
An Evolutionary Framework for Matching
Geospatial Object Configurations

Presented by Andrew Buck

Committee Members

Dr. James Keller
Dr. Marjorie Skubic
Dr. Mihail Popescu

April 27, 2012

University of Missouri
Department of Electrical and Computer Engineering

Outline

• Problem Overview

• Spatial Reasoning

– Histograms of Forces

– Representing Object Sets

• Design of the Matching Algorithm

– Comparing Object Sets

– Local Search Operators

• Experiments and Results

Where am I?

“I see a large building to my right and a small
building on my left surrounded by a parking lot.”

Can I draw a map?

Problem Overview

How can I represent the sketch?

How can I search the database?

Problem Overview

Problem Overview

Goal: Given an input sketch and a reference
database, find the most likely location from which the
sketch originated.

Input Sketch

Input Reference

Database

Convert to

Attributed

Relational

Graphs

Find Matches

Given a set of objects, how can we describe their

spatial organization?

• Direction

• Distance

• Size

• Shape

• Topology

Should these terms be crisp or fuzzy?

Spatial Relationships

A force histogram 𝐹𝑟
𝐴𝐵 𝜃 is a way of representing the

degree of truth of the statement, “𝐴 is in direction 𝜃 from 𝐵.”

Histograms of Forces

(a) A force histogram is the scalar resultant of elementary forces exerted by
the points of 𝐴 on those of 𝐵. Each one pulls 𝐵 in direction 𝜃. (b) The
histogram of constant forces 𝑟 = 0 is one representation that provides a
global perspective. (c) The histogram of gravitational forces 𝑟 = 2 is
another possible representation, which is more sensitive to nearby points.

Histograms of Forces

Points Line Segments Longitudinal Sections Directions

Handling Points 𝜙𝑟 𝑀 −𝑁 =
1

𝑑𝑀𝑁
𝑟

Handling Line Segments 𝑓𝑟 𝑑𝐼, 𝑑𝐼𝐽
𝜃 , 𝑑𝐽 = න

𝑎𝐼
𝜃

𝑏𝐼
𝜃

න
𝑎𝐽
𝜃

𝑏𝐽
𝜃

𝜙𝑟 𝑢 − 𝑣 𝑑𝑣 𝑑𝑢

Handling Longitudinal Sections ℱ𝑟 𝜃, 𝐴𝜃 𝑣 , 𝐵𝜃 𝑣 =෍

𝑖,𝑗

𝑓𝑟 𝑑𝐼𝑖 , 𝑑𝐼𝑖𝐽𝑗
𝜃 , 𝑑𝐽𝑗

Handling Directions 𝐹𝑟
𝐴𝐵 𝜃 = න

−∞

∞

ℱ𝑟 𝜃, 𝐴𝜃 𝑣 , 𝐵𝜃 𝑣 𝑑𝑣

Comparing Force Histograms

B

A

B’

A’
𝐹𝐴𝐵 𝜃

−𝜋 −
𝜋

2
0 𝜋

𝜋

2

𝜃

𝑓1 = 𝐹𝐴𝐵

𝑓2 = 𝐹𝐴
′𝐵′

How do we compare force histograms?

Normalized Cross-Correlation:

𝜇𝐶 𝑓1, 𝑓2 =
σ𝜃 𝑓1 𝜃 𝑓2 𝜃

σ𝜃 𝑓1
2 𝜃 σ𝜃 𝑓2

2 𝜃

Normalized Cross-Correlation

𝜇𝐶 𝑓1, 𝑓2 =
σ𝜃 𝑓1 𝜃 𝑓2 𝜃

σ𝜃 𝑓1
2 𝜃 σ𝜃 𝑓2

2 𝜃

The normalized cross-correlation satisfies the following properties:

0 ≤ 𝜇𝐶 𝑓1, 𝑓2 ≤ 1

𝑓1 = 𝑓2 ⇒ 𝜇𝐶 𝑓1, 𝑓2 = 1

𝜇𝐶 𝑓1, 𝑓2 = 𝜇𝐶 𝑓2, 𝑓1

∀𝜆1 ∈ ℝ+
∗ , ∀𝜆2 ∈ ℝ+

∗ , 𝜇𝐶 𝜆1𝑓1, 𝜆2𝑓2 = 𝜇𝐶 𝑓1, 𝑓2

Effect of Rotation

B

A

𝐹𝐴𝐵 𝜃

−𝜋 −
𝜋

2
0 𝜋

𝜋

2

𝜃

𝐹rot 𝐴𝐵 𝜃

−𝜋 −
𝜋

2
0 𝜋

𝜋

2

𝜃

𝜑

Rotating a pair of objects is equivalent to shifting the force histogram.

𝐹𝑟
rot 𝐴𝐵

𝜃 = 𝐹𝑟
𝐴𝐵 𝜃 − 𝜑

Ideally, we would like for the prior two sets to be

considered equivalent.

This allows sketches to be drawn

with any orientation.

This is particularly important for

when hand-drawn maps are not

aligned with the ground truth

street grid, such as in Manhattan.

Towards Rotation Invariance

Given two pairs of objects, 𝐴, 𝐵 and 𝐴′, 𝐵′ , defined with

reference angles 𝜙 and 𝜙′ respectively, we can compare

their relative spatial relationship with the general equation

𝜇𝑃𝑎𝑖𝑟 𝐴, 𝐵, 𝜙, 𝐴′, 𝐵′, 𝜙′ = 𝛽𝜇𝐶0 + 1 − 𝛽 𝜇𝐶2, where

𝜇𝐶0 = 𝜇𝐶 𝐹0
𝐴𝐵 𝜃 − 𝜙 , 𝐹0

𝐴′𝐵′ 𝜃 − 𝜙′ ,

𝜇𝐶2 = 𝜇𝐶 𝐹2
𝐴𝐵 𝜃 − 𝜙 , 𝐹2

𝐴′𝐵′ 𝜃 − 𝜙′ .

𝛽 is a weighting factor, typically set to 0.5 to give equal

weight to both histograms.

Comparing Pairs of Objects

To achieve rotational invariance, we need to shift

each histogram to a common value.

How far to shift?

For a force histogram 𝐹𝐴𝐵 𝜃 we define a single

main direction 𝜑AB which best captures the

directional relationship between 𝐴 and 𝐵.

How to pick 𝜑𝐴𝐵?

Main Direction

For a given force histogram 𝐹𝑟
𝐴𝐵 and angle 𝜃, divide the forces

into effective, contradictory, and compensatory forces.

Main Direction

Define 𝑏𝑟
𝐴𝐵 𝜃 as the percentage

of forces which are effective

(maximum degree of truth).

Define 𝑎𝑟
𝐴𝐵 𝜃 as 𝑏𝑟

𝐴𝐵 𝜃 times

the degree to which the center of

mass of the effective forces

aligns with 𝜃 = 0 (effective

degree of truth).

[Matsakis, et al., 2001]

We should balance the contributions of the constant and

gravitational forces. Define the main direction histogram as

Φ𝐴𝐵 𝜃 = max 𝑎0
𝐴𝐵 𝜃 ,min 𝑎2

𝐴𝐵 𝜃 , 𝑏0
𝐴𝐵 𝜃

Main Direction

Compute the main direction 𝜑𝐴𝐵 as the centroid of Φ𝐴𝐵 𝜃 .

This requires polar vector summation.

Main Direction

𝜑𝐴𝐵 = atan2 ෍
𝜃∈ 0,2𝜋

sin Φ𝐴𝐵 𝜃 ,෍
𝜃∈ 0,2𝜋

cos Φ𝐴𝐵 𝜃

Given a scene consisting of a set of 2D objects, 𝒪 = 𝑜1, 𝑜2, … , 𝑜𝑛 ,

each object becomes a node in an attributed relational graph (ARG)

and the relationships between objects become edges.

Representing Object Sets

𝒪 = 𝑜1, 𝑜2, 𝑜3 𝐸𝒪 = 𝑒12, 𝑒13, 𝑒21, 𝑒23, 𝑒31, 𝑒32 , where 𝑒𝑖𝑗 = 𝑜𝑖 , 𝑜𝑗 ∈ 𝒪 × 𝒪

Assign attributes to the nodes and edges. Node attributes are object

types and edge attributes are sets of force histograms.

Representing Object Sets

ℒ = "building", "parking lot"

𝐿𝒪 𝑜1 = 𝐿𝒪 𝑜2 = "building"

𝐿𝒪 𝑜3 = "parking lot"

𝐻𝒪 = ℎ12, ℎ13, ℎ21, ℎ23, ℎ31, ℎ32 ,

where ℎ𝑖𝑗 = 𝐹0
𝑜𝑖𝑜𝑗 , 𝐹2

𝑜𝑖𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗

Full ARG: 𝐺𝒪 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

A completely defined ARG for a set of 𝑛 objects will have 𝑛
vertices and 𝑛 × 𝑛 − 1 edges. For large graphs, such as the

reference database, only the closest objects have edge

relationships.

The size of the ARG can cut in half by only considering edges

for which 𝑖 < 𝑗. This is possible due to the semantic inverse

property of the histograms of forces.

𝐹𝑟
𝐵𝐴 𝜃 = 𝐹𝑟

𝐴𝐵 𝜃 + 𝜋

Graph Size

Given:

Reference Set: ℛ = 𝑥1, 𝑥2, … , 𝑥𝑚
Sketch: 𝑆 = 𝑜1, 𝑜2, … , 𝑜𝑛 , where 𝑚 ≫ 𝑛

Goal:

Find a mapping function Γ: 𝑆 → ℛ represented as the

candidate set Γ = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 , 𝑥 𝑖 ∈ ℛ such

that Γ 𝑜𝑖 = 𝑥 𝑖 .

The mapping function should preserve the object labels

and spatial organization of the sketch.

Problem Definition

If both 𝑆 and Γ are defined with the same orientation, their

similarity can be defined as

Ψ1 𝑆, Γ =
2

𝑛(𝑛 − 1)
෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜇𝑃𝑎𝑖𝑟 𝑜𝑖 , 𝑜𝑗 , 0, 𝑥 𝑖 , 𝑥 𝑗 , 0 .

Both reference angles are defined as 0, resulting in no shifting.

Complexity is 𝑂 𝑛2𝜔 where 𝑛 is the number of objects in each

set and 𝜔 is the number of force histogram bins.

Comparing Object Sets (No Rotation)

When 𝑆 and Γ have different orientations, we rotate the sketch
by some optimal angle, similar to orienting a map.

The list of angular differences represents the total mismatch
between the orientations of 𝑆 and Γ.

𝐷 = 𝑑11, 𝑑12, … , 𝑑𝑖𝑗 , … , 𝑑 𝑛−1 𝑛 , 𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑥 𝑖 𝑥 𝑗

Pick the optimal rotation angle 𝜑⋆ as the median angle of 𝐷.

𝜑⋆

= arg min
𝑑𝑢𝑣∈𝐷

𝑞 𝑑𝑢𝑣 , 𝑞 𝑑𝑢𝑣 = 𝜋 −෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜋 − 𝑑𝑖𝑗 − 𝑑𝑢𝑣

Optimal Rotation Angle

Optimal Rotation Angle

The similarity of 𝑆 and Γ can now be defined as

Ψ2 𝑆, Γ =
2

𝑛(𝑛 − 1)
෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜇𝑃𝑎𝑖𝑟 𝑜𝑖 , 𝑜𝑗 , 𝜑
⋆, 𝑥 𝑖 , 𝑥 𝑗 , 0 .

The sketch is rotated by the optimal rotation angle and the

reference set remains unchanged.

Comparing Object Sets (With Rotation)

Rather than rotate the entire sketch by the same angle, each

force histogram can be shifted individually.

This allows for small imperfections between the two object

sets.

Each pair of force histograms is aligned by their main direction

and multiplied by a weighting factor, based on how well they

correspond to the previously calculated optimal rotation angle.

Elastic Angles

Elastic Angles

𝐹𝑜𝑖𝑜𝑗 𝜃

−𝜋 −
𝜋

2
0 𝜋

𝜋

2

𝜃

𝜑𝑜𝑖𝑜𝑗

𝐹𝑥 𝑖 𝑥 𝑗 𝜃

−𝜋 −
𝜋

2
0 𝜋

𝜋

2

𝜃

𝜑𝑥 𝑖 𝑥 𝑗

𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑥 𝑖 𝑥 𝑗

Ψ3 𝑆, Γ =
2

𝑛 𝑛 − 1
෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜇𝑇𝑟𝑎𝑝 𝜑⋆ − 𝑑𝑖𝑗 × 𝜇𝑃𝑎𝑖𝑟 𝑜𝑖 , 𝑜𝑗 , 𝜑
𝑜𝑖𝑜𝑗 , 𝑥 𝑖 , 𝑥 𝑗 , 𝜑

𝑥 𝑖 𝑥 𝑗

𝜑⋆ calculated as before

Elastic Angles

Elastic Angles

Elastic angles typically increases individual fitness values.

It does this for all sets of objects, raising the overall average

fitness values.

Reference Set Used for Testing

The reference set used in our experiments consists of 2814

buildings and parking lots from downtown Columbia, MO and

the University of Missouri campus.

The graph contains edge

relationships for a maximum

of 50 nearest neighbors for

each object.

Objects which are too far

apart or have too many other

objects in between them are

pruned from the graph.

Outline of the Search Algorithm

1. Set 𝑡 = 0 and create an initial population of random

individuals: 𝑃 0 = Γ1, Γ2, … , Γ𝜂

2. For each individual in the population, Γ𝑃 ∈ 𝑃 𝑡

a. Generate a set of possible children through mutation:

𝒞 = mutate Γ𝑃
b. Select the most fit child Γ𝐶 = arg max

Γ∈𝒞
𝜓 Γ

c. If the child is more fit than the parent, replace Γ𝑃 with Γ𝐶
3. Every few generations, replace the lowest scoring

individuals in 𝑃 𝑡 with new random individuals

4. If stopping criteria is not met, increment 𝑡 and go to 2

5. Return top scoring individual in 𝑃 𝑡

Overview of the Search Algorithm

Close-Up of the Final Convergence

Mutation Operators

Mutation operators work as local search methods, seeking to improve the

quality of each solution.

The local search is applied repeatedly to each individual in the population

until a suitable solution is found.

Four mutation operators were developed:

Single-Object

Replacement

One-Seed Set

Reconstruction

Two-Seed Set

Reconstruction

VF2 Subgraph

Isomorphism

Single-Object Replacement (SOR)

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Pick an object from Γ𝑃 to replace

2. Get the set of connected neighbors which could replace the selected
object and still maintain full connectivity

3. For each neighbor

a. Create a temporary child where the seed object is replaced by the
neighbor and evaluate the fitness

4. Return the best child

We typically run this algorithm several times with different parent
permutations, using all possible replacement objects.

The complexity is then 𝑂 𝑝𝑛3𝜔𝐾 .
• 𝑝 is the number of permutations

• 𝑛 is the number of objects in the sketch

• 𝜔 is the number of bins in each force histogram

• 𝐾 is the maximum number of nearest neighbor connections

Single-Object Replacement (SOR)

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11

Permute Γ′ = 𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Pick a single object 𝑐𝑖 = 𝑥4

Get list of possible replacements 𝒳 = 𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥13, 𝑥14

Find best replacement 𝑥𝑏𝑒𝑠𝑡 = 𝑥7

Replace 𝑐𝑖 with 𝑥𝑏𝑒𝑠𝑡 Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Single-Object Replacement (SOR)

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11

Permute Γ′ = 𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Pick a single object 𝑐𝑖 = 𝑥4

Get list of possible replacements 𝒳 = 𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥13, 𝑥14

Find best replacement 𝑥𝑏𝑒𝑠𝑡 = 𝑥7

Replace 𝑐𝑖 with 𝑥𝑏𝑒𝑠𝑡 Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

One-Seed Set Reconstruction

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Pick an object from Γ𝑃 as the seed object and random order for
gene replacement, 𝜎

2. Create an empty solution Γ′ and assign the seed object to Γ′ 𝜎1
3. Until Γ′ is a complete solution

a. Get the nearest neighbors of the current solution, Γ′

b. Pick the best neighbor for the next gene location using the
same method as SOR mutation

c. Add this neighbor to Γ′ and move to the next gene location

4. Return Γ′ as the improved child

Usually this algorithm is run with all possible seed objects and all
possible initial seed locations.

The complexity is 𝑂 𝑛5𝜔𝐾 .

One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Two-Seed Set Reconstruction

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Pick two objects from Γ𝑃 as the seed objects and a random order
for gene replacement, 𝜎

2. Create an empty solution Γ′ and assign the seed objects to
Γ′ 𝜎1 and Γ′ 𝜎2

3. Until Γ′ is a complete solution

a. Get the nearest neighbors of the current solution, Γ′

b. Pick the best neighbor for the next gene location using the
same method as SOR mutation

c. Add this neighbor to Γ′ and move to the next gene location

4. Return Γ′ as the improved child

This algorithm is run with all possible pairs of seed objects and all
possible initial seed locations.

The complexity is 𝑂 𝑛7𝜔𝐾 .

Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

VF2 Subgraph Isomorphism

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Construct the graph 𝐺𝑆 from the sketch and initialize the fitness
threshold 𝜓min

2. Get the set of nearest neighbors 𝒳 of the parent Γ𝑃
3. Shuffle the order of 𝒳

4. Construct the nearest neighbor graph 𝐺𝑁𝑁 from 𝒳

5. Run the VF2 algorithm on 𝐺𝑁𝑁 and 𝐺𝑆 using the fitness threshold
𝜓min

6. If a match is found, return it as the improved child, otherwise
decrease the value of 𝜓min and go to 3

The time complexity of the VF2 algorithm ranges from 𝑂 𝑛𝜔𝐾 to
𝑂 𝑛!𝜔𝐾 .

VF2 Subgraph Isomorphism

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2

Build the sketch graph 𝐺𝑆 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

Get list of neighbor objects 𝒳 = 𝑥1, 𝑥2… , 𝑥14

Shuffle the order 𝒳 = shuffe 𝒳

Build the nearest neighbor graph 𝐺𝑁𝑁 = 𝒳,𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳

Run VF2 algorithm 𝒞 = match 𝐺𝑁𝑁, 𝐺𝑆

Return best child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10 ∈ 𝒞

VF2 Subgraph Isomorphism

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2

Build the sketch graph 𝐺𝑆 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

Get list of neighbor objects 𝒳 = 𝑥1, 𝑥2… , 𝑥14

Shuffle the order 𝒳 = shuffe 𝒳

Build the nearest neighbor graph 𝐺𝑁𝑁 = 𝒳,𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳

Run VF2 algorithm 𝒞 = match 𝐺𝑁𝑁, 𝐺𝑆

Return best child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10 ∈ 𝒞

VF2 Subgraph Isomorphism

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2

Build the sketch graph 𝐺𝑆 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

Get list of neighbor objects 𝒳 = 𝑥1, 𝑥2… , 𝑥14

Shuffle the order 𝒳 = shuffe 𝒳

Build the nearest neighbor graph 𝐺𝑁𝑁 = 𝒳,𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳

Run VF2 algorithm 𝒞 = match 𝐺𝑁𝑁, 𝐺𝑆

Return best child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10 ∈ 𝒞

VF2 Algorithm

Given two graphs 𝐺1 = 𝑉1, 𝐸1 and 𝐺2 = 𝑉2, 𝐸2 find a

mapping 𝑀 = 𝑛,𝑚 ∈ 𝑉1 × 𝑉2 𝑛 is mapped onto 𝑚 .

Use a state space representation in which each state is a

partial mapping 𝑀 𝑠 .

[Cordella, et al., 1999]

VF2 Algorithm

VF2 Graph Matching Algorithm

Procedure: Match 𝐺1, 𝐺2, 𝑠
Input: Graphs 𝐺1 and 𝐺2

Intermediate state 𝑠; the initial state 𝑠0 has 𝑀 𝑠0 = ∅

If 𝑀 𝑠 covers all the nodes of 𝐺2 Then

Output: 𝑀 𝑠
Else

Compute the set 𝑃 𝑠 of the pairs candidate for inclusion in 𝑀 𝑠
For Each 𝑝 = 𝑛,𝑚 in 𝑃 𝑠

If 𝐹 𝑠, 𝑛,𝑚 == TRUE Then

Create a new state 𝑠′ by adding 𝑝 to 𝑀 𝑠
Call Match 𝐺1, 𝐺2, 𝑠

′

End If

End For

End If

VF2 Feasibility Function

The key to the algorithm is the feasibility function that

determines whether or not two nodes can be added to the

partial map.

𝐹 𝑠, 𝑛,𝑚 = 𝐹𝑠𝑦𝑛 𝑠, 𝑛,𝑚 ∧ 𝐹𝑠𝑒𝑚 𝑠, 𝑛,𝑚

𝐹𝑠𝑦𝑛 𝑠, 𝑛,𝑚 evaluates the syntactic structure of the graphs.

𝐹𝑠𝑒𝑚 𝑠, 𝑛,𝑚 evaluates the semantic compatibility.

We define the semantic feasibility function as TRUE if the

fitness of the partial map is greater than the threshold 𝜓min.

VF2 Syntactic Feasibility Rules

𝐹𝑠𝑦𝑛 𝑠, 𝑛,𝑚 = 𝑅pred ∧ 𝑅succ ∧ 𝑅in ∧ 𝑅out ∧ 𝑅new

Look-

Ahead
Rule Condition

0

𝑅pred
Iff for each predecessor 𝑛′ of 𝑛 in the partial mapping, the

corresponding node 𝑚′ is a predecessor of 𝑚, and vice versa.

𝑅succ
Iff for each successor 𝑛′ of 𝑛 in the partial mapping, the

corresponding node 𝑚′ is a successor of 𝑚, and vice versa.

1

𝑅in

Iff the number of predecessors (successors) of 𝑛 that are in

𝑇1
in 𝑠 is greater than or equal to the number of predecessors

(successors) of 𝑚 that are in 𝑇2
in 𝑠 .

𝑅out

Iff the number of predecessors (successors) of 𝑛 that are in

𝑇1
out 𝑠 is greater than or equal to the number of predecessors

(successors) of 𝑚 that are in 𝑇2
out 𝑠 .

2 𝑅new

Iff the number of predecessors (successors) of 𝑛 that are neither

in 𝑀1 𝑠 nor in 𝑇1 𝑠 (new models) is greater than or equal to the

number of predecessors (successors) of 𝑚 that are neither in

𝑀2 𝑠 nor in 𝑇2 𝑠 .

Experiments

We evaluate the performance of the matching algorithm using

resubstitution sketches taken directly from the reference set,

and simplified sketches, which have been reduced to bounding

boxes and given an arbitrary orientation.

Resubstitution Sketches Simplified Sketches

Mutation Method Comparison

To compare the mutation methods, 100 resubstitution sketches
and 100 simplified sketches were randomly created, each
containing 5 objects.

The search algorithm runs until the original sketch location is
found with a maximum search time of 1000 generations. The
results are averaged over 30 trials.

Mutation Method Comparison Search Parameters

Mutation

Method

Population

Size (𝜂)

Replacement

Frequency (𝜏)
Replacement

Percent (𝜌)

SOR 50 50 Generations 50%

1-Seed 50 10 Generations 80%

2-Seed 50 10 Generations 80%

VF2 10 2 Generations 80%

Mutation Method Comparison

Results for Resubstitution Sketches

Mutation

Method

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

SOR 51.9% 652 931 2594 2865

1-Seed 100% 14 5 159 44

2-Seed 99.4% 36 12 1703 494

VF2 100% 17 9 40 14

Mutation Method Comparison

Results for Resubstitution Sketches

Mutation Method Comparison

Results for Resubstitution Sketches

Mutation Method Comparison

Results for Simplified Sketches

Mutation

Method

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

SOR 49.1% 681 1000 3127 3710

1-Seed 97.0% 60 12 539 103

2-Seed 96.5% 81 21 6404 1231

VF2 94.0% 81 11 216 19

Mutation Method Comparison

Results for Simplified Sketches

Mutation Method Comparison

Results for Simplified Sketches

Impact of Sketch Size

The first experiment suggested that the one-seed and the VF2

subgraph isomorphism mutation methods were the most

promising.

To evaluate the impact of sketch size, 100 resubstitution

sketches and 100 simplified sketches were randomly created,

containing 4, 6, 8, 10, and 12 objects.

The search algorithm runs until the original sketch location is

found with a maximum search time of 100 generations. The

results are averaged over 10 trials.

Impact of Sketch Size

Mutation

Method

Number of

Objects in Sketch

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

1-Seed

4 95.1% 22 11 89 40

6 98.5% 12 3 207 40

8 99.6% 9 2 494 83

10 94.8% 13 2 1258 150

12 86.2% 20 2 3304 502

VF2

4 98.7% 16 9 26 10

6 96.6% 19 11 81 24

8 98.1% 19 11 189 62

10 90.8% 26 13 1777 563

12 76.5% 39 23 4986 2617

Results for Resubstitution Sketches

Impact of Sketch Size

Results for Resubstitution Sketches

Impact of Sketch Size

Results for Resubstitution Sketches

Impact of Sketch Size

Results for Simplified Sketches

Mutation

Method

Number of

Objects in Sketch

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

1-Seed

4 80.6% 36 18 151 60

6 95.6% 16 5 318 84

8 93.4% 18 5 771 194

10 81.7% 28 7 2171 693

12 87.2% 20 3 4317 874

VF2

4 80.4% 32 15 97 18

6 94.3% 22 11 143 48

8 86.0% 31 17 744 206

10 69.2% 43 23 5927 1308

12 78.8% 38 20 11009 3506

Impact of Sketch Size

Results for Simplified Sketches

Impact of Sketch Size

Results for Simplified Sketches

Real-World Example

Hand-drafted

Sketch

Top Results

Conclusion

• The histograms of forces and ARG representation capture

the relative spatial relationships between objects in a scene.

• This evolutionary framework allows a sketch to be searched

for within a reference database.

• The one-seed and VF2 hybrid methods provide the best

results.

– VF2 works better for small sketches

– One-seed is preferable for large sketches

References and Acknowledgement

[Cordella, et al., 1999] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
"Performance evaluation of the VF graph matching algorithm," in
Proceedings of the International Conference on Image Analysis and
Processing, 1999, pp. 1172-1177.

[Matsakis & Wendling, 1999] P. Matsakis and L. Wendling, "A new way to
represent the relative position between areal objects," Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 21, pp. 634-643, 1999.

[Matsakis, et al., 2001] P. Matsakis, J. M. Keller, L. Wendling, J. Marjamaa, and
O. Sjahputera, "Linguistic description of relative positions in images,"
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 31, pp. 573-588, 2001.

[Matsakis, et al., 2004] P. Matsakis, J. M. Keller, O. Sjahputera, and J.
Marjamaa, "The use of force histograms for affine-invariant relative position
description," Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 26, pp. 1-18, 2004.

This work was funded by the U.S. National Geospatial-Intelligence Agency
NURI grant HM 1582-08-1-0020.

	Slide 1: An Evolutionary Framework for Matching Geospatial Object Configurations
	Slide 2: Outline
	Slide 3: Problem Overview
	Slide 4: Problem Overview
	Slide 5: Problem Overview
	Slide 6: Spatial Relationships
	Slide 7: Histograms of Forces
	Slide 8: Histograms of Forces
	Slide 9: Comparing Force Histograms
	Slide 10: Normalized Cross-Correlation
	Slide 11: Effect of Rotation
	Slide 12: Towards Rotation Invariance
	Slide 13: Comparing Pairs of Objects
	Slide 14: Main Direction
	Slide 15: Main Direction
	Slide 16: Main Direction
	Slide 17: Main Direction
	Slide 18: Representing Object Sets
	Slide 19: Representing Object Sets
	Slide 20: Graph Size
	Slide 21: Problem Definition
	Slide 22: Comparing Object Sets (No Rotation)
	Slide 23: Optimal Rotation Angle
	Slide 24: Optimal Rotation Angle
	Slide 25: Comparing Object Sets (With Rotation)
	Slide 26: Elastic Angles
	Slide 27: Elastic Angles
	Slide 28: Elastic Angles
	Slide 29: Elastic Angles
	Slide 30: Reference Set Used for Testing
	Slide 31: Outline of the Search Algorithm
	Slide 32: Overview of the Search Algorithm
	Slide 33: Close-Up of the Final Convergence
	Slide 34: Mutation Operators
	Slide 35: Single-Object Replacement (SOR)
	Slide 36: Single-Object Replacement (SOR)
	Slide 37: Single-Object Replacement (SOR)
	Slide 38: One-Seed Set Reconstruction
	Slide 39: One-Seed Set Reconstruction
	Slide 40: One-Seed Set Reconstruction
	Slide 41: One-Seed Set Reconstruction
	Slide 42: One-Seed Set Reconstruction
	Slide 43: One-Seed Set Reconstruction
	Slide 44: One-Seed Set Reconstruction
	Slide 45: Two-Seed Set Reconstruction
	Slide 46: Two-Seed Set Reconstruction
	Slide 47: Two-Seed Set Reconstruction
	Slide 48: Two-Seed Set Reconstruction
	Slide 49: Two-Seed Set Reconstruction
	Slide 50: Two-Seed Set Reconstruction
	Slide 51: VF2 Subgraph Isomorphism
	Slide 52: VF2 Subgraph Isomorphism
	Slide 53: VF2 Subgraph Isomorphism
	Slide 54: VF2 Subgraph Isomorphism
	Slide 55: VF2 Algorithm
	Slide 56: VF2 Algorithm
	Slide 57: VF2 Feasibility Function
	Slide 58: VF2 Syntactic Feasibility Rules
	Slide 59: Experiments
	Slide 60: Mutation Method Comparison
	Slide 61: Mutation Method Comparison
	Slide 62: Mutation Method Comparison
	Slide 63: Mutation Method Comparison
	Slide 64: Mutation Method Comparison
	Slide 65: Mutation Method Comparison
	Slide 66: Mutation Method Comparison
	Slide 67: Impact of Sketch Size
	Slide 68: Impact of Sketch Size
	Slide 69: Impact of Sketch Size
	Slide 70: Impact of Sketch Size
	Slide 71: Impact of Sketch Size
	Slide 72: Impact of Sketch Size
	Slide 73: Impact of Sketch Size
	Slide 74: Real-World Example
	Slide 75: Conclusion
	Slide 76: References and Acknowledgement

