝑜𝑖) ≠ 𝐿(Γ𝑘
𝑃) Or 𝐿(𝑜𝑗) ≠ 𝐿(Γ𝑙

𝑃) Then

Continue

End If

Clear Γ⃑′

Create the partial ordered sketch: 𝑆′ = (𝑜𝑖 , 𝑜𝑗)

Update remaining index locations: 𝐼′ = 𝐼 − {𝑖, 𝑗}

Set Γ𝑖
′ = Γ𝑘

𝑃 and Γ𝑗
′ = Γ𝑙

𝑃

Get the set of nearest neighbors 𝒳 ⊆ ℛ of Γ⃑′

While |𝐼′| > 0

Pick an index 𝑢 ∈ 𝐼′ randomly

Add 𝑜𝑢 to the end of the partially ordered sketch: 𝑆′ =

(… , 𝑜𝑢)

𝑓𝑏𝑒𝑠𝑡 = 0

For Each 𝑥⋆ ∈ 𝒳

Set Γ𝑢
′ = 𝑥⋆

Evaluate the partial fitness: 𝑓(Γ⃑′) = ΨElastic(𝑆′, Γ⃑′)

If 𝑓(Γ⃑′) > 𝑓𝑏𝑒𝑠𝑡 Then

𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆; 𝑓𝑏𝑒𝑠𝑡 = 𝑓(Γ⃑′)

End If

End For

Set Γ𝑢
′ = 𝑥𝑏𝑒𝑠𝑡

Remove this index location: 𝐼′ = 𝐼′ − 𝑢

Update 𝒳 as the nearest neighbors of Γ⃑′

End While

Add Γ⃑′ to list of children: 𝒞 = 𝒞 ∪ Γ⃑′

End For

End For

Output: 𝒞

The SOR operator is applied to Γ⃑1 = (𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11),

with the main events which lead to convergence shown in Fig.

9 (d). First, several permutations of Γ⃑1 are chosen, of which

Γ⃑ = (𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10) is the specific permutation which

could potentially match the sketch. Only a single object is

incorrect, and as we cycle through each object to test for

replacement, we find that replacing 𝑥4 with 𝑥7 produces a

child chromosome with very high fitness, which is returned as

one of the possible offspring. The one-seed operator is applied

to Γ⃑2 = (𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7) with the main events leading to

convergence shown in Fig. 9 (e). Each object in the parent is

considered as the seed object, and when 𝑜1 is assigned to the

chromosome object 𝑥7, the remaining objects can be assigned

one at a time such that the ideal solution is recovered.

Similarly, the two-seed operator is applied to Γ⃑3 =
(𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8) in Fig. 9 (f). Note that in this case, two

Fig. 9 Example of the three different local search operators on a simple matching problem. The ground truth reference set is shown in (a), and the sketch for this

example is shown in (b). Buildings are shown in red (dark gray) and parking lots are shown in green (light gray). Our goal is to recover the ideal solution Γ⃑⋆ =
(𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) from the penultimate population shown in (c). We have chosen this population to illustrate the final search step before convergence for

each of the operators. The SOR operator is applied to Γ⃑1 with the main steps leading to convergence listed in (d). Similarly, (e) and (f) show the main steps of

the one-seed and two-seed methods as they are applied to Γ⃑2 and Γ⃑3 respectively.

sketch objects must already be mapped to the ideal reference

objects in order for a complete convergence to occur in a

single operation. This occurs in this example when 𝑜1 is

mapped to 𝑥7 and 𝑜4 is mapped to 𝑥11, allowing the ideal

solution to be formed by adding the remaining objects one at a

time.

V. EXPERIMENTS AND RESULTS

To verify the methods presented in this paper, we

performed a series of experiments using a ground truth

satellite image of Columbia, MO. The image was hand

segmented into a reference set of 2467 buildings and 378

parking lots, shown in Fig. 10. We chose to use a hand-

segmented reference database to ensure that the proposed

method can work in a best-case scenario. Although the

histograms of forces are very forgiving of small shape

deformities and have been used in small-scale scene matching

on real imagery [9], the use of an automatically segmented

reference database introduces many new degrees of

uncertainty and is an area of future research. The reference

ARG was built by calculating the HoF relationships between

each object and its 50 nearest neighbors, provided that the two

objects are within 500 pixels of each other and do not contain

more than 5 other objects in-between. The latter two

restrictions are new for this study and significantly reduce the

overall size of the search space. The neighborhood size is

dependent on the largest expected sketch size. In order to

ensure that a group of objects can be returned as a solution,

they must all form a complete graph in the reference set. This

means that the most distant objects in the sketch must still be

neighbors in the reference ARG. On the other hand, a larger

neighborhood size increases the overall complexity of the

algorithm. We found that for our image, 50 nearest neighbors

allowed most sketches of 5 objects to be represented as

complete graphs in the reference set.

The computational complexity of building the reference

ARG depends on several factors, mainly the time to compute

the nearest neighbors of each object (including the restrictions

based on distance and objects in-between), and the time to

compute the F-histograms. Assuming that we use the

Euclidian distance between object centroids to evaluate

distance, the 𝐾 nearest neighbors of each of 𝑚 reference

objects can be computed with complexity 𝑂(𝐾𝑚 log 𝑚) [37].

Computation of the in-between relationship and F-histograms

assumes that objects are represented in raster format; our

reference image has dimensions of 4667 × 4467 pixels. For

any pair of objects, we denote 𝑁 as the number of pixels in the

bounding box which spans both objects, and 𝑁1 and 𝑁2 as the

number of pixels belonging to the first and second objects

respectively. The in-between relationship is computed using

fuzzy visibilities, which has a complexity of 𝑂(𝑁𝑁1𝑁2) [28].

The maximum complexity of the F-histogram computation is

given as 𝑂(𝑁√𝑁) [8]. The F-histograms in our experiments

were calculated using a 2-degree interval, which we believe

provides enough information to distinguish most spatial

configurations. All of the calculations required to build the

reference ARG were performed a priori, allowing the same

reference ARG to be used for all of the experiments.

Two sets of example sketches were created representing

exact resubstitution and simplified search cases. For both

types, we created 100 sketches of random locations from the

satellite image, each containing 5 objects. First, a random

object is selected from the reference set as the seed object,

which can be either a building or a parking lot. The remaining

objects are chosen from the neighbors of the seed object in

such a way that closer objects are more likely to be chosen,

and object labels have no effect. Each sketch set is guaranteed

to be a complete subgraph of 𝐺ℛ, and the building to parking

lot ratio of each set is determined by the overall distribution in

the reference database. Because there are over seven times as

many buildings as parking lots in our reference set, most of

our example sketches have only one or two parking lots, if any

at all. The resubstitution sketches contain objects exactly as

they appear in the reference database, whereas the simplified

sketches reduce each object to its bounding box and then

rotate the entire sketch by a random angle. The sketch ARG is

always a complete graph, so the computational complexity to

construct 𝐺𝑆 for each example sketch can be given as

𝑂(𝑛2𝑁√𝑁), where 𝑛 is the number of sketch objects and 𝑁 is

the number of pixels in the sketch. Like the reference ARG,

the sketch ARGs are computed a priori to allow for efficient

testing of multiple search configurations.

Our goal for each search is to recover the original sketch

location using the proposed memetic algorithm. We record

whether the original sketch location is found in the top 1, 5,

10, and 50 results. This is an objective evaluation for a

problem that often requires a subjective interpretation of the

results. Often, many locations can match a given input sketch,

Fig. 10 The reference set ℛ used for our experiments. The set contains 2467

buildings shown in red (dark gray) and 347 parking lots shown in green (light

gray) from downtown Columbia, MO and the University of Missouri campus.

causing the true original location to appear lower in the ranked

search results. Because the resubstitution sketches come

directly from the reference database, the original locations of

these sketches, if found, will always be the highest scoring

result with maximum fitness. These experiments serve to

verify our method, showing that we can find the original

sketch location when there is no ambiguity in the spatial

configuration. The simplified sketches, however, may not

match to the original sketch location as well as some other

locations, lowering the ranking of the original sketch location

in the results. These experiments with simplified sketches are

designed to show that our method can handle arbitrary sketch

rotations and many of the ambiguities that appear in actual

human queries or in the automatically generated output of the

T2S system.

In an analytical environment, the scene matching results

may indicate regions that should be targeted for additional

analysis. The best result according to an analyst may not

correspond to the top match, as our simplified sketch

experiments try to show. For this reason, it is important to

always provide a list of top-scoring results that a human

analyst can choose from. Ideally, these solutions will all be

from different regions of the search space. This can be

accomplished through the use of diversity mechanisms such as

crowding, niching, and fitness sharing. These approaches

ensure that the population remains diverse enough to

continually explore new areas and allow the top-ranked results

to contain less fit solutions that might otherwise be missed.

We use a basic strategy in our experiments which explicitly

prohibits the existence of duplicate solutions in the population,

although this can still produce very similar solutions. The

application of additional diversity mechanisms to our

algorithm is an area of ongoing future research.

We evaluated a total of 11 different search configurations,

detailed in Table I. All of the test configurations were run 10

times on each of the 100 sketches of the appropriate sketch

type. The full list of common algorithm parameters is given in

Table II. These parameters were chosen through initial

experimentation to balance algorithm complexity and search

time. We use a population of 50 chromosomes, which is large

enough to have an individual in each neighborhood of the

search area, but not so large that the search time becomes

unreasonable. As was shown in [36], a larger population size

leads to a greater percentage of the original locations being

recovered, but results in a longer computation time. Our elite

size is set to 5 individuals, which means that we always retain

the top 5 solutions during each search. This value could be

adjusted depending on how many results we are interested in

observing at the end of the search. We allow a maximum of 6

children to be created for each parent, which is a value

suggested in [20], although this could likely be decreased

since the top children are always returned for each parent. The

maximum chromosome age is set to 10 generations, which

gives most individuals enough time to find a local optimum,

but does not spend too much time repeating searches in the

same area. Finally, 5 permutations were chosen for the SOR

operator to give a small number of alternate chromosome

orderings without adding too much computational burden.

The test configurations vary the sketch type, local search

operator, and convergence criteria. The experiments with

resubstitution sketches are intended to verify our search

TABLE I
TEST CONFIGURATIONS AND RESULTS

Test

Number
Sketch Type

Local Search

Operator

Min Stall

Generations

Max

Generations

% Found in

Top 1

% Found in

Top 5

% Found in

Top 10

% Found in

Top 50

Average

Evaluations

Average Time

(seconds)

1 Resubstitution SOR 1000 1000 62.0% 62.0% 62.0% 62.0%
1.54×108 ±

3.89×107
3367 ± 849

2 Resubstitution 1-Seed 1000 1000 99.8% 99.8% 99.8% 99.8%
2.18×108 ±

9.01×107
7814 ± 3196

3 Resubstitution 2-Seed 100 100 88.2% 88.2% 88.2% 88.2%
1.24×108 ±
6.90×107

4703 ± 2660

4 Simplified SOR 10 1000 4.6% 4.9% 4.9% 5.4%
3.34×106 ±

1.40×106
72 ± 31

5 Simplified SOR 100 1000 21.4% 23.0% 23.0% 23.0%
2.57×107 ±

1.15×107
556 ± 249

6 Simplified SOR 1000 1000 42.4% 48.3% 48.5% 48.5%
1.54×108 ±

3.64×107
3423 ± 857

7 Simplified 1-Seed 10 1000 39.7% 44.6% 44.8% 44.8%
3.52×106 ±
1.83×106

125 ± 64

8 Simplified 1-Seed 100 1000 59.1% 69.0% 69.0% 69.0%
2.84×107 ±

1.44×107
1008 ± 508

9 Simplified 1-Seed 1000 1000 68.9% 80.9% 80.9% 80.9%
2.22×108 ±

8.76×107
7896 ± 3239

10 Simplified 2-Seed 10 100 33.0% 38.6% 38.6% 38.7%
2.08×107 ±
1.37×107

793 ± 522

11 Simplified 2-Seed 100 100 59.9% 72.8% 73.0% 73.0%
1.25×108 ±

6.74×107
4883 ± 2651

TABLE II

COMMON ALGORITHM PARAMETERS

Population Size 𝜇 50

Max Children per Parent 𝜆 6

Elite Size 𝜇𝐸𝑙𝑖𝑡𝑒 5

Max Chromosome Age 𝜏 10

Number of Sketch Objects 𝑛 5

Nearest Neighbor Connectivity 𝐾 50

SOR Permutations 𝑝 5

method in an environment where the target sketch is the global

best solution. We are interested in knowing whether or not the

algorithm will ever converge to this result, so we run all of the

resubstitution experiments for the maximum number of

generations. For the SOR and one-seed operators this is set to

1000 generations, but due to the added complexity, the two-

seed operator is set to a maximum of 100 generations. It

should be noted that we could have used a target fitness

threshold of 1.0 to stop searching since all of the resubstitution

sketches are perfect matches, however to avoid potential

rounding errors and to maintain consistency with the

simplified experiments, we opted instead to use the generation

limit. The simplified experiments vary the local search

operator and the stop condition, set as the minimum number of

stall generations in which the top solution does not change.

When this is set equal to the maximum number of generations,

the convergence criteria is the same as the resubstitution

experiments.

The experiments were run on three computers running 64-

bit versions of Windows 7, each with 8 logical processors

clocked at 2.8-2.93 GHz and with 12 GB of RAM. To

evaluate the computational complexity of each method, we

measure the runtime of each search and the number of times

the cross-correlation operator is called. Note that this does not

include the time required to compute the reference and sketch

ARGs, which are all computed a priori. We then evaluate the

percentage of tests which found the original sketch location

ranked in the top 1, 5, 10, and 50 results. We see from Table I

that given the maximum amount of search time for the

resubstitution experiments, the one-seed operator found the

original sketch location nearly every time. The two-seed and

SOR methods found the original sketch location less often, but

also did not spend as much time searching. The two-seed

method, however, only evaluated 100 generations as opposed

to 1000 generations for the other two methods. Had the two-

seed experiments been allowed to run for 1000 generations,

the search time would likely be 10 times longer. Because the

two-seed operator considers all possible edge assignments

rather than the single object assignments of the one-seed, the

search time increases exponentially.

The results of the experiments with simplified sketches

show that if the original sketch location is found, it is usually

within the top 5 results. Overall, we see that using a greater

number of stall generations as our stop condition results in a

higher recall rate, but longer search times. The two-seed

method takes the most time, followed by the one-seed method,

and finally the SOR method finishes in the shortest time. The

one-seed and two-seed methods, however, found the original

sketch location more often than the SOR method. This is

likely due to the greater amount of change that occurs with

each local search operation, allowing newly generated

offspring to quickly compete with the existing population. The

recall rate of the one-seed method is comparable to that of the

two-seed method given the same convergence criteria, but the

one-seed method takes far less time. This implies that the

added complexity of the two-seed method to handle edge

relationships is unjustified, as the flexibility of the elastic

angle similarity measure allows the one-seed method to handle

simplified sketches with arbitrary orientations.

The total number of evaluations and runtime statistics for

each of the experiments is shown in Fig. 11. An interesting

observation seen in these results is that values tend to be

skewed toward the high ranges of each test. This implies that a

small portion of the tests performed much better than average.

Fig. 11 (a) Average number of cross-correlation evaluations required for each
of the experimental configurations. (b) Average runtime for each of the

experimental configurations. Box plots give the minimum, maximum, upper

and lower quartile, and the median values from all tests.

TABLE III
EFFECT OF PARKING LOTS ON SEARCH TIME USING TEST #2

Number of

Parking Lots

Test Sketches

(out of 100)
Average Evaluations

Average Time

(seconds)

0 61 2.88×108 ± 1.35×107 10102 ± 1609

1 23 1.26×108 ± 5.36×106 4923 ± 758

2 12 8.22×107 ± 2.48×106 3242 ± 475

3 3 7.37×107 ± 2.26×106 3025 ± 480

4 1 8.18×107 ± 6.87×105 3969 ± 613

We propose that this may be due to the presence of parking

lots in some of the sketches, which would place additional

constraints on the search. To investigate this possibility, we

look at test number 2, which had a near perfect recall rate, and

separate the experimental results based on how many parking

lots appear in the test sketches. This is shown in Table III,

which shows that 61 out of 100 test sketches contained no

parking lots at all, followed by 23 sketches with a single

parking lot, and 16 sketches with two or more parking lots.

These sketches were randomly sampled from the reference

database and show that parking lots are relatively uncommon

compared to buildings for our data. Because parking lots are

less common in our reference set, sketches that contain more

parking lots take less time to finish searching due to the

additional constraints. This demonstrates how important

additional labels can be in reducing the overall size of the

search space.

In Fig. 12 we show several examples of the scene matching

experiments using the one-seed local search operator run for

the maximum number of generations. The first two examples

use resubstitution sketches which are exact copies of the

ground truth location. In both of these, the top result is the

original sketch location and all of the results share a similar

spatial configuration. In the first example, all of the top

matches could match the sketch via a rotation and the spacing

between the buildings is well-preserved. The top results of the

second example show only two different locations, but with a

slightly different set of buildings in each one. In the alternate

location, the building which is completely surrounded by a

parking lot in the sketch is surrounded by a parking lot on

three sides. In the last two examples, the sketch is a simplified

and rotated version of the ground truth. The third example

contains all rectangular objects, so the simplification process

is just a rotation. In this case, the original sketch location is

Fig. 12 Examples of the top matches found for the scene matching experiments using the one-seed local search operator run for the maximum number of

generations. Buildings are shown in red (dark gray) and parking lots are shown in green (light gray). In the top two examples with resubstitution sketches and
the third example with a simplified sketch, the top match is the correct mapping to the ground truth set. In the last example, the ground truth set is the third

result because there are other locations that better match the simplified sketch. All of the top matches have very high fitness values and share similar spatial

configurations.

recovered as the top match. However, the sketch in the last

example is a significantly simplified and rotated version of the

ground truth location. Here, the original sketch location is the

third best match because there are other locations which

evaluate to a higher similarity with the simplified sketch.

VI. CONCLUSIONS AND FUTURE WORK

The histograms of forces provide a useful framework for

representing the relative position between a pair of objects

using directional relationships. In this paper, we presented a

method of representing the spatial configuration of a group of

objects using an attributed relational graph composed of object

labels and HoF relations. We developed a similarity measure

to compare two sets of object configurations based on the

concept of elastic angles, which seeks to normalize the

orientation differences between two sketches using the main

direction between pairs of objects. Lastly, we defined three

local search operators that can be used in a memetic

framework to perform the task of scene matching between a

target sketch and a reference database. Of these three local

search operators, the one-seed set reconstruction method gives

the best tradeoff between complexity and recall rate.

Being a population-based method, the evolutionary

algorithm we have developed can scale relatively easily to

larger problems. The overall complexity of each generation of

the algorithm can be given as 𝑂(𝜇𝑂𝐿𝑆𝑂), where 𝑂𝐿𝑆𝑂 is the

complexity of the chosen local search operator. The overall

complexity is not dependent on the size of the reference set,

but instead depends mainly on the population size, sketch size,

and number of nearest neighbor connections in the reference

set. This means that with adequate hardware, the reference set

could be several orders of magnitude larger than our

experimental database. Multiple searches could also be run in

parallel, with the final results aggregated at the end. This

could be used to search a larger geospatial area or a large

collection of separate images.

Our proposed use of the memetic spatial matching

algorithm is to take sketches created by the T2S system and

anchor them to real world ground truth locations. A complete

T2S system would be a useful tool for geospatial data analysts,

as it could provide several possible locations for a person

based on a linguistic description of their surroundings.

Obviously this presents an opportunity for additional

ambiguity in the scene description and sketch construction.

Along with imperfections in automatically segmented satellite

imagery, the complete T2S pipeline presents several sources of

uncertainty, leading to our use of fuzzy-based methods such as

the histograms of forces. Alternate applications, such as

automated printed circuit analysis, may also find this scene

matching method useful. The memetic framework presented in

this paper can be applied to those problems in which a specific

spatial configuration is to be found from within a larger

database of objects.

There are several directions for future work in this area.

Some diversity mechanisms could be integrated into our

existing algorithm relatively easily, and alternate algorithms

for approximate subgraph matching could provide additional

search strategies. Uncertainty is already modeled to some

degree through the use of force histograms, and our model

could be extended to include incomplete information in the

target sketch. Error-correcting subgraph homomorphisms offer

one possible way to make use of incomplete sketches, which

may contain unlabeled or missing objects. Additional

attributes on the nodes and edges of the ARG have been

shown to improve search performance by pruning the search

space, and features such as road networks and additional

object labels could be added to further improve the matching

accuracy of the algorithm.

REFERENCES

[1] O. Sjahputera and J. M. Keller, “Scene Matching using F-Histogram-

Based Features with Possibilistic C-Means Optimization,” Fuzzy Sets

and Systems, vol. 158, no. 3, pp. 253–269, 2007.
[2] M. J. Egenhofer, “Query Processing in Spatial-Query-by-Sketch,”

Journal of Visual Languages and Computing, vol. 8, no. 4, pp. 403–424,

Aug. 1997.
[3] I. J. Sledge and J. M. Keller, “Mapping natural language to imagery:

Placing objects intelligently,” in Fuzzy Systems, 2009. FUZZ-IEEE

2009. IEEE International Conference on, 2009, pp. 518–523.
[4] A. G. Cohn and S. M. Hazarika, “Qualitative Spatial Representation and

Reasoning: An Overview,” Fundamenta Informaticae, vol. 46, no. 1–2,

pp. 1–29, Jan. 2001.
[5] F. Godoy and A. Rodríguez, “A quantitative description of spatial

configurations,” in Spatial Data Handling, 2002, pp. 299–311.

[6] V. N. Gudivada and V. V. Raghavan, “Design and Evaluation of
Algorithms for Image Retrieval by Spatial Similarity,” ACM

Transactions on Information Systems, vol. 13, no. 2, pp. 115–144, Apr.

1995.

[7] H. T. Bruns and M. Egenhofer, “Similarity of spatial scenes,” in Seventh

International Symposium on Spatial Data Handling (SDH ’96), 1996,

no. 4A, pp. 31–42.
[8] P. Matsakis and L. Wendling, “A New Way to Represent the Relative

Position between Areal Objects,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 21, no. 7, pp. 634–643, Jul.
1999.

[9] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa, “The Use of

Force Histograms for Affine-Invariant Relative Position Description,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

26, no. 1, pp. 1–18, Jan. 2004.

[10] O. Sjahputera and J. M. Keller, “Possibilistic c-means in scene
matching,” in Fourth International Conference of the European Society

for Fuzzy Logic and Technology (EUSFLAT), 2005, pp. 669–675.

[11] B. S. Reddy and B. N. Chatterji, “An FFT-Based Technique for
Translation, Rotation, and Scale-Invariant Image Registration,” Image

Processing, IEEE Transactions on, vol. 5, no. 8, pp. 1266–1271, Aug.

1996.

[12] W.-H. Tsai and K.-S. Fu, “Error-Correcting Isomorphisms of Attributed

Relational Graphs for Pattern Analysis,” Systems, Man and Cybernetics,

IEEE Transactions on, vol. 9, no. 12, pp. 757–768, Dec. 1979.
[13] M. A. Eshera and K.-S. Fu, “An Image Understanding System Using

Attributed Symbolic Representation and Inexact Graph-Matching,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 5, pp. 604–618, Sep. 1986.

[14] S. Berretti, A. Del Bimbo, and E. Vicario, “The computational aspect of
retrieval by spatial arrangement,” in Pattern Recognition, 2000.

Proceedings. 15th International Conference on, 2000, vol. 1, pp. 1047–

1051.
[15] K. A. Nedas and M. J. Egenhofer, “Spatial-Scene Similarity Queries,”

Transactions in GIS, vol. 12, no. 6, pp. 661–681, 2008.

[16] V. Kumar, “Algorithms for Constraint Satisfaction Problems: A
Survey,” AI Magazine, vol. 13, no. 1, pp. 32 – 44, 1992.

[17] Y. Jin, S. Member, and J. Branke, “Evolutionary Optimization in
Uncertain Environments — A Survey,” Evolutionary Computation,

IEEE Transactions on, vol. 9, no. 3, pp. 303–317, Jun. 2005.

[18] M. A. Rodríguez and M. C. Jarur, “A Genetic Algorithm for Searching
Spatial Configurations,” Evolutionary Computation, IEEE Transactions

on, vol. 9, no. 3, pp. 252–270, Jun. 2005.

[19] D. Papadias, M. Mantzourogiannis, and I. Ahmad, “Fast Retrieval of
Similar Configurations,” Multimedia, IEEE Transactions on, vol. 5, no.

2, pp. 210–222, Jun. 2003.

[20] P. Moscato and C. Cotta, “A Gentle Introduction to Memetic
Algorithms,” in Handbook of Metaheuristics, Secaucus, NJ: Kluwer

Academic Publishers, 2003, pp. 105–144.

[21] N. Krasnogor and J. Smith, “A Tutorial for Competent Memetic
Algorithms: Model, Taxonomy, and Design Issues,” Evolutionary

Computation, IEEE Transactions on, vol. 9, no. 5, pp. 474–488, Oct.

2005.
[22] A. Singh and A. K. Gupta, “A Hybrid Heuristic for the Maximum

Clique Problem,” Journal of Heuristics, vol. 12, no. 1–2, pp. 5–22, Mar.

2006.
[23] K. Tang, Y. Mei, and X. Yao, “Memetic Algorithm with Extended

Neighborhood Search for Capacitated Arc Routing Problems,”

Evolutionary Computation, IEEE Transactions on, vol. 13, no. 5, pp.
1151–1166, Oct. 2009.

[24] P. Matsakis, J. M. Keller, L. Wendling, J. Marjamaa, and O. Sjahputera,

“Linguistic Description of Relative Positions in Images,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 31,

no. 4, pp. 573–588, Aug. 2001.
[25] M. Skubic, S. Blisard, C. Bailey, J. A. Adams, and P. Matsakis,

“Qualitative Analysis of Sketched Route Maps: Translating a Sketch

Into Linguistic Descriptions,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 34, no. 2, pp. 1275–1282, Apr.

2004.

[26] N. I. Fisher, Statistical Analysis of Circular Data. Cambridge, England;
New York, NY: Cambridge University Press, 1993.

[27] A. R. Buck, J. M. Keller, M. Skubic, M. Detyniecki, and T. Baerecke,

“Object set matching with an evolutionary algorithm,” in Computational
Intelligence for Security and Defense Applications (CISDA), 2011 IEEE

Symposium on, 2011, pp. 43–50.

[28] I. Bloch, O. Colliot, and R. M. Cesar Jr., “On the Ternary Spatial

Relation ‘Between’,” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 36, no. 2, pp. 312–327, Apr.

2006.
[29] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms

and Martial Arts: Toward Memetic Algorithms,” Tech. Rep. Caltech

Concurrent Computation Program, California Inst. Technol., Pasadena,
CA, Tech. Rep. 826, 1989.

[30] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A Multi-Facet Survey

on Memetic Computation,” Evolutionary Computation, IEEE
Transactions on, vol. 15, no. 5, pp. 591–607, Oct. 2011.

[31] B. G. W. Craenen, A. E. Eiben, and E. Marchiori, “How to Handle

Constraints with Evolutionary Algorithms,” in The Practical Handbook
of Genetic Algorithms Applications, L. Chambers, Ed. London, U.K.:

Chapman & Hall, 2001, pp. 341–362.

[32] M. C. Riff-Rojas, “Evolutionary search guided by the constraint network
to solve CSP,” in Evolutionary Computation, 1997, IEEE International

Conference on, 1997, pp. 337–342.

[33] R. Poli, W. B. Langdon, and N. F. Mcphee, A Field Guide to Genetic

Programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008.

[34] X. Yao, “Evolving Artificial Neural Networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

[35] H.-G. Beyer and H.-P. Schwefel, “Evolution Strategies - A

Comprehensive Introduction,” Natural Computing, vol. 1, no. 1, pp. 3–
52, Mar. 2002.

[36] A. R. Buck, J. M. Keller, and M. Skubic, “A modified genetic algorithm

for matching building sets with the histograms of forces,” in
Evolutionary Computation (CEC), 2010 IEEE Congress on, 2010, pp. 1–

7.

[37] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An Optimal Algorithm for Approximate Nearest Neighbor Searching in

Fixed Dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923,
Nov. 1998.

Andrew R. Buck received the B.Sc. degree in both
electrical and computer engineering in 2009, and the

M.Sc. degree in computer engineering in 2012 from

the University of Missouri, Columbia, where he is
currently pursuing the Ph.D. degree. His research

interests include fuzzy systems, evolutionary

algorithms, spatial relationships, and computer
vision.

James M. Keller received the Ph.D. in Mathematics
in 1978. He holds the University of Missouri

Curators’ Professorship in the Electrical and

Computer Engineering and Computer Science
Departments on the Columbia campus. He is also the

R. L. Tatum Professor in the College of Engineering.

His research interests center on computational
intelligence: fuzzy set theory and fuzzy logic, neural

networks, and evolutionary computation with a focus

on problems in computer vision, pattern recognition,
and information fusion including bioinformatics,

spatial reasoning in robotics, geospatial intelligence, sensor and information

analysis in technology for eldercare, and landmine detection. His industrial
and government funding sources include the Electronics and Space

Corporation, Union Electric, Geo-Centers, National Science Foundation, the
Administration on Aging, The National Institutes of Health, NASA/JSC, the

Air Force Office of Scientific Research, the Army Research Office, the Office

of Naval Research, the National Geospatial Intelligence Agency, the Leonard
Wood Institute, and the Army Night Vision and Electronic Sensors

Directorate. Professor Keller has coauthored over 400 technical publications.

Jim is a Fellow of the Institute of Electrical and Electronics Engineers
(IEEE) and the International Fuzzy Systems Association (IFSA), and a past

President of the North American Fuzzy Information Processing Society

(NAFIPS). He received the 2007 Fuzzy Systems Pioneer Award and the 2010
Meritorious Service Award from the IEEE Computational Intelligence

Society. He finished a full six year term as Editor-in-Chief of the IEEE

Transactions on Fuzzy Systems, followed by being the Vice President for

Publications of the IEEE Computational Intelligence Society from 2005-2008,

and since then an elected CIS Adcom member. He is the IEEE TAB

Transactions Chair and a member of the IEEE Publication Review and
Advisory Committee. Among many conference duties over the years, Jim was

the general chair of the 1991 NAFIPS Workshop and the 2003 IEEE

International Conference on Fuzzy Systems.

Marjorie Skubic received the Ph.D. in computer
science from Texas A&M University, College

Station, TX, in 1997, where she specialized in

distributed telerobotics and robot programming by
demonstration. She is currently a Professor in the

Electrical and Computer Engineering Department at

the University of Missouri, Columbia with a joint
appointment in Computer Science. In addition to her

academic experience, she has spent 14 years working

in industry on real-time applications such as data

acquisition and automation. Her current research interests include sensory

perception, computational intelligence, spatial referencing interfaces, human-

robot interaction, and sensor networks for eldercare. In 2006, Dr. Skubic
established the Center for Eldercare and Rehabilitation Technology at the

University of Missouri and serves as the Center Director for this

interdisciplinary team.

