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Where am I?

“I see a large building to my right and a small 
building on my left surrounded by a parking lot.”

Can I draw a map?

Problem Overview



How can I represent the sketch?

How can I search the database?

Problem Overview



Problem Overview

Goal:  Given an input sketch and a reference 
database, find the most likely location from which the 
sketch originated.

Input Sketch

Input Reference 

Database

Convert to 

Attributed 

Relational 

Graphs

Find Matches



Given a set of objects, how can we describe their 

spatial organization?

• Direction

• Distance

• Size

• Shape

• Topology

Should these terms be crisp or fuzzy?

Spatial Relationships



A force histogram 𝐹𝑟
𝐴𝐵 𝜃 is a way of representing the 

degree of truth of the statement, “𝐴 is in direction 𝜃 from 𝐵.”

Histograms of Forces

(a) A force histogram is the scalar resultant of elementary forces exerted by 
the points of 𝐴 on those of 𝐵.  Each one pulls 𝐵 in direction 𝜃.  (b) The 
histogram of constant forces 𝑟 = 0 is one representation that provides a 
global perspective.  (c) The histogram of gravitational forces 𝑟 = 2 is 
another possible representation, which is more sensitive to nearby points.



Histograms of Forces
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Comparing Force Histograms
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How do we compare force histograms?

Normalized Cross-Correlation:

𝜇𝐶 𝑓1, 𝑓2 =
σ𝜃 𝑓1 𝜃 𝑓2 𝜃

σ𝜃 𝑓1
2 𝜃 σ𝜃 𝑓2

2 𝜃



Normalized Cross-Correlation

𝜇𝐶 𝑓1, 𝑓2 =
σ𝜃 𝑓1 𝜃 𝑓2 𝜃

σ𝜃 𝑓1
2 𝜃 σ𝜃 𝑓2

2 𝜃

The normalized cross-correlation satisfies the following properties:

0 ≤ 𝜇𝐶 𝑓1, 𝑓2 ≤ 1

𝑓1 = 𝑓2 ⇒ 𝜇𝐶 𝑓1, 𝑓2 = 1

𝜇𝐶 𝑓1, 𝑓2 = 𝜇𝐶 𝑓2, 𝑓1

∀𝜆1 ∈ ℝ+
∗ , ∀𝜆2 ∈ ℝ+

∗ , 𝜇𝐶 𝜆1𝑓1, 𝜆2𝑓2 = 𝜇𝐶 𝑓1, 𝑓2



Effect of Rotation
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Rotating a pair of objects is equivalent to shifting the force histogram.

𝐹𝑟
rot 𝐴𝐵

𝜃 = 𝐹𝑟
𝐴𝐵 𝜃 − 𝜑



Ideally, we would like for the prior two sets to be 

considered equivalent.

This allows sketches to be drawn 

with any orientation.

This is particularly important for

when hand-drawn maps are not

aligned with the ground truth

street grid, such as in Manhattan.

Towards Rotation Invariance



Given two pairs of objects, 𝐴, 𝐵 and 𝐴′, 𝐵′ , defined with 

reference angles 𝜙 and 𝜙′ respectively, we can compare 

their relative spatial relationship with the general equation

𝜇𝑃𝑎𝑖𝑟 𝐴, 𝐵, 𝜙, 𝐴′, 𝐵′, 𝜙′ = 𝛽𝜇𝐶0 + 1 − 𝛽 𝜇𝐶2, where

𝜇𝐶0 = 𝜇𝐶 𝐹0
𝐴𝐵 𝜃 − 𝜙 , 𝐹0

𝐴′𝐵′ 𝜃 − 𝜙′ ,

𝜇𝐶2 = 𝜇𝐶 𝐹2
𝐴𝐵 𝜃 − 𝜙 , 𝐹2

𝐴′𝐵′ 𝜃 − 𝜙′ .

𝛽 is a weighting factor, typically set to 0.5 to give equal 

weight to both histograms.

Comparing Pairs of Objects



To achieve rotational invariance, we need to shift 

each histogram to a common value.

How far to shift?

For a force histogram 𝐹𝐴𝐵 𝜃 we define a single 

main direction 𝜑AB which best captures the 

directional relationship between 𝐴 and 𝐵.

How to pick 𝜑𝐴𝐵?

Main Direction



For a given force histogram 𝐹𝑟
𝐴𝐵 and angle 𝜃, divide the forces 

into effective, contradictory, and compensatory forces.

Main Direction

Define 𝑏𝑟
𝐴𝐵 𝜃 as the percentage 

of forces which are effective  

(maximum degree of truth).

Define 𝑎𝑟
𝐴𝐵 𝜃 as 𝑏𝑟

𝐴𝐵 𝜃 times 

the degree to which the center of 

mass of the effective forces 

aligns with 𝜃 = 0 (effective 

degree of truth).

[Matsakis, et al., 2001]



We should balance the contributions of the constant and 

gravitational forces.  Define the main direction histogram as

Φ𝐴𝐵 𝜃 = max 𝑎0
𝐴𝐵 𝜃 ,min 𝑎2

𝐴𝐵 𝜃 , 𝑏0
𝐴𝐵 𝜃

Main Direction



Compute the main direction 𝜑𝐴𝐵 as the centroid of Φ𝐴𝐵 𝜃 .

This requires polar vector summation.

Main Direction

𝜑𝐴𝐵 = atan2 ෍
𝜃∈ 0,2𝜋

sin Φ𝐴𝐵 𝜃 ,෍
𝜃∈ 0,2𝜋

cos Φ𝐴𝐵 𝜃



Given a scene consisting of a set of 2D objects, 𝒪 = 𝑜1, 𝑜2, … , 𝑜𝑛 , 

each object becomes a node in an attributed relational graph (ARG) 

and the relationships between objects become edges.

Representing Object Sets

𝒪 = 𝑜1, 𝑜2, 𝑜3 𝐸𝒪 = 𝑒12, 𝑒13, 𝑒21, 𝑒23, 𝑒31, 𝑒32 , where 𝑒𝑖𝑗 = 𝑜𝑖 , 𝑜𝑗 ∈ 𝒪 × 𝒪



Assign attributes to the nodes and edges.  Node attributes are object 

types and edge attributes are sets of force histograms.

Representing Object Sets

ℒ = "building", "parking lot"

𝐿𝒪 𝑜1 = 𝐿𝒪 𝑜2 = "building"

𝐿𝒪 𝑜3 = "parking lot"

𝐻𝒪 = ℎ12, ℎ13, ℎ21, ℎ23, ℎ31, ℎ32 ,

where ℎ𝑖𝑗 = 𝐹0
𝑜𝑖𝑜𝑗 , 𝐹2

𝑜𝑖𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗

Full ARG: 𝐺𝒪 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪



A completely defined ARG for a set of 𝑛 objects will have 𝑛
vertices and 𝑛 × 𝑛 − 1 edges.  For large graphs, such as the 

reference database, only the closest objects have edge 

relationships.

The size of the ARG can cut in half by only considering edges 

for which 𝑖 < 𝑗.  This is possible due to the semantic inverse 

property of the histograms of forces.

𝐹𝑟
𝐵𝐴 𝜃 = 𝐹𝑟

𝐴𝐵 𝜃 + 𝜋

Graph Size



Given:

Reference Set: ℛ = 𝑥1, 𝑥2, … , 𝑥𝑚
Sketch: 𝑆 = 𝑜1, 𝑜2, … , 𝑜𝑛 , where 𝑚 ≫ 𝑛

Goal:

Find a mapping function Γ: 𝑆 → ℛ represented as the 

candidate set Γ = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 , 𝑥 𝑖 ∈ ℛ such 

that Γ 𝑜𝑖 = 𝑥 𝑖 .

The mapping function should preserve the object labels 

and spatial organization of the sketch.

Problem Definition



If both 𝑆 and Γ are defined with the same orientation, their 

similarity can be defined as

Ψ1 𝑆, Γ =
2

𝑛(𝑛 − 1)
෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜇𝑃𝑎𝑖𝑟 𝑜𝑖 , 𝑜𝑗 , 0, 𝑥 𝑖 , 𝑥 𝑗 , 0 .

Both reference angles are defined as 0, resulting in no shifting.

Complexity is 𝑂 𝑛2𝜔 where 𝑛 is the number of objects in each 

set and 𝜔 is the number of force histogram bins.

Comparing Object Sets (No Rotation)



When 𝑆 and Γ have different orientations, we rotate the sketch 
by some optimal angle, similar to orienting a map.

The list of angular differences represents the total mismatch 
between the orientations of 𝑆 and Γ.

𝐷 = 𝑑11, 𝑑12, … , 𝑑𝑖𝑗 , … , 𝑑 𝑛−1 𝑛 , 𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑥 𝑖 𝑥 𝑗

Pick the optimal rotation angle 𝜑⋆ as the median angle of 𝐷.

𝜑⋆

= arg min
𝑑𝑢𝑣∈𝐷

𝑞 𝑑𝑢𝑣 , 𝑞 𝑑𝑢𝑣 = 𝜋 −෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜋 − 𝑑𝑖𝑗 − 𝑑𝑢𝑣

Optimal Rotation Angle



Optimal Rotation Angle



The similarity of 𝑆 and Γ can now be defined as

Ψ2 𝑆, Γ =
2

𝑛(𝑛 − 1)
෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜇𝑃𝑎𝑖𝑟 𝑜𝑖 , 𝑜𝑗 , 𝜑
⋆, 𝑥 𝑖 , 𝑥 𝑗 , 0 .

The sketch is rotated by the optimal rotation angle and the 

reference set remains unchanged.

Comparing Object Sets (With Rotation)



Rather than rotate the entire sketch by the same angle, each 

force histogram can be shifted individually.

This allows for small imperfections between the two object 

sets.

Each pair of force histograms is aligned by their main direction 

and multiplied by a weighting factor, based on how well they 

correspond to the previously calculated optimal rotation angle.

Elastic Angles



Elastic Angles
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𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑥 𝑖 𝑥 𝑗

Ψ3 𝑆, Γ =
2

𝑛 𝑛 − 1
෍

𝑖=1

𝑛

෍

𝑗=𝑖+1

𝑛

𝜇𝑇𝑟𝑎𝑝 𝜑⋆ − 𝑑𝑖𝑗 × 𝜇𝑃𝑎𝑖𝑟 𝑜𝑖 , 𝑜𝑗 , 𝜑
𝑜𝑖𝑜𝑗 , 𝑥 𝑖 , 𝑥 𝑗 , 𝜑

𝑥 𝑖 𝑥 𝑗

𝜑⋆ calculated as before



Elastic Angles



Elastic Angles

Elastic angles typically increases individual fitness values.

It does this for all sets of objects, raising the overall average 

fitness values.



Reference Set Used for Testing

The reference set used in our experiments consists of 2814 

buildings and parking lots from downtown Columbia, MO and 

the University of Missouri campus.

The graph contains edge

relationships for a maximum

of 50 nearest neighbors for

each object.

Objects which are too far

apart or have too many other

objects in between them are

pruned from the graph.



Outline of the Search Algorithm

1. Set 𝑡 = 0 and create an initial population of random

individuals: 𝑃 0 = Γ1, Γ2, … , Γ𝜂

2. For each individual in the population, Γ𝑃 ∈ 𝑃 𝑡

a. Generate a set of possible children through mutation:

𝒞 = mutate Γ𝑃
b. Select the most fit child Γ𝐶 = arg max

Γ∈𝒞
𝜓 Γ

c. If the child is more fit than the parent, replace Γ𝑃 with Γ𝐶
3. Every few generations, replace the lowest scoring

individuals in 𝑃 𝑡 with new random individuals

4. If stopping criteria is not met, increment 𝑡 and go to 2

5. Return top scoring individual in 𝑃 𝑡



Overview of the Search Algorithm



Close-Up of the Final Convergence



Mutation Operators

Mutation operators work as local search methods, seeking to improve the

quality of each solution.

The local search is applied repeatedly to each individual in the population

until a suitable solution is found.

Four mutation operators were developed:

Single-Object 

Replacement

One-Seed Set 

Reconstruction

Two-Seed Set 

Reconstruction

VF2 Subgraph 

Isomorphism



Single-Object Replacement (SOR)

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Pick an object from Γ𝑃 to replace

2. Get the set of connected neighbors which could replace the selected
object and still maintain full connectivity

3. For each neighbor

a. Create a temporary child where the seed object is replaced by the
neighbor and evaluate the fitness

4. Return the best child

We typically run this algorithm several times with different parent
permutations, using all possible replacement objects.

The complexity is then 𝑂 𝑝𝑛3𝜔𝐾 .
• 𝑝 is the number of permutations

• 𝑛 is the number of objects in the sketch

• 𝜔 is the number of bins in each force histogram

• 𝐾 is the maximum number of nearest neighbor connections



Single-Object Replacement (SOR)

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11

Permute Γ′ = 𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Pick a single object 𝑐𝑖 = 𝑥4

Get list of possible replacements 𝒳 = 𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥13, 𝑥14

Find best replacement 𝑥𝑏𝑒𝑠𝑡 = 𝑥7

Replace 𝑐𝑖 with 𝑥𝑏𝑒𝑠𝑡 Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



Single-Object Replacement (SOR)

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11

Permute Γ′ = 𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Pick a single object 𝑐𝑖 = 𝑥4

Get list of possible replacements 𝒳 = 𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥13, 𝑥14

Find best replacement 𝑥𝑏𝑒𝑠𝑡 = 𝑥7

Replace 𝑐𝑖 with 𝑥𝑏𝑒𝑠𝑡 Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



One-Seed Set Reconstruction

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Pick an object from Γ𝑃 as the seed object and random order for
gene replacement, 𝜎

2. Create an empty solution Γ′ and assign the seed object to Γ′ 𝜎1
3. Until Γ′ is a complete solution

a. Get the nearest neighbors of the current solution, Γ′

b. Pick the best neighbor for the next gene location using the
same method as SOR mutation

c. Add this neighbor to Γ′ and move to the next gene location

4. Return Γ′ as the improved child

Usually this algorithm is run with all possible seed objects and all
possible initial seed locations.

The complexity is 𝑂 𝑛5𝜔𝐾 .



One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



One-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7

Pick the seed object Γ′ 𝑜1 = 𝑥7

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′ 𝑜4 = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



Two-Seed Set Reconstruction

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Pick two objects from Γ𝑃 as the seed objects and a random order
for gene replacement, 𝜎

2. Create an empty solution Γ′ and assign the seed objects to
Γ′ 𝜎1 and Γ′ 𝜎2

3. Until Γ′ is a complete solution

a. Get the nearest neighbors of the current solution, Γ′

b. Pick the best neighbor for the next gene location using the
same method as SOR mutation

c. Add this neighbor to Γ′ and move to the next gene location

4. Return Γ′ as the improved child

This algorithm is run with all possible pairs of seed objects and all
possible initial seed locations.

The complexity is 𝑂 𝑛7𝜔𝐾 .



Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



Two-Seed Set Reconstruction

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8

Pick the two seed objects Γ′ 𝑜1 = 𝑥7 and Γ′ 𝑜4 = 𝑥11

Get list of neighbor objects 𝒳 = 𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′ 𝑜3 = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′ 𝑜2 = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′ 𝑜5 = 𝑥10

Return child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10



VF2 Subgraph Isomorphism

Given a parent: Γ𝑃 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛

1. Construct the graph 𝐺𝑆 from the sketch and initialize the fitness
threshold 𝜓min

2. Get the set of nearest neighbors 𝒳 of the parent Γ𝑃
3. Shuffle the order of 𝒳

4. Construct the nearest neighbor graph 𝐺𝑁𝑁 from 𝒳

5. Run the VF2 algorithm on 𝐺𝑁𝑁 and 𝐺𝑆 using the fitness threshold
𝜓min

6. If a match is found, return it as the improved child, otherwise
decrease the value of 𝜓min and go to 3

The time complexity of the VF2 algorithm ranges from 𝑂 𝑛𝜔𝐾 to
𝑂 𝑛!𝜔𝐾 .



VF2 Subgraph Isomorphism

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2

Build the sketch graph 𝐺𝑆 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

Get list of neighbor objects 𝒳 = 𝑥1, 𝑥2… , 𝑥14

Shuffle the order 𝒳 = shuffe 𝒳

Build the nearest neighbor graph 𝐺𝑁𝑁 = 𝒳,𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳

Run VF2 algorithm 𝒞 = match 𝐺𝑁𝑁, 𝐺𝑆

Return best child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10 ∈ 𝒞



VF2 Subgraph Isomorphism

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2

Build the sketch graph 𝐺𝑆 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

Get list of neighbor objects 𝒳 = 𝑥1, 𝑥2… , 𝑥14

Shuffle the order 𝒳 = shuffe 𝒳

Build the nearest neighbor graph 𝐺𝑁𝑁 = 𝒳,𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳

Run VF2 algorithm 𝒞 = match 𝐺𝑁𝑁, 𝐺𝑆

Return best child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10 ∈ 𝒞



VF2 Subgraph Isomorphism

Goal Γ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10

Parent Γ𝑃 = 𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2

Build the sketch graph 𝐺𝑆 = 𝒪, 𝐸𝒪 , 𝐿𝒪 , 𝐻𝒪

Get list of neighbor objects 𝒳 = 𝑥1, 𝑥2… , 𝑥14

Shuffle the order 𝒳 = shuffe 𝒳

Build the nearest neighbor graph 𝐺𝑁𝑁 = 𝒳,𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳

Run VF2 algorithm 𝒞 = match 𝐺𝑁𝑁, 𝐺𝑆

Return best child Γ′ = 𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10 ∈ 𝒞



VF2 Algorithm

Given two graphs 𝐺1 = 𝑉1, 𝐸1 and 𝐺2 = 𝑉2, 𝐸2 find a

mapping 𝑀 = 𝑛,𝑚 ∈ 𝑉1 × 𝑉2 𝑛 is mapped onto 𝑚 .

Use a state space representation in which each state is a

partial mapping 𝑀 𝑠 .

[Cordella, et al., 1999]



VF2 Algorithm

VF2 Graph Matching Algorithm

Procedure: Match 𝐺1, 𝐺2, 𝑠
Input: Graphs 𝐺1 and 𝐺2

Intermediate state 𝑠; the initial state 𝑠0 has 𝑀 𝑠0 = ∅

If 𝑀 𝑠 covers all the nodes of 𝐺2 Then

Output: 𝑀 𝑠
Else

Compute the set 𝑃 𝑠 of the pairs candidate for inclusion in 𝑀 𝑠
For Each 𝑝 = 𝑛,𝑚 in 𝑃 𝑠

If 𝐹 𝑠, 𝑛,𝑚 == TRUE Then

Create a new state 𝑠′ by adding 𝑝 to 𝑀 𝑠
Call Match 𝐺1, 𝐺2, 𝑠

′

End If

End For

End If



VF2 Feasibility Function

The key to the algorithm is the feasibility function that

determines whether or not two nodes can be added to the

partial map.

𝐹 𝑠, 𝑛,𝑚 = 𝐹𝑠𝑦𝑛 𝑠, 𝑛,𝑚 ∧ 𝐹𝑠𝑒𝑚 𝑠, 𝑛,𝑚

𝐹𝑠𝑦𝑛 𝑠, 𝑛,𝑚 evaluates the syntactic structure of the graphs.

𝐹𝑠𝑒𝑚 𝑠, 𝑛,𝑚 evaluates the semantic compatibility.

We define the semantic feasibility function as TRUE if the

fitness of the partial map is greater than the threshold 𝜓min.



VF2 Syntactic Feasibility Rules

𝐹𝑠𝑦𝑛 𝑠, 𝑛,𝑚 = 𝑅pred ∧ 𝑅succ ∧ 𝑅in ∧ 𝑅out ∧ 𝑅new

Look-

Ahead
Rule Condition

0

𝑅pred
Iff for each predecessor 𝑛′ of 𝑛 in the partial mapping, the 

corresponding node 𝑚′ is a predecessor of 𝑚, and vice versa.

𝑅succ
Iff for each successor 𝑛′ of 𝑛 in the partial mapping, the 

corresponding node 𝑚′ is a successor of 𝑚, and vice versa.

1

𝑅in

Iff the number of predecessors (successors) of 𝑛 that are in 

𝑇1
in 𝑠 is greater than or equal to the number of predecessors 

(successors) of 𝑚 that are in 𝑇2
in 𝑠 .

𝑅out

Iff the number of predecessors (successors) of 𝑛 that are in 

𝑇1
out 𝑠 is greater than or equal to the number of predecessors 

(successors) of 𝑚 that are in 𝑇2
out 𝑠 .

2 𝑅new

Iff the number of predecessors (successors) of 𝑛 that are neither 

in 𝑀1 𝑠 nor in 𝑇1 𝑠 (new models) is greater than or equal to the 

number of predecessors (successors) of 𝑚 that are neither in 

𝑀2 𝑠 nor in 𝑇2 𝑠 .



Experiments

We evaluate the performance of the matching algorithm using 

resubstitution sketches taken directly from the reference set, 

and simplified sketches, which have been reduced to bounding 

boxes and given an arbitrary orientation.

Resubstitution Sketches Simplified Sketches



Mutation Method Comparison

To compare the mutation methods, 100 resubstitution sketches 
and 100 simplified sketches were randomly created, each 
containing 5 objects.

The search algorithm runs until the original sketch location is 
found with a maximum search time of 1000 generations.  The 
results are averaged over 30 trials.

Mutation Method Comparison Search Parameters

Mutation 

Method 

Population 

Size (𝜂) 

Replacement 

Frequency (𝜏) 
Replacement 

Percent (𝜌) 

SOR 50 50 Generations 50% 

1-Seed 50 10 Generations 80% 

2-Seed 50 10 Generations 80% 

VF2 10 2 Generations 80% 

 



Mutation Method Comparison

Results for Resubstitution Sketches

Mutation 

Method 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

SOR 51.9% 652 931 2594 2865 

1-Seed 100% 14 5 159 44 

2-Seed 99.4% 36 12 1703 494 

VF2 100% 17 9 40 14 

 



Mutation Method Comparison

Results for Resubstitution Sketches



Mutation Method Comparison

Results for Resubstitution Sketches



Mutation Method Comparison

Results for Simplified Sketches

Mutation 

Method 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

SOR 49.1% 681 1000 3127 3710 

1-Seed 97.0% 60 12 539 103 

2-Seed 96.5% 81 21 6404 1231 

VF2 94.0% 81 11 216 19 

 



Mutation Method Comparison

Results for Simplified Sketches



Mutation Method Comparison

Results for Simplified Sketches



Impact of Sketch Size

The first experiment suggested that the one-seed and the VF2 

subgraph isomorphism mutation methods were the most 

promising.

To evaluate the impact of sketch size, 100 resubstitution 

sketches and 100 simplified sketches were randomly created, 

containing 4, 6, 8, 10, and 12 objects.

The search algorithm runs until the original sketch location is 

found with a maximum search time of 100 generations.  The 

results are averaged over 10 trials.



Impact of Sketch Size

Mutation 

Method 

Number of 

Objects in Sketch 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

1-Seed 

4 95.1% 22 11 89 40 

6 98.5% 12 3 207 40 

8 99.6% 9 2 494 83 

10 94.8% 13 2 1258 150 

12 86.2% 20 2 3304 502 

VF2 

4 98.7% 16 9 26 10 

6 96.6% 19 11 81 24 

8 98.1% 19 11 189 62 

10 90.8% 26 13 1777 563 

12 76.5% 39 23 4986 2617 

 

Results for Resubstitution Sketches



Impact of Sketch Size

Results for Resubstitution Sketches



Impact of Sketch Size

Results for Resubstitution Sketches



Impact of Sketch Size

Results for Simplified Sketches

Mutation 

Method 

Number of 

Objects in Sketch 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

1-Seed 

4 80.6% 36 18 151 60 

6 95.6% 16 5 318 84 

8 93.4% 18 5 771 194 

10 81.7% 28 7 2171 693 

12 87.2% 20 3 4317 874 

VF2 

4 80.4% 32 15 97 18 

6 94.3% 22 11 143 48 

8 86.0% 31 17 744 206 

10 69.2% 43 23 5927 1308 

12 78.8% 38 20 11009 3506 

 



Impact of Sketch Size

Results for Simplified Sketches



Impact of Sketch Size

Results for Simplified Sketches



Real-World Example

Hand-drafted 

Sketch

Top Results



Conclusion

• The histograms of forces and ARG representation capture 

the relative spatial relationships between objects in a scene.

• This evolutionary framework allows a sketch to be searched 

for within a reference database.

• The one-seed and VF2 hybrid methods provide the best 

results.

– VF2 works better for small sketches

– One-seed is preferable for large sketches
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