

AN EVOLUTIONARY FRAMEWORK FOR MATCHING

GEOSPATIAL OBJECT CONFIGURATIONS

A Thesis presented to the Faculty of the Graduate School

University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

ANDREW R. BUCK

Dr. James Keller, Thesis Supervisor

MAY 2012

The undersigned, appointed by the dean of the Graduate School, have examined the

thesis entitled

AN EVOLUTIONARY FRAMEWORK FOR MATCHING

GEOSPATIAL OBJECT CONFIGURATIONS

Presented by Andrew R. Buck

A candidate for the degree of Master of Science

And hereby certify that in their opinion it is worthy of acceptance.

Dr. James Keller, Ph.D.

Dr. Marjorie Skubic, Ph.D.

Dr. Mihail Popescu, Ph.D.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. James Keller for introducing me to this project. His

outstanding support, guidance, and patience have helped me become a successful

graduate student. I am thankful for the help and assistance of Dr. Marjorie Skubic, who

provided the initial project assignment from which this work grew. I am also grateful to

Dr. Mihail Popescu for serving on my committee and providing insight to various

problems. Finally, Dr. Ozy Sjahputera deserves credit for helping me understand the

technical aspects of the histograms of forces, and for explaining the underlying code.

This work was funded by the U.S. National Geospatial-Intelligence Agency NURI

grant HM 1582-08-1-0020.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

ABSTRACT ... ix

Chapter

1. Introduction ... 1

1.1 Problem Statement .. 1

1.2 Overview ... 2

2 Literature Review .. 4

2.1 Spatial Relationships ... 4

2.2 Histograms of Forces .. 6

2.2.1 Definition of the F-Histogram .. 7

2.2.2 Main Direction .. 8

2.3 Text to Sketch ... 10

2.4 Scene Matching ... 11

2.5 Image Segmentation ... 14

2.6 Graph-Based Methods .. 15

2.6.1 Graph Definitions ... 16

2.6.2 Attributed Relational Graphs .. 17

2.6.3 Graph Matching .. 18

2.6.4 VF2 Algorithm .. 19

iv

2.7 Evolutionary Computation .. 25

2.7.1 Genetic Algorithms ... 25

2.7.2 Memetic Algorithms .. 26

3 Design of the Matching Algorithm ... 28

3.1 Problem Overview .. 28

3.2 Representing Object Sets .. 29

3.3 Comparing F-Histograms ... 32

3.4 Comparing Object Sets ... 34

3.5 Elastic Angles ... 38

3.6 Overview of the Evolutionary Algorithm ... 41

3.7 Mutation Operators ... 45

3.7.1 Single-Object Replacement ... 45

3.7.2 One-Seed Set Reconstruction .. 47

3.7.3 Two-Seed Set Reconstruction .. 50

3.7.4 VF2 Subgraph Isomorphism ... 52

3.7.5 Mutation Example ... 55

4 Experiments and Results ... 61

4.1 Experiment Setup .. 61

4.2 Comparison of the Mutation Methods .. 65

4.2.1 Resubstitution .. 67

4.2.2 Simplified Sketches.. 71

4.3 Impact of Sketch Size ... 74

4.3.1 Resubstitution .. 75

4.3.2 Simplified Sketches.. 79

v

4.4 Real-World Example .. 84

5 Conclusion ... 86

REFERENCES ... 88

vi

LIST OF FIGURES

Figure 2.1 Calculation of the histograms of forces .. 7

Figure 2.2 Calculation of the main direction ... 9

Figure 2.3 Example of the partial mapping function used in the VF algorithm 20

Figure 2.4 High-level outline of the VF2 graph matching algorithm 21

Figure 2.5 The sets T1
out(s) and T1

in(s) relative to M1(s) = {n1, n2} 22

Figure 2.6 Generic memetic algorithm .. 27

Figure 3.1 Sketch example ... 29

Figure 3.2 ARG representation of an object set ... 31

Figure 3.3 Calculation of the optimal rotation angle, φ⋆ ... 37

Figure 3.4 The trapezoidal weighting function used for elastic angles 38

Figure 3.5 Comparison of elastic and non-elastic methods ... 40

Figure 3.6 ARG representation of the search space ... 42

Figure 3.7 Outline of the evolutionary spatial matching algorithm 44

Figure 3.8 Outline of the single-object replacement mutation algorithm 47

Figure 3.9 Outline of the one-seed set reconstruction mutation algorithm...................... 49

Figure 3.10 Outline of the two-seed set reconstruction mutation algorithm 52

Figure 3.11 Outline of the VF2 subgraph isomorphism mutation algorithm 55

Figure 3.12 Reference set and sketch used in the mutation example 56

Figure 3.13 Penultimate population of the mutation example ... 56

Figure 3.14 Example of the SOR mutation method ... 57

Figure 3.15 Example of the one-seed set reconstruction mutation method 58

vii

Figure 3.16 Example of the two-seed set reconstruction mutation method 59

Figure 3.17 Example of the VF2 subgraph isomorphism mutation method 60

Figure 4.1 The reference set R used in the experiments .. 62

Figure 4.2 Examples of resubstitution sketches ... 63

Figure 4.3 Examples of simplified sketches .. 65

Figure 4.4 Results of the resubstitution experiments ... 70

Figure 4.5 Examples of top matches for the resubstitution sketches 71

Figure 4.6 Results of the experiments with simplified sketches 73

Figure 4.7 Examples of top matches for the simplified sketches 74

Figure 4.8 Impact of sketch size on fitness values for resubstitution sketches 77

Figure 4.9 Impact of sketch size on convergence time for resubstitution sketches 78

Figure 4.10 Impact of sketch size on fitness values for simplified sketches 82

Figure 4.11 Impact of sketch size on convergence time for simplified sketches 83

Figure 4.12 Hand-drafted example sketch ... 85

Figure 4.13 Top 10 matching locations of the real-world example sketch 85

viii

LIST OF TABLES

Table 2.1 Syntactic Feasibility Rules for Subgraph Isomorphism 23

Table 2.2 Spatial and Time Complexity of Different Graph Matching Algorithms 24

Table 4.1 Mutation Method Comparison Search Parameters .. 67

Table 4.2 Mutation Method Comparison with Resubstitution Sketches Results 69

Table 4.3 Mutation Method Comparison with Simplified Sketches Results 72

Table 4.4 Sketch Size Comparison with Resubstitution Sketches Results 76

Table 4.5 Sketch Size Comparison with Simplified Sketches Results 80

ix

Andrew R. Buck

Dr. James Keller, Thesis Supervisor

ABSTRACT

This thesis presents a framework for modeling and comparing the spatial

configuration of sets containing two-dimensional geospatial objects. This situation can

arise in the conflation of a hand or machine drafted map to a satellite image, or in the

correspondence problem of matching two images taken under different viewing

conditions. We focus here on the specific problem of matching a sketched map

containing several 2D objects to actual satellite imagery. Spatial relationships between

objects are captured by the histograms of forces and used to construct an attributed

relational graph representation of the scene. Scene matching is performed with an

evolutionary algorithm, combined with a local-search heuristic. Four problem-specific

mutation operators are developed and tested experimentally.

1

1. INTRODUCTION

1.1 Problem Statement

Geospatial intelligence is a growing field which seeks to describe and analyze

spatial information about the earth. Objects and landmarks that appear in geospatial

images can be related to each other by their spatial relationships. Several techniques

have been developed for modeling spatial relationships which make it easy to describe

object configurations using natural language. A statement such as “The building is to the

right of the parking lot” conveys a spatial relationship between two objects using

qualitative descriptors. The ambiguous nature of statements such as these calls for the

use of fuzzy methods, such as the histograms of forces [Matsakis & Wendling, 1999], to

describe spatial relations. Using the histograms of forces, a set of linguistic descriptions

can be obtained from a fuzzy rule system [Matsakis, et al., 2001] and then used to

construct a sketch depicting a set of objects and their spatial configuration [Sledge &

Keller, 2009].

For the purposes of this work, a sketch is a simple representation of the spatial

configuration of a group of geospatial objects. Apart from a small collection of labels

such as “building” and “parking lot”, the only defining features of these sketches are the

shapes, sizes, and spatial relationships between the objects. Given a sketch and a

geospatial database containing a large number of reference objects, our goal is to find the

set of objects from the reference database which most closely matches the spatial

configuration of the sketch. This is accomplished with an evolutionary algorithm and

several problem-specific local search mutation operators. Although designed for sketch

2

matching, this method can be extended to any situation in which we must locate a

specific arrangement within a large search area.

1.2 Overview

The focus of this work is the development of an evolutionary framework for

matching geospatial object configurations. We begin by reviewing the theory of spatial

relationships and how they can be modeled quantitatively. The histograms of forces are

reviewed and the concept of a main direction is defined. We then discuss how spatial

relationships can be used for scene matching and describe how sketches and the

geospatial reference database can be created. The concept of scene matching is cast as a

subgraph isomorphism problem and we describe how spatial configurations can be

represented as attributed relational graphs. A brief history of graph matching is given

and the VF2 subgraph isomorphism algorithm is described in detail. The overall

matching algorithm is then presented in terms of an evolutionary framework. By using a

local search operator to improve candidate solutions, the framework becomes a type of

memetic algorithm.

The design of the matching algorithm begins by defining a similarity measure

between two sets of objects based on their spatial configuration. This is accomplished by

using attributed relational graphs in which each object is represented as a node of the

graph, and the force histogram relationships between objects are stored as edge attributes.

A rotation-invariant similarity measure is defined which is used to compute the fitness

value of each candidate solution. The evolutionary algorithm creates a population of

3

individual object sets in the reference database which could each potentially match the

spatial configuration of the sketch. Each candidate solution is improved through one of

four possible local search mutation methods. These methods are described in detail and

are tested in the experiments section.

The first set of experiments compares the different mutation methods. This is

done for both resubstitution sketches which come directly from the reference database,

and simplified sketches which have undergone some simplification and rotation. The

second set of experiments investigates the impact of sketch size on matching

performance. Sketches containing between 4 and 12 objects are matched onto the

reference database using one of the two leading mutation methods. The results show that

the evolutionary framework can successfully locate high quality matches of a sketch, and

that some mutation operators are better suited for different problem sizes.

4

2 LITERATURE REVIEW

2.1 Spatial Relationships

The concept of space is so intrinsically fundamental to human nature that we

often accept its existence as part of everyday life without a second thought. Yet the

psychological aspect of how we perceive space has taken on new meaning as we seek to

give machines more human-like capabilities. As humans, we can easily identify distinct

objects in a scene and understand how they are related spatially. For computers, this is

not such a simple task, and object recognition has been one of the key pillars of computer

vision since the origin of the field. By defining regions of an image as distinct objects, a

computer can begin to perform qualitative reasoning about the image and the objects it

contains. The spatial organization of objects in an image is an important high-level

feature that can be used to represent scenes and provide a way to compare and

communicate scene content.

Some of the earliest work with spatial relations in regard to computer vision is

credited to Winston, who in [Winston, 1975] developed a machine algorithm for

recognizing the spatial relationships between simple 3D block models, represented as line

drawings. In his work, object relationships were deduced from a set of crisp rules and

were combined in a graph structure to create an entire scene description. In [Freeman,

1975], Freeman studied the essential spatial relationships required to describe a scene.

He proposed 13 primitive spatial relations: 1) LEFT OF, 2) RIGHT OF, 3) ABOVE, 4)

BELOW, 5) BEHIND, 6) IN FRONT OF, 7) BESIDE, 8) NEAR, 9) FAR, 10)

TOUCHING, 11) BETWEEN, 12) INSIDE, and 13) OUTSIDE. Freeman also noted that

5

these relations can be difficult to define and are context sensitive. He was among the first

to suggest the use of fuzzy sets to capture the inherent uncertainty in their meaning.

 Rosenfeld developed several methods for evaluating the spatial properties of

image objects as fuzzy sets [Rosenfeld, 1979], [Rosenfeld, 1983], [Rosenfeld, 1984]. He

defined terms such as the connectedness, adjacency, and surroundedness of objects using

fuzzy relations. These efforts were further generalized in [Dubois & Jaulent, 1987].

Keller and Szatendera [Keller & Sztandera, 1990] used fuzzy sets to evaluate the relative

position of objects by comparing their projections onto the principle axes.

 Geographic Information Systems (GIS) have played a key role in developing the

theory of spatial relations. In [Egenhofer & Franzosa, 1991], Egenhofer studied the

topological relationships between 2D objects and defined the 9-intersection model for

spatial relations. This model creates a 3x3 matrix which represents the intersecting

interior, exterior, and boundary regions between two objects. In [Mark & Egenhofer,

1994], human test subjects were presented with various configurations of a road

intersecting a park and asked to divide the examples into similar groups. The results

show that the 9-intersection model provides a sound basis for representing line-region

topological spatial relationships.

 Although topology can often characterize the spatial relationships of intersecting

objects, direction and distance are usually more descriptive measures for non-intersecting

objects. As a simplification of the work in [Dubois & Jaulent, 1987], Krishnapuram et al.

[Krishnapuram, et al., 1993] developed an aggregation method for assessing the spatial

properties and relationships of fuzzy image regions. These are viewed as possibility

6

distributions defined over the 𝛼-cut sets of the fuzzy regions. Using this method, they are

able to mathematically define the primitive spatial relations defined in [Freeman, 1975].

A histogram-based approach is presented in [Miyajima & Ralescu, 1994], which

models the relative angles between objects in raster images. Given two objects 𝐴 and 𝐵,

Miyajima and Ralescu consider all pairs of points (𝑎, 𝑏) where 𝑎 is a point in 𝐴 and 𝑏 is a

point in 𝐵. The angle defined by the pair (𝑎, 𝑏) is recorded on a histogram of angles,

which can be compared to predefined fuzzy sets of the primitive directions using a

compatibility method. A comparison of the various fuzzy methods for generating fuzzy

spatial relationships was made in [Keller & Wang, 1995].

2.2 Histograms of Forces

As a generalization of the histograms of angles, the histograms of forces

[Matsakis & Wendling, 1999] provides a solid mathematical foundation for evaluating

the spatial relationship between a pair of 2D objects. This method can process both raster

and vector data, and also has the capability to evaluate fuzzy objects. The framework

allows for the computation of multiple spatial representations, such as the histograms of

constant and gravitational forces. The histogram of constant forces provides a global

perspective and is similar to the histogram of angles, whereas the histogram of

gravitational forces places more emphasis on regions that are close to one another.

7

2.2.1 Definition of the F-Histogram

The spatial relationship between a pair of two-dimensional objects 𝐴 and 𝐵 can be

represented by the forces acting between them. For every direction 𝜃, the sum of

elementary forces acting between 𝐴 and 𝐵 in direction 𝜃 are computed (Figure 2.1).

These forces are aggregated into the F-histogram 𝐹𝑟
𝐴𝐵(𝜃), which maps ℝ → ℝ+ and

represents the degree of support for the proposition, “𝐴 is in direction 𝜃 of 𝐵.” Provided

that 𝐴 and 𝐵 are both non-empty regions and 𝜃 is evaluated on a fine enough scale, 𝐹𝑟
𝐴𝐵

will have at least one element greater than zero. The magnitude of the individual forces

are calculated as an inverse ratio of 𝑑𝑟, where 𝑑 represents the distance between the

points of 𝐴 and 𝐵, and 𝑟 provides a way of capturing different information. When 𝑟 = 0,

we obtain the histogram of constant forces (𝐹0), which provides a global perspective,

independent of the distance between 𝐴 and 𝐵. When 𝑟 = 2, we obtain the histogram of

gravitational forces (𝐹2), which gives a local view, more sensitive to nearby points, but

independent of global scale.

Figure 2.1 Calculation of the histograms of forces. (a) A force histogram 𝐹𝑟
𝐴𝐵 is the scalar resultant of

elementary forces exerted by the points of 𝐴 on those of 𝐵. Each one pulls 𝐵 in direction 𝜃. (b) The

histogram of constant forces (𝑟 = 0) is one representation of the spatial relationship between 𝐴 and 𝐵

providing a global perspective. (c) The histogram of gravitational forces (𝑟 = 2) is another possible

representation, which is more sensitive to nearby points.

8

2.2.2 Main Direction

In many instances, it is useful to reduce the spatial relationship between two

objects to a single scalar direction 𝜑𝐴𝐵, called the main direction. This can be

accomplished in a variety of ways, such as measuring the angle between the centroids or

bounding boxes. However, for complex shapes this can produce results which are

inconsistent with human intuition. In [Matsakis, et al., 2001], a method is presented

which uses both the 𝐹0 and 𝐹2 histograms to evaluate the degree of support for the

proposition, “𝐴 is in direction 𝜃 of 𝐵.” This can be used to create an accurate linguistic

description, or to find the angle which maximizes the degree of support. The use of both

constant and gravitational force histograms is especially important in cases where they

would by themselves indicate different primary directions such as in (Figure 2.2).

For each angle 𝜃, the forces of 𝐹𝑟
𝐴𝐵 are categorized as effective, contradictory, or

compensatory. Effective forces are those which support the proposition, “𝐴 is in

direction 𝜃 of 𝐵,” and contradictory forces are those which oppose it. Some effective

forces may be relabeled as compensatory forces to help balance the contradictory forces.

From these sets of forces, four values are computed, 𝑎0
𝐴𝐵(𝜃), 𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃), and

𝑏2
𝐴𝐵(𝜃). Here, 𝑎𝑟

𝐴𝐵 represents the calculated degree of truth according to the F-histogram

𝐹𝑟
𝐴𝐵, and 𝑏𝑟

𝐴𝐵 represents the percentage of forces which are effective. Details of this

computation can be found in [Matsakis, et al., 2001]. By evaluating all directions, the

main direction histogram is defined as

 Φ𝐴𝐵(𝜃) = max{𝑎0
𝐴𝐵(𝜃), min{𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃)}}. (2.1)

9

Figure 2.2 Calculation of the main direction. (a) A pair of objects for which the constant and gravitational

force histograms indicate different primary directions. (b) The 𝐹0
𝐴𝐵 and 𝐹2

𝐴𝐵 histograms can be combined

into the main direction histogram, Φ𝐴𝐵 . The centroid of this histogram gives the scalar main direction 𝜑𝐴𝐵

which is a compromise between the primary directions of the two F-histograms. (c) 𝜑𝐴𝐵 is computed using

polar vector summation where each angle of Φ𝐴𝐵 is treated as a vector. By summing all of the vectors and

computing the resultant angle, we avoid the problem of the periodic boundary.

Skubic et al. define the main direction as the direction 𝜃 for which Φ𝐴𝐵(𝜃) is

maximum [Skubic, et al., 2004]. A more robust approach is to use the centroid of

Φ𝐴𝐵(𝜃), which is the method used in the remainder of this work. Because Φ𝐴𝐵 is a

periodic function, polar vector summation must be used (Figure 2.2c) when computing

the centroid to ensure that all directions are treated equally [Fisher, 1993]. This is

especially true for cases in which 𝐴 surrounds 𝐵 or vice versa for which there is no

suitable 2𝜋 range of Φ𝐴𝐵 that could serve as a linear mapping. The main direction is

defined as

 𝜑𝐴𝐵 = atan2 (∑ sin(Φ𝐴𝐵(𝜃))
𝜃∈[0,2𝜋]

, ∑ cos(Φ𝐴𝐵(𝜃))
𝜃∈[0,2𝜋]

) (2.2)

where atan2(𝑦, 𝑥): ℝ × ℝ → [0,2𝜋) is the two-argument variation of the arctangent

function. Although the main direction could be computed from just the centroid of either

the 𝐹0 or 𝐹2 histogram, using a common value reinforces the fact that the two histograms

10

are a pair with a single reference axis. This gives a unified framework that is consistent

with the natural human interpretation of spatial relationships.

2.3 Text to Sketch

One of the principle motivations for studying spatial relationships is to simplify

the human-computer communication barrier for describing and representing scenes.

Linguistic interpretation of scene content allows both humans and computers to interact

using the same language. Fuzzy methodologies are particularly useful in this context for

their ability to model the inherent uncertainty in a linguistic spatial relationship. In

[Keller, et al., 1999] and [Keller & Wang, 2000], a fuzzy rule base is used to generate

linguistic descriptions of scenes using LADAR imagery. This method is refined in

[Matsakis, et al., 2001], which presents a robust algorithm for creating linguistic

descriptions from force histograms. This method is used in [Skubic, et al., 2004] to

interpret hand-drawn sketches and provide a navigable route for a robot through a scene

using a set of linguistic rules.

Sketches are a useful way to communicate spatial content. Although a sketch

contains quantitative information, it is often drawn to represent only qualitative spatial

relationships. The task of building a quantitative sketch from a qualitative linguistic

description is called “Text to Sketch” (T2S) [Sledge & Keller, 2009]. The inverse of this

problem is solved using the histograms of forces and the fuzzy rule method in [Matsakis,

et al., 2001]. The resulting linguistic description can be used to verify the quality of the

sketch created by the T2S system. To construct a sketch, individual descriptions are

11

modeled as fuzzy region templates [Bloch, 1999]. These images represent the degree to

which a region matches a particular linguistic description. The objects described can then

be placed at the most probable locations and the resulting image tested for linguistic

similarity to the original description. This iterative process allows very simple sketches

to be created using only linguistic spatial information.

 To create more complicated sketches involving actor movement or inter-object

relationships, some additional natural language processing is required. Logical form

graphs can be parsed directly from sentences to create deep semantic representations

[Allen, et al., 2008]. These graphs contain all of the relations between words and the

underlying objects they describe. Through additional processing, logical form graphs can

be used to infer information about the actor and objects in the scene, as well as their

relationships. This would allow for more complex sketch building techniques.

2.4 Scene Matching

A scene can be defined as a certain configuration of objects or image features.

Often we are presented with two views of the same scene and wish to identify the

correspondence between the two, or we may want to find an instance of one scene within

a larger image. Scene matching is a high-level computer vision task which seeks to find

corresponding regions in multiple images which represent the same scene.

The core requirement of scene matching is image registration, where scene

elements of one image are assigned to those of another image. Several examples of

12

image registration algorithms are provided in [Brown, 1992]. In general, they fit into one

of the following categories:

1. Techniques which use pixel values directly. In [Svedlow, et al., 1978], a cross-

correlation measure is used for registering multiple views of a common scene in

Landsat satellite images. While correlation methods are typically used for this

class of problem, other similarity measures such as the sequential similarity

detection algorithm [Barnea & Silverman, 1972] can be employed which improve

the efficiency.

2. Techniques which use the frequency domain. As shown in [De Castro &

Morandi, 1987] and [Reddy & Chatterji, 1996], the FFT of an image can be used

for registration, and can be made invariant to affine transformations.

3. Techniques which use low-level image features, such as edges or keypoints.

Edges can be used for registration as in [Wong, 1978], where an edge extraction

algorithm and a sequential, hierarchical search method seek to maximize the

cross-correlation of features. In [Lowe, 2004] the SIFT keypoint detector is used

to find scene elements which can be identified across multiple viewing scales and

orientations, providing a robust algorithm for scene matching at the image level.

4. Techniques which use high-level image features such as segmented objects and

the relationships between objects. This work fits into this fourth type, and focuses

on spatial relationships for scene matching.

In [Sjahputera, et al., 2000] the histograms of forces are used to evaluate the

similarity between sets of linguistic spatial descriptions, such as those generated in

13

[Keller, et al., 1999] and [Keller & Wang, 2000] using LADAR imagery. Later in

[Marjamaa, et al., 2001] and [Sjahputera, et al., 2003] scenes were compared directly

using the set of all force histograms between objects as a scene descriptor. The force

histograms were compared in order to recover the estimated sensor pose parameters

between the two scenes. The effects of affine transformations on the histograms of forces

were studied in [Matsakis, et al., 2004] and an affine-invariant force histogram

representation was proposed. In [Sjahputera, 2004] normalized force histograms were

used to generate scene descriptors representing all the spatial relationships between

objects in a scene. A nearest neighbor (NN) method and a fuzzy sequential nearest

neighbor (FSNN) method were introduced to build a correspondence map between two

scene descriptors. This resulted in a one-to-one mapping between the objects in the two

different scenes. A particle swarm optimization (PSO) algorithm was used in [Sjahputera

& Keller, 2005a] for finding the best correspondence map between two scene descriptors

and a possibilistic c-means (PCM) algorithm was used in [Sjahputera & Keller, 2005b]

and [Sjahputera & Keller, 2007].

Scene matching techniques have also been used for robot path planning. In

[Skubic, et al., 2003] a sketch interface is demonstrated using a PDA that can provide a

robot with a hand-drawn map of object locations and a desired path. In [Skubic, et al.,

2004] the histograms of forces are used to generate linguistic descriptions of relative

object locations within a sketch. These are compared to a user-defined set of linguistic

rules describing the desired robot path. In [Parekh, et al., 2007] and [Parekh, 2007],

Parekh used the histograms of forces to build object correspondence maps between a

14

sketch and the observed environment. He also proposed a novel evolutionary algorithm

for scene matching (EASM) and compared it to the FSNN method.

The geospatial community has been interested in scene matching for the task of

locating a group of objects within a large geospatial database by means of a sketch. In

[Bruns & Egenhofer, 1996], the spatial similarity of two scenes is evaluated in terms of

topological, directional, and metrical properties. Using crisp definitions of these

properties, scene similarity is computed by counting the number of gradual changes

required to transform one scene into another. A spatial query language is used in

[Egenhofer, 1997] to find scenes that match a user input sketch. Here, Egenhofer outlines

a constraint relaxation method that emphasizes cognitively important criteria while

suppressing aspects of lesser importance. In [Nedas & Egenhofer, 2008] the crisp spatial

properties defined above are used to construct a graph-based representation of a scene.

Scene matching is then cast as a constraint satisfaction problem, which has the ability to

find a small sketch in a large scene using a constrained subgraph isomorphism. Graph-

based matching methods are discussed in greater detail in Section 2.6.

2.5 Image Segmentation

The use of spatial relationships for scene matching with a geographic information

system requires a certain amount of preprocessing on the geospatial database. A raw

satellite image contains only pixel-level information. In order to compute spatial

relationships between objects in the image, they must first be located. Segmenting

buildings and objects in satellite imagery is a difficult task and requires the use of some

15

high-level features, such as texture. In [Shackelford & Davis, 2003a] a fuzzy classifier is

proposed for segmenting high-resolution multispectral data over urban areas. This

method uses both spectral and spatial properties to determine the appropriate fuzzy class

for each pixel in an image. An expanded version of the classifier is given in [Shackelford

& Davis, 2003b] which further classifies segmented regions using their structural and

spatial properties.

An alternative approach to image segmentation is the energy minimization of

contours which define segment boundaries. In [Chan & Vese, 2001] an active contour

model is used with the level set method to perform segmentation. This is integrated with

the use of shape priors in [Cremers, et al., 2006] and [Riklin-Raviv, et al., 2007] to locate

objects seen from different viewing angles and with partial occlusions. The use of shape

priors for locating objects in a satellite image is proposed in [Sledge, et al., 2011]. By

using vector building outlines taken from a GIS database as shape priors, the level set

method can produce crisp object boundaries and a reasonably accurate segmentation. In

this thesis, exact object extraction for the reference data, generated either by hand or from

a geospatial database, was used so that the effects of the matching process could be

studied directly.

2.6 Graph-Based Methods

Graphs provide a powerful analytic and modeling tool used in many fields,

including computer vision. They can be used to model a collection of objects and their

individual relationships, making them very useful for representing spatial configurations.

16

By casting the scene matching problem as a graph search problem, we can make use of

the many existing graph matching techniques.

2.6.1 Graph Definitions

The standard definition of a graph is an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 is the

vertex set and 𝐸 is the edge set. A node 𝑣𝑖 ∈ 𝑉 represents some structural entity which is

related to other nodes by an edge 𝑒𝑘 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸. If each edge is an ordered pair, then

the graph is a directed graph, implying that the relationships between nodes are not

necessarily symmetric. A complete graph has an edge relationship between every pair of

possible nodes such that 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∈ 𝑉 × 𝑉}. The types of graphs used in the

remainder of this work are all directed graphs, although not all are complete.

Two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are isomorphic to each other if there

exists a bijective mapping 𝑀: 𝑉1 → 𝑉2 which preserves the edge structure of the two

graphs. Formally, 𝑀 is an isomorphism if and only if every edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1 has a

unique corresponding edge (𝑀(𝑣𝑖), 𝑀(𝑣𝑗)) ∈ 𝐸2. A graph 𝐺1
′ = (𝑉1

′, 𝐸1
′) is a subgraph

of 𝐺1 if 𝑉1
′ ⊆ 𝑉1 and 𝐸1

′ ⊆ 𝐸1. If 𝐺2 is isomorphic to 𝐺1
′ , then the mapping 𝑀: 𝑉1

′ → 𝑉2 is

a subgraph isomorphism between the two graphs. Our goal for scene matching is to find

a subgraph of 𝐺1 (the reference database) that is isomorphic to 𝐺2 (the sketch).

17

2.6.2 Attributed Relational Graphs

The usefulness of graph matching as a tool for scene correspondence can be

greatly enhanced by adding attributes to the nodes and edges. Such graphs are known as

attributed relational graphs (ARGs) and are a modest, but powerful extension to the

standard graph definition. Work done in [Tsai & Fu, 1979] shows how modeling a

pattern as a graph of primitives and relationships, each with a set of attributes, can be

used to find matching patterns. A standard graph isomorphism compares only the

syntactic aspect of graphs, and is intolerant of structural differences. However, by

comparing attributes and allowing for small errors in the graph structure, one can ease the

constraints of the search, which is very useful in computer vision.

An ARG is formally defined as a 4-tuple 𝐺 = (𝑉, 𝐸, 𝐴𝑉 , 𝐴𝐸), where 𝑉 and 𝐸

follow the same definitions as before, 𝐴𝑉 is a set containing a unary attribute 𝑎𝑖 for each

node 𝑣𝑖 ∈ 𝑉, and 𝐴𝐸 is a set containing a binary attribute 𝑎𝑖𝑗 for each edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.

The attributes 𝑎𝑖 and 𝑎𝑖𝑗 can both be further represented as vectors containing multiple

attributes for each node and edge. Two ARGs are considered isomorphic only if their

structural graphs are isomorphic and the associated attributes between nodes and edges

are compatible. Depending on the problem, numeric or semantic attributes can be

compared directly or with some window of tolerance. Alternatively, more complex

attributes may require compatibility functions to determine if two node or edge attributes

are congruent. The process of finding a match to a pattern ARG will be discussed in the

next section.

18

2.6.3 Graph Matching

Graph matching in general is an area of active research and many techniques have

been developed. In [Conte, et al., 2004], an attempt is made to classify the many

different approaches into the broad categories of exact and inexact matching methods.

Exact matching methods must define a one-to-one correspondence between the nodes and

edges of two graphs, whereas an inexact method may alter the graph structure or

attributes in order to find a best match. Some methods can only handle graph

isomorphisms or unlabeled graphs, while others can handle subgraph isomorphisms and

fully labeled ARGs.

One of the earliest and most influential algorithms in this field is due to Ullmann

[Ullmann, 1976], which can find both graph and subgraph isomorphisms. The technique,

like many of the others that follow, implements a depth-first tree search with branch and

bound. These methods work by recursively finding all pairs of compatible nodes

between graphs, and adding additional compatible nodes to these subgraphs one at a time

until a complete match is found. Ullmann’s method includes a refinement procedure

which seeks to remove incompatible node pairs as early as possible, thereby reducing the

search time of the algorithm.

By working in terms of node and edge compatibility, tree search methods are

easily extendable to ARG matching. In [Shapiro & Haralick, 1981] an object is

represented by a structural description, which is stored as an ARG. A method is

developed for evaluating ARG similarity by comparing the attributes of the two ARGs.

The tree search method is further refined by including look-ahead rules to ensure that

only good paths are followed in the search.

19

2.6.4 VF2 Algorithm

The VF algorithm [Cordella, et al., 1998], [Cordella, et al., 1999], is a more recent

graph matching algorithm, capable of finding both isomorphisms and subgraph

isomorphisms, although it is particularly suited for finding a subgraph isomorphism

between a small sample graph and a large reference graph. An updated version was later

introduced as the VF2 algorithm [Cordella, et al., 2004]. Given two graphs 𝐺1 = (𝑉1, 𝐸1)

and 𝐺2 = (𝑉2, 𝐸2), the algorithm seeks to find a mapping 𝑀 =

{(𝑛, 𝑚) ∈ 𝑉1 × 𝑉2|𝑛 is mapped onto 𝑚} to represent either an isomorphism between 𝐺1

and 𝐺2, or a subgraph isomorphism between a subgraph of 𝐺1 and 𝐺2. This is

accomplished using a State Space Representation (SSR) in which each state contains a

partial mapping 𝑀(𝑠) which is a subset of the complete mapping function 𝑀. 𝑀(𝑠)

uniquely defines the intermediate subgraphs 𝐺1(𝑠) and 𝐺2(𝑠), which contain only the

nodes included in 𝑀(𝑠) and the induced edges. The sets 𝑀1(𝑠) and 𝑀2(𝑠) denote the

projection of 𝑀(𝑠) onto 𝑉1 and 𝑉2 respectively. An example of a pair of graphs and their

complete and partial mapping functions is given in Figure 2.3.

20

Figure 2.3 Example of the partial mapping function used in the VF algorithm [Cordella, et al., 1999]. (a)

Two graphs 𝐺1 and 𝐺2. (b) The only possible mapping 𝑀. (c) A partial mapping solution 𝑀(𝑠) and the

corresponding partial node sets 𝑀1(𝑠) and 𝑀2(𝑠). (d) The corresponding subgraphs 𝐺1(𝑠) and 𝐺2(𝑠).

The transition from state 𝑠 to a new state 𝑠′ involves the addition of a node pair

(𝑛, 𝑚) to the mapping function, resulting in new intermediate subgraphs. Typically, only

a small number of node pairs can be added to 𝑀(𝑠) while maintaining consistency with

the desired morphism type. Any node pair which would prevent 𝑀(𝑠) from growing into

a completely defined mapping function represents an unfruitful path and the resulting

branches of the SSR can be effectively pruned from the search space.

The basis of the VF2 algorithm is a set of feasibility rules for evaluating whether

a node pair (𝑛, 𝑚) can be safely added to a partial mapping function 𝑀(𝑠). A feasibility

function is introduced

 𝐹(𝑠, 𝑛, 𝑚) = 𝐹syn(𝑠, 𝑛, 𝑚) ∧ 𝐹sem(𝑠, 𝑛, 𝑚) (2.3)

21

where 𝐹syn(𝑠, 𝑛, 𝑚) is the syntactic feasibility, which depends on the structure of the

graphs, and 𝐹sem(𝑠, 𝑛, 𝑚) is the semantic feasibility, which depends on the attributes. A

high-level outline of the entire matching algorithm is given in Figure 2.4. The initial

input to the recursive matching function is the empty set 𝑀(𝑠0) = ∅, containing no

matching elements. For each state that is evaluated, a set of candidate pairs 𝑃(𝑠) is

generated and evaluated using the above feasibility function. The pairs which are

considered feasible are added to the map, and the function is called again recursively.

The final output of the algorithm occurs each time a complete map is generated, at which

point the algorithm can either halt, or continue to search for all possible mappings.

VF2 Graph Matching Algorithm

Procedure: Match(𝐺1, 𝐺2, 𝑠)

Input: Graphs 𝐺1 and 𝐺2

 Intermediate state 𝑠; the initial state 𝑠0 has 𝑀(𝑠0) = ∅

If 𝑀(𝑠) covers all the nodes of 𝐺2 Then

 Output: 𝑀(𝑠)

Else

 Compute the set 𝑃(𝑠) of the pairs candidate for inclusion in 𝑀(𝑠)

 For Each 𝑝 = (𝑛, 𝑚) in 𝑃(𝑠)

 If 𝐹(𝑠, 𝑛, 𝑚) == TRUE Then

 Create a new state 𝑠′ by adding 𝑝 to 𝑀(𝑠)

 Call Match(𝐺1, 𝐺2, 𝑠′)

 End If

 End For

End If

Figure 2.4 High-level outline of the VF2 graph matching algorithm [Cordella, et al., 2004].

To create the set of candidate pairs 𝑃(𝑠) we look at all of the adjacent nodes to

𝐺1(𝑠) and 𝐺2(𝑠). The sets 𝑇1
out(𝑠), 𝑇1

in(𝑠), 𝑇2
out(𝑠), and 𝑇2

in(𝑠) are defined as the

outgoing or incoming nodes of 𝐺1(𝑠) and 𝐺2(𝑠) respectively, shown in Figure 2.5. The

22

set 𝑃(𝑠) consists of all pairs (𝑛, 𝑚) in which 𝑛 ∈ 𝑇1
out(𝑠) and 𝑚 ∈ 𝑇2

out(𝑠), provided that

neither of these sets are empty. If either of these sets are empty, then 𝑇1
in(𝑠) or 𝑇2

in(𝑠) is

used instead. For disconnected graphs, these later sets may also be empty, in which case

the sets 𝑉1 − 𝑀1(𝑠) and 𝑉2 − 𝑀2(𝑠) are used instead.

Figure 2.5 The sets 𝑇1
out(𝑠) and 𝑇1

in(𝑠) relative to 𝑀1(𝑠) = {𝑛1, 𝑛2} [Cordella, et al., 1999].

The syntactic feasibility rule is actually composed of five rules,

 𝐹syn(𝑠, 𝑛, 𝑚) = 𝑅pred ∧ 𝑅succ ∧ 𝑅in ∧ 𝑅out ∧ 𝑅new, (2.4)

which are explained in Table 2.1. The first two are necessary and sufficient conditions to

ensure acceptable solutions, while the remaining three serve to prune the search space.

𝑅in and 𝑅out are 1-look-ahead rules and 𝑅new is a 2-look-ahead rule. In defining the rules,

some additional notation is used. Pred(𝐺, 𝑛) and Succ(𝐺, 𝑛) respectively denote the

predecessor and successor nodes of node 𝑛 in graph 𝐺. Additionally, 𝑇1(𝑠) = 𝑇1
in(𝑠) ∪

𝑇1
out(𝑠) and �̃�1 = 𝑉1 − 𝑀1(𝑠) − 𝑇1(𝑠) with similar expressions for 𝑇2(𝑠) and �̃�2. The

syntactic feasibility rules are formally defined in [Cordella, et al., 2004] as

23

𝑅pred(𝑠, 𝑛, 𝑚)

⇔ (∀𝑛′ ∈ 𝑀1(𝑠) ∩ Pred(𝐺1, 𝑛)∃𝑚′ ∈ Pred(𝐺2, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))

∧ (∀𝑚′ ∈ 𝑀2(𝑠) ∩ Pred(𝐺2, 𝑚)∃𝑛′ ∈ Pred(𝐺1, 𝑛)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠)),

(2.5)

𝑅succ(𝑠, 𝑛, 𝑚)

⇔ (∀𝑛′ ∈ 𝑀1(𝑠) ∩ Succ(𝐺1, 𝑛)∃𝑚′ ∈ Succ(𝐺2, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))

∧ (∀𝑚′ ∈ 𝑀2(𝑠) ∩ Succ(𝐺2, 𝑚)∃𝑛′ ∈ Succ(𝐺1, 𝑛)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠)),
(2.6)

𝑅in(𝑠, 𝑛, 𝑚)

⇔ (Card (Succ(𝐺1, 𝑛) ∩ 𝑇1
in(𝑠))

≥ Card (Succ(𝐺2, 𝑚) ∩ 𝑇2
in(𝑠)))

∧ (Card (Pred(𝐺1, 𝑛) ∩ 𝑇1
in(𝑠))

≥ Card (Pred(𝐺2, 𝑚) ∩ 𝑇2
in(𝑠))),

(2.7)

𝑅out(𝑠, 𝑛, 𝑚)

⇔ (Card(Succ(𝐺1, 𝑛) ∩ 𝑇1
out(𝑠))

≥ Card(Succ(𝐺2, 𝑚) ∩ 𝑇2
out(𝑠)))

∧ (Card(Pred(𝐺1, 𝑛) ∩ 𝑇1
out(𝑠))

≥ Card(Pred(𝐺2, 𝑚) ∩ 𝑇2
out(𝑠))),

(2.8)

𝑅new(𝑠, 𝑛, 𝑚)

⇔ Card (�̃�1(𝑠) ∩ Pred(𝐺1, 𝑛)) ≥ Card (�̃�2(𝑠) ∩ Pred(𝐺2, 𝑛))

∧ Card (�̃�1(𝑠) ∩ Succ(𝐺1, 𝑛)) ≥ Card (�̃�2(𝑠) ∩ Succ(𝐺2, 𝑛)).

(2.9)

Table 2.1 Syntactic Feasibility Rules for Subgraph Isomorphism

Look-

Ahead
Rule Condition

0

𝑅pred
Iff for each predecessor 𝑛′ of 𝑛 in the partial mapping, the corresponding node 𝑚′ is

a predecessor of 𝑚, and vice versa.

𝑅succ
Iff for each successor 𝑛′ of 𝑛 in the partial mapping, the corresponding node 𝑚′ is a

successor of 𝑚, and vice versa.

1

𝑅in
Iff the number of predecessors (successors) of 𝑛 that are in 𝑇1

in(𝑠) is greater than or

equal to the number of predecessors (successors) of 𝑚 that are in 𝑇2
in(𝑠).

𝑅out
Iff the number of predecessors (successors) of 𝑛 that are in 𝑇1

out(𝑠) is greater than or

equal to the number of predecessors (successors) of 𝑚 that are in 𝑇2
out(𝑠).

24

2 𝑅new

Iff the number of predecessors (successors) of 𝑛 that are neither in 𝑀1(𝑠) nor in

𝑇1(𝑠) (new models) is greater than or equal to the number of predecessors

(successors) of 𝑚 that are neither in 𝑀2(𝑠) nor in 𝑇2(𝑠).

The semantic feasibility rule will depend on the specific attributes of the graphs,

but can be represented formally in terms of compatibility relations. Let 𝑛 ≈ 𝑚 represent

a compatible pair of nodes, and (𝑛, 𝑛′) ≈ (𝑚, 𝑚′) represent a compatible pair of edges.

The formal definition is then

𝐹sem(𝑠, 𝑛, 𝑚) ⇔ 𝑛 ≈ 𝑚
∧ ∀(𝑛′, 𝑚′) ∈ 𝑀(𝑠), (𝑛, 𝑛′) ∈ 𝐸1 ⇒ (𝑛, 𝑛′) ≈ (𝑚, 𝑚′)
∧ ∀(𝑛′, 𝑚′) ∈ 𝑀(𝑠), (𝑛′, 𝑛) ∈ 𝐸1 ⇒ (𝑛′, 𝑛) ≈ (𝑚′, 𝑚).

(2.10)

The complexity of the VF and VF2 algorithms depend on the specific graphs being

matched, but can be represented in terms of the best and worst case scenarios. In the best

case, the VF algorithm has both a time and spatial complexity of Θ(𝑁2), where 𝑁 is the

number of nodes in the largest graph. In the worst case, the time complexity increases to

Θ(𝑁! 𝑁). The VF2 algorithm uses a common shared memory location during the tree

search, reducing the memory requirement to just Θ(𝑁) in all cases. This final property

allows the VF2 algorithm to search for subgraph isomorphisms within very large

reference graphs containing thousands of nodes. A summary of the complexities of the

VF2, VF, and Ullmann’s algorithm is given in Table 2.2.

Table 2.2 Spatial and Time Complexity of Different Graph Matching Algorithms

 VF2 VF Ullmann’s Algorithm

Complexity Best Case Worst Case Best Case Worst Case Best Case Worst Case

Time Θ(𝑁2) Θ(𝑁! 𝑁) Θ(𝑁2) Θ(𝑁! 𝑁) Θ(𝑁3) Θ(𝑁! 𝑁3)

Spatial (memory) Θ(𝑁) Θ(𝑁) Θ(𝑁2) Θ(𝑁2) Θ(𝑁3) Θ(𝑁3)

25

2.7 Evolutionary Computation

2.7.1 Genetic Algorithms

An optimization problem is defined as the task of determining the best possible

solution to a problem from the set all possible solutions. Mathematically, it can be

defined as locating the maximum or minimum value of some function over some domain

within certain constraints. This is a broad and often difficult problem, and many

approaches have been demonstrated to work on some subset of optimization problems.

The study of biology has introduced evolutionary computation as an approach to

optimization, leading to the development of the genetic algorithm (GA) by Holland

[Holland, 1975]. In a GA, as well as most evolutionary techniques, a possible solution to

an optimization problem is encoded as a chromosome containing a set of genes or

variables to be optimized. A population of chromosomes, each representing one possible

solution, is created using a random initialization method. Each individual is evaluated by

a fitness function, which produces a score representing how well it solves the

optimization problem. Individuals are selected from the population using a selection

function and used as the inputs to a crossover function, which combines features from the

parent solutions and produces new child solutions. These new individuals may then be

refined by a mutation function, which introduces random noise in order to explore new

areas of the search space. The population of individuals is updated to include the new

children, which usually involves replacing the parents with their children. Some form of

elitism may also be used in selecting the subsequent generation, ensuring that the best-

26

scoring individuals survive without modification. The process of selecting individuals

and producing new children constitutes one generation, and the search proceeds by

computing additional generations until some stopping criteria is met. The choice of

functions to carry out fitness evaluation, selection, crossover, and mutation is often

problem specific and depends on the representation scheme being used.

Genetic algorithms provide a stochastic method for solving a variety of search and

optimization problems [Goldberg, 1989]. In [Rodriguez & Jarur, 2005] a modified

genetic algorithm is used for searching spatial configurations using a topological model.

The algorithm is based on asexual reproduction, allowing a single parent solution to

create a child. In contrast to an exhaustive search, the GA allows for a controlled

computational cost, and can always provide a solution regardless of the problem

complexity. However, the solutions of an exhaustive deterministic search are always

optimal, whereas the GA may produce good, but suboptimal solutions.

2.7.2 Memetic Algorithms

There are many different variations of the standard genetic algorithm described

above. In [Moscato, 1989] the concept of a memetic algorithm is introduced, which is a

type of hybrid genetic algorithm. In these methods, a local search strategy is used to

improve some individuals between generations. This allows the best individuals to

continue improving locally, which results in shorter search times. In [Houck, et al.,

1996] the hybrid GA is described in biological terms using Lamarckian evolution and the

Baldwin effect. Lamarckian learning allows individuals to be replaced by their improved

27

versions found as a result of a local search. These improvements are then preserved

through to the next generation. The Baldwin effect allows an individual to be evaluated

using the fitness of its improved version, but the genetic representation remains

unchanged. This is similar to what happens in actual biological systems and ensures that

diversity is maintained around an optimal point. The hybrid GA is shown to converge

more quickly than the standard GA on many problems. An outline for a generic memetic

algorithm is shown in Figure 2.6.

Generic Memetic Algorithm

Initialize: Create initial population of individuals

While stopping criteria is not met

 Evaluate all individuals

 Evolve new population using selection/crossover/mutation

 Select a subset of individuals for local improvement, Ω𝑖𝑙

 For each individual in Ω𝑖𝑙

 Perform local improvement with probability 𝑓𝑖𝑙 for a period 𝑡𝑖𝑙

 Proceed with Lamarckian or Baldwinian learning

 End For

End While

Figure 2.6 Generic memetic algorithm.

28

3 DESIGN OF THE MATCHING ALGORITHM

3.1 Problem Overview

Our goal is to develop an algorithm which can locate a group of objects within a

geospatial image from an approximate sketch. The objects can be buildings, parking lots,

or other landmarks of interest. Since the objects are disjoint and contain no information

apart from a label and their spatial properties, we make use of the histograms of forces to

model the spatial relationships. This provides a robust framework for capturing the

relative direction, distance, scale, and to an extent the relative shapes between objects.

The collection of HoF relationships between all objects in a sketch or scene are modeled

as an ARG, which allows for efficient matching techniques. For this study, we chose to

use hand-segmented imagery to ensure that we have the best possible ground truth. The

segmented objects make up the reference set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}, where each object is

given a label of either “building” or “parking lot.”

A sketch of objects 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) can be created in a variety of ways. If a

person draws a map of his or her immediate surroundings, the resulting collection of

labeled objects is a sketch which should match to some real location in the reference

image (provided that they are standing in the segmented region.) This process could be

automated by interpreting a natural language description of a person’s surroundings

[Sledge & Keller, 2009]. Regardless of how the sketch is generated, the goal of our

algorithm is to find the mapping function Γ: 𝑆 → ℛ that assigns each object of the sketch

to an object in the reference set. Ideally, these will be the same objects that the sketch is

intended to represent. Since there are only two different object types in this study, the

29

spatial relationships between objects will be the primary matching features. The best

match for a given sketch is the set of objects from the reference set which most closely

matches the spatial configuration of the objects in the sketch. Figure 3.1 shows an

example of a sketch and the corresponding matching location within a segmented satellite

image.

Figure 3.1 Sketch example. (a) An example of a machine-drafted sketch. (b) The corresponding match

within a segmented satellite image. Buildings are shown in red and parking lots are shown in green.

3.2 Representing Object Sets

We use an attributed relational graph to model the spatial relations between

objects in a scene. Suppose that we have a scene consisting of a set of 2D objects 𝒪 =

{𝑜1, 𝑜2, … , 𝑜𝑛}. Each object will represent a node in the ARG and the relationships

between objects will be stored as edges. A single edge relationship between a pair of

30

objects is defined as 𝑒𝑖𝑗 = (𝑜𝑖, 𝑜𝑗) ∈ 𝒪 × 𝒪. Depending on the size of 𝒪, we may define

all inter-object relationships as edges, or only some of the closest and most reasonable

relationships. The set of all edges in a scene is defined as 𝐸𝒪 = {𝑒𝑖𝑗 | (𝑜𝑖, 𝑜𝑗) ∈ 𝒪 × 𝒪}.

Each object is given a label 𝐿𝒪(𝑜𝑖) = 𝑙𝑖 ∈ ℒ where ℒ is the set of all possible labels (e.g.

“building”, “parking lot”, etc.). For each edge 𝑒𝑖𝑗 we define the spatial relationship as the

triple ℎ𝑖𝑗 = (𝐹0

𝑜𝑖𝑜𝑗 , 𝐹2

𝑜𝑖𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗), where 𝐹0

𝑜𝑖𝑜𝑗
 and 𝐹2

𝑜𝑖𝑜𝑗
 are the constant and gravitational

F-histograms between 𝑜𝑖 and 𝑜𝑗, and 𝜑𝑜𝑖𝑜𝑗 is the main direction. (The ℎ𝑖𝑗 notation was

chosen as a mnemonic for “histogram,” as the first two arguments are actually

histograms.) The set of all spatial relationships is defined as 𝐻𝒪 = {ℎ𝑖𝑗 | 𝑒𝑖𝑗 ∈ 𝐸𝒪},

which implies that there must be a spatial relationship defined for each edge which exists

in the graph. The complete ARG representation for the object set 𝒪 is defined as 𝐺𝒪 =

(𝒪, 𝐸𝒪, 𝐿𝒪, 𝐻𝒪). An example is given in Figure 3.2.

31

Figure 3.2 ARG representation of an object set. (a) An example of an object set 𝒪 = {𝑜1 , 𝑜2, 𝑜3} (b) The

ARG representation of the object set. (c) Formal definition of 𝐺𝒪 and its attributes.

Obviously since each edge represents a spatial relationship, the order of the

arguments is important. “𝐴 is in direction 𝜃 of 𝐵” is not the same as “𝐵 is in direction 𝜃

of 𝐴.” The two statements contain largely the same information, however, and they are

32

related by the semantic inverse property of the HoF [Matsakis, et al., 2004], which states

that

 𝐹𝑟
𝐵𝐴(𝜃) = 𝐹𝑟

𝐴𝐵(𝜃 + 𝜋). (3.1)

Since 𝐹𝑟
𝐴𝐵 is a periodic function, this is simply a circular shifting of the histogram bins,

in which no information is lost. A complete ARG for a set of 𝑛 objects will have 𝑛

vertices and 𝑛 × (𝑛 − 1) edges, with a unique edge defined between each ordered pair of

vertices. We can reduce the storage requirement of the ARG representation by a factor of

two if we only calculate edges (𝑜𝑖 , 𝑜𝑗) in which 𝑖 < 𝑗, and use the semantic inverse

property for all other pairs.

3.3 Comparing F-Histograms

Toward the goal of developing a similarity measure between two scenes, we

begin by comparing a single pair of F-histograms. If two pairs of objects have a similar

spatial configuration, then they should have similar F-histograms. Matsakis et al.

[Matsakis, et al., 2004] investigated several similarity measures for F-histograms:

 𝜇𝑇(𝑓1, 𝑓2) =
∑ min(𝑓1(𝜃), 𝑓2(𝜃))𝜃

∑ max(𝑓1(𝜃), 𝑓2(𝜃))𝜃

, (3.2)

 𝜇𝑃(𝑓1, 𝑓2) = 1 −
∑ |𝑓1(𝜃) − 𝑓2(𝜃)|𝜃

∑ |𝑓1(𝜃) + 𝑓2(𝜃)|𝜃
, (3.3)

 𝜇𝐶(𝑓1, 𝑓2) =
∑ 𝑓1(𝜃)𝑓2(𝜃)𝜃

√∑ 𝑓1
2(𝜃)𝜃 √∑ 𝑓2

2(𝜃)𝜃

. (3.4)

33

Here, 𝜇𝑇 is a Tversky index, 𝜇𝑃 is a Pappis’ measure, and 𝜇𝐶 is the normalized cross-

correlation between two F-histograms, 𝑓1 and 𝑓2. Also, 𝜃 is a member of the finite set of

angles for which the F-histograms are computed. These measures all satisfy the

following properties.

 0 ≤ 𝜇(𝑓1, 𝑓2) ≤ 1 (3.5)

 𝑓1 = 𝑓2 ⇒ 𝜇(𝑓1, 𝑓2) = 1 (3.6)

 𝜇(𝑓1, 𝑓2) = 𝜇(𝑓2, 𝑓1) (3.7)

 ∀𝜆 ∈ ℝ+
∗ , 𝜇(𝜆𝑓1, 𝜆𝑓2) = 𝜇(𝑓1, 𝑓2) (3.8)

In addition, 𝜇𝐶 also satisfies

 ∀𝜆1 ∈ ℝ+
∗ , ∀𝜆2 ∈ ℝ+

∗ , 𝜇(𝜆1𝑓1, 𝜆2𝑓2) = 𝜇(𝑓1, 𝑓2), (3.9)

which states that the normalized cross-correlation is invariant to the relative scales of the

two histograms. This is important for the task of matching a sketch to a satellite image,

because the scales at which each are represented may differ by several orders of

magnitude. For this reason we use 𝜇𝐶 in the remainder of this work.

Although the overall scaling of the 𝑦-axis values of the F-histograms do not impact

the similarity measure, the 𝑥-axis values play a large role. The F-histograms of each

object set are all computed with respect to a common reference angle. If two pairs of

objects are defined with the same reference angle, then their F-histogram relationships

can be compared directly. If, however, they are defined with different reference angles

(e.g. by rotating one of the pairs) then one F-histogram must be shifted to match the

other. We call upon the basic properties of the histograms of forces [Matsakis &

34

Wendling, 1999], [Matsakis, et al., 2004], which state that if a pair of objects (𝐴, 𝐵) is

rotated counter-clockwise by an angle 𝜑, its F-histogram becomes

 𝐹𝑟
𝑟𝑜𝑡(𝐴,𝐵)

(θ) = 𝐹𝑟
𝐴𝐵(𝜃 − 𝜑). (3.10)

This is simply a circular shifting of the histogram bins, which allows us to compare

spatial relationships defined with any orientation. Given two pairs of objects, (𝐴, 𝐵) and

(𝐴′, 𝐵′) defined with reference angles 𝜙 and 𝜙′ respectively, we can compare their

relative spatial relationships with the general equation

𝜇𝑃𝑎𝑖𝑟(𝐴, 𝐵, 𝜙, 𝐴′, 𝐵′, 𝜙′) = 𝛽𝜇𝐶0 + (1 − 𝛽)𝜇𝐶2, where

𝜇𝐶0 = 𝜇𝐶 (𝐹0
𝐴𝐵(𝜃 − 𝜙), 𝐹0

𝐴′𝐵′
(𝜃 − 𝜙′)) ,

𝜇𝐶2 = 𝜇𝐶 (𝐹2
𝐴𝐵(𝜃 − 𝜙), 𝐹2

𝐴′𝐵′
(𝜃 − 𝜙′)).

(3.11)

Here 𝛽 is a weighting factor between the histograms of constant and gravitational forces,

which is typically set at 0.5 to give equal weight to both F-histograms.

3.4 Comparing Object Sets

Suppose that we are given a sketch of objects 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) and a reference

set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} in which 𝑚 ≫ 𝑛. Our goal is to pick a subset of objects from ℛ

which could match the objects in 𝑆 via the injective function Γ: 𝑆 → ℛ. This can be

represented as the candidate set Γ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝑥(𝑖) ∈ ℛ such that Γ(𝑜𝑖) = 𝑥(𝑖).

Notice that we avoid the general correspondence problem and assume that the order of

objects in Γ is the same as in 𝑆. The task of finding Γ is the subject of our evolutionary

algorithm and will be discussed further in Section 3.6. We can compare 𝑆 and Γ by

measuring the average similarity of the spatial relationships between each pair of objects.

35

If we can guarantee that both 𝑆 and Γ are defined with the same orientation, then the

similarity of the two object sets can be computed as

 Ψ1(𝑆, Γ) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖, 𝑜𝑗 , 0, 𝑥(𝑖), 𝑥(𝑗), 0)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. (3.12)

Here both reference angles are defined as 0, implying that no shifting of the histograms is

necessary. The complexity of this computation is 𝑂(𝑛2𝜔), where 𝑛 is the number of

objects in each set and 𝜔 is the number of angles computed for each F-histogram.

The above expression is valid if both object sets share the same orientation,

however this is usually not the case. Maps are not always drawn with the same

orientation as the ground truth, often out of convenience. Take, for example, the streets

of Manhattan, which are commonly drawn on maps as perfectly horizontal and vertical

lines, yet a satellite image of the city shows that the island is not actually aligned in one

of the cardinal directions. In order to compensate for changes in orientation between the

sketch and the reference database, we rotate all of the F-histograms from the sketch by an

angle 𝜑⋆ which would give the best overall alignment with the F-histograms from the

candidate set. Although the rotation could be applied to either the sketch or the candidate

set, we choose to rotate the sketch to mimic how one orients a map.

The angular difference between two pairs of objects (𝐴, 𝐵) and (𝐴′, 𝐵′) is defined

as the difference between their main directions 𝜑𝐴𝐵 − 𝜑𝐴′𝐵′
. By considering all of the

angular differences between each unique pair of objects in 𝑆 and Γ, we create a list

 𝐷 = {𝑑11, 𝑑12, … , 𝑑𝑖𝑗 , … , 𝑑(𝑛−1)𝑛}, 𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑥(𝑖)𝑥(𝑗) , (3.13)

36

which represents the total mismatch between the orientations of 𝑆 and Γ. For example, if

𝐷 contains only 0 values, then 𝑆 and Γ have the same orientation. The values of 𝐷 are

shifted into the range [0, 2𝜋) and used to determine the optimal rotation angle 𝜑⋆ that

will be applied to 𝑆. The mean and median values of 𝐷 are both reasonable choices for

𝜑⋆, with the median providing greater stability overall [Buck, et al., 2011]. Because the

angles are defined on a periodic domain, it may not be possible to define a 2𝜋 range

which can serve as a linear mapping to compute the median. Therefore, we pick the

optimal rotation angle as the angle in 𝐷 which minimizes the angular distance to all other

angles in 𝐷 using the following expression from [Fisher, 1993].

 𝜑⋆ = arg min
𝑑𝑢𝑣∈𝐷

[𝑞(𝑑𝑢𝑣)], 𝑞(𝑑𝑢𝑣) = 𝜋 − ∑ ∑ |𝜋 − |𝑑𝑖𝑗 − 𝑑𝑢𝑣||

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (3.14)

Here, 𝑞 is a temporary list of the total angular distances evaluated for each angle in 𝐷.

An example of this process is given in Figure 3.3. Having found 𝜑⋆, we rotate all of the

F-histograms from 𝑆 by a uniform angle to obtain an orientation-independent similarity

measure,

 Ψ2(𝑆, Γ) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖, 𝑜𝑗, 𝜑⋆, 𝑥(𝑖), 𝑥(𝑗), 0)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. (3.15)

37

Figure 3.3 Calculation of the optimal rotation angle, 𝜑⋆. All angles are given in radians measured

counterclockwise from the 𝑥-axis. The ground truth object set in (a) is approximated by the simplified

sketch in (b), which has been rotated counterclockwise about one quarter-turn. The object correspondences

between the sketch and ground truth are given, and the main direction between each unique object pair is

given in (c). The first two columns of (c) list the individual object pairs, and the main directions calculated

for the ground truth and sketch are given in the third and fourth columns respectively. The list of angular

differences 𝐷 is listed in the fifth column, which is used as the input to equation (3.14) for computing the

list of angular distances, 𝑞. The angle which minimizes the angular distance to all other angles in 𝐷 is

chosen as the optimal rotation angle, 𝜑⋆. Here, 𝜑⋆ is chosen as an 83° clockwise rotation of the sketch.

38

3.5 Elastic Angles

As an alternative to rotating all of the F-histograms from one set by the global

best rotation angle, we can exercise a little more control over the similarity measure by

rotating each F-histogram individually. This gives each pair of histograms a tolerance to

small directional differences. The orientation of the scene as a whole is still important, so

we begin by calculating the angular difference list 𝐷 in the same way as before. This

gives the best rotation angle for the whole scene, 𝜑⋆. Rather than rotating all histograms

of the sketch by this angle, we create normalized F-histograms by rotating each histogram

of both the sketch and candidate set clockwise by its main direction so that all F-

histograms are centered at 𝜃 = 0. Comparing normalized F-histograms removes all

orientation biases, leaving only the shapes and sizes as distinguishing characteristics. To

compensate for the loss of directional information, we apply a weighting factor to each

histogram, defined by a fuzzy membership function 𝜇𝑇𝑟𝑎𝑝(𝜃) shown in Figure 3.4. The

angular difference between the original histograms is used as the input to this weighting

function, allowing only histograms that shared similar orientations to be considered with

full weight and all others to have less weight.

Figure 3.4 The trapezoidal weighting function used for elastic angles.

39

The overall similarity measure is defined as

Ψ3(𝑆, Γ) =

2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑇𝑟𝑎𝑝(𝜑⋆ − 𝑑𝑖𝑗) × 𝜇𝐸𝑙𝑎𝑠𝑡𝑖𝑐

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

, where

𝜇𝐸𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖 , 𝑜𝑗, 𝜑𝑜𝑖𝑜𝑗 , 𝑥(𝑖), 𝑥(𝑗), 𝜑𝑥(𝑖)𝑥(𝑗))

(3.16)

The elastic angle method allows for small imperfections between two object sets.

F-histograms which would not otherwise be perfectly aligned are normalized and

considered with full weight. This tends to result in higher similarity values overall

[Buck, et al., 2011], but allows for the small discrepancies between object sets that tend

to arise when working with real data. Figure 3.5 shows an example which highlights the

differences between the elastic and non-elastic methods for evaluating object set

similarity.

40

Figure 3.5 Comparison of elastic and non-elastic methods. (a) Ground truth image. (b) The sketch is a

simplification of (a) with object 𝐷 significantly misplaced. (c) shows the computation of the non-elastic

similarity, where the numbers to the left of each histogram represent the individual cross-correlation values.

For clarity, only the histogram of constant forces is shown, although both the constant and gravitational F-

histograms are used in computing the final similarity. (d) and (e) show the computation of the elastic

fitness. (d) is the weighting function 𝜇𝑇𝑟𝑎𝑝(𝜃) and (e) shows the normalized histograms, where the

numbers to the right of each histogram represent the weighted cross-correlation values.

41

3.6 Overview of the Evolutionary Algorithm

The similarity measures defined above offer a way to compare two object sets

based on their spatial relationships. This allows us to develop an algorithm to search a

segmented satellite image for a group of objects which most closely matches an input

sketch. Given a sketch 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛), and a reference set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} in

which 𝑚 ≫ 𝑛, we begin by constructing the attributed relational graphs 𝐺ℛ and 𝐺𝑆. For

the sketch 𝑆, 𝐺𝑆 is completely defined with a vertex for each object and the full set of

𝑛 × (𝑛 − 1) edges. When constructing 𝐺ℛ, we create a vertex for each object, but only

define some of the spatial relationships as edges. Typically, ℛ contains many objects

spread over a large area. Since the sketch represents only a small spatial region, we

restrict the set of outgoing spatial relationships for each object in ℛ to its 𝐾 nearest

neighbors. This prunes the search space considerably, eliminating edges between objects

which are not nearby. In [Bloch, et al., 2006], several techniques for measuring the

degree to which an object is between two others were investigated. Object pairs which

are too far apart, or have too many objects between themselves can also be excluded from

the edge list. These parameters must be chosen carefully ahead of time to ensure that the

subset of ℛ which we would like to see matched with 𝑆 remains fully connected, so that

there is an edge relationship between each pair of objects. Requiring 𝑆 and the

corresponding subset of ℛ to be complete graphs allows us to treat this as a subgraph

isomorphism problem rather than a subgraph homomorphism problem. Our experiments

use a reference set of 2814 objects with a maximum of 50 neighbor connectivity, shown

in Figure 3.6, which highlights 𝐺ℛ and the subgraph which matches 𝐺𝑆, the ARG

representation of the sketch given in Figure 3.1.

42

Figure 3.6 ARG representation of the search space. (a) 𝐺ℛ, the ARG representation of the reference set

used in our experiments containing 2814 objects. The graph is superimposed over the reference set with

the edges displayed in white. Buildings are shown in red and parking lots are shown in green. (b) 𝐺𝑆, the

ARG representation of the sketch from Figure 3.1, highlighted as a subgraph of 𝐺ℛ.

43

Due to the potentially enormous search space, we have chosen to use an

evolutionary algorithm to match the sketch to the reference database, as it is visually

intuitive and can be scaled to many different problem sizes. An individual solution, or

chromosome, is a function Γ: 𝑆 → ℛ, represented as Γ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝑥(𝑖) ∈ ℛ

such that Γ(𝑜𝑖) = 𝑥(𝑖). This vector represents the objects of the reference set which could

potentially correspond to the sketch. We must take care when constructing Γ to ensure

that no objects are duplicated and that they are all fully connected to one another. The

labels of the sketch objects must also match the labels of the corresponding chromosome

objects such that 𝐿𝑆(𝑜𝑖) = 𝐿ℛ(𝑥(𝑖)) for 1 ≤ 𝑖 ≤ 𝑛.

The search algorithm (Figure 3.7) begins by generating a population of 𝜂 random

individuals 𝑃(0) = (Γ1, Γ2, … , Γ𝜂). Each random individual solution is chosen by first

finding the most unique label of the sketch and picking a random object from the

reference set with the same label. This object becomes the seed of the chromosome, and

the remaining objects are chosen randomly from the nearest neighbors of this seed such

that the labels match the objects of the sketch. Closer neighbors have a higher likelihood

of being chosen in order to keep the individual chromosome spatially compact. If none

of the seed’s nearest neighbors can satisfy the label requirements of the sketch, a new

seed is chosen in a different location.

44

Procedure: Evolutionary Spatial Matching Algorithm

Input: ℛ and 𝑆

 Constants: 𝜂, 𝜏, 𝜌

Initialize: Set 𝑡 = 0 and create initial population of individuals: 𝑃(0) = (Γ1, Γ2, … , Γ𝜂)

While stopping criteria is not met

 𝑃(𝑡+1) = 𝑃(𝑡)

 𝑡 = 𝑡 + 1

 If 𝑡 is a multiple of 𝜏

 Replace the lowest scoring fraction 𝜌 of 𝑃(𝑡) with new random individuals

 Else

 For each individual Γ𝑃 ∈ 𝑃(𝑡)

 Generate list of children through mutation: 𝒞 = mutate(Γ𝑃)

 Select most fit child: Γ𝐶 = arg max
Γ∈𝒞

𝜓(Γ)

 If 𝜓(Γ𝐶) > 𝜓(Γ𝑃)

 Replace Γ𝑃 with Γ𝐶

 End If

 End For

 End If

End While

Output: Top scoring individuals in 𝑃(𝑡)

Figure 3.7 Outline of the evolutionary spatial matching algorithm.

After the initial population has been created, we calculate the fitness of each

individual as 𝜓(Γ) = Ψ(𝒮, Γ) (equation (3.16)) where Γ ∈ 𝑃(0). During each

generational cycle of the algorithm, we perform a local improvement in the form of a

mutation operator on each individual chromosome in the population. The mutation

operators described below each take a single parent solution Γ𝑃 as input and return a list

of possible child solutions, 𝒞 = {Γ1, Γ2, … Γ𝑧}. We pick the child with the highest fitness

Γ𝐶 = arg max
Γ∈𝒞

𝜓(Γ) and compare against the parent, Γ𝑃. Whichever has the higher fitness

survives to the next generation, ensuring that we always have the best solution in the

local search space. Since the individuals are less likely to improve after a certain number

of generations, and to increase the diversity of the search, we replace the lower scoring

fraction 𝜌 of the population with new random individuals every 𝜏 generations. This

45

allows us to continue searching new areas of the search space, while preserving the best

solutions found thus far. The search process continues until some stopping criteria is

met, usually a fitness threshold or a maximum number of generations.

3.7 Mutation Operators

Mutation operators traditionally play the role of maintaining genetic diversity

within a population and are often paired with crossover operators to create each

succeeding generation. However, crossover operators do not fit well with our

representation scheme, since we require each individual mapping to be a fully connected

subgraph. Combining objects from two separate solutions would likely result in a

spatially disjoint child, which should be avoided. The mutation operators must then play

the role of improving a single solution using a local search strategy. In this way, we can

consider our algorithm to be a type of memetic algorithm, using an evolutionary global

framework with a separate local improvement operator for each individual. In the

following sections, four mutation operators for improving the spatial configuration of an

individual solution to match a target sketch are introduced and an example of their

application is provided.

3.7.1 Single-Object Replacement

The single-object replacement (SOR) mutation is based on the work presented in

[Buck, et al., 2010] and [Buck, et al., 2011]. In this strategy, a single object from the

parent is replaced by one of its nearest neighbors. Given a parent mapping function Γ𝑃 =

46

(𝑥(1), 𝑥(2), … , 𝑥(𝑛)), we cycle through each object 𝑥(𝑖) ∈ Γ𝑃 and replace it with one of its

nearest neighbors. Previous versions of this algorithm randomly picked only a single

object for replacement; however we found that by testing all parent objects for

replacement we could improve the matching rate with only a small amount of additional

overhead. This strategy of choosing all possible initializations carries over into the set

reconstruction mutation methods as well. Let 𝒳 be the set of nearest neighbors for 𝑥(𝑖),

such that any object 𝑥⋆ ∈ 𝒳 could replace 𝑥(𝑖) in Γ𝑃 and still maintain full connectivity.

For each neighbor object 𝑥⋆, we build a mapping function Γ′ which is identical to

Γ𝑃 except that 𝑥(𝑖) has been replaced by 𝑥⋆. The function with the highest fitness is added

to the list of children, 𝒞.

Initial experiments with the SOR mutation operator [Buck, et al., 2010], [Buck, et

al., 2011] revealed that the algorithm often has difficulty finding the ideal match in a

region. Because each chromosome is an ordered set, an individual solution can contain

all of the objects of the ideal match, but not in the right order. Successive mutations on

these solutions will often stall out as objects are swapped with neighboring objects to

allow for different orderings of the chromosome. We therefore consider multiple

different permutations of the parent solution before applying the SOR mutation, which

produces a larger set of children, but decreases the amount of stalling performed by

individuals. Clearly, evaluating all possible permutations would result in a large

computational overhead, so we typically use only a small number of randomly chosen

permutations. This offers a balance between performing an exhaustive search for each

mutation and maintaining a degree of randomness which helps prevent premature

47

convergence. The complete SOR mutation method is outlined in Figure 3.8. Given that

the complexity of each fitness evaluation is 𝑂(𝑛2𝜔), the SOR mutation has a complexity

of 𝑂(𝑝𝑛3𝜔𝐾), where 𝑝 is the number of permutations considered, 𝑛 is the number of

objects in the sketch set, 𝜔 is the number of angles in each F-histogram, and 𝐾 is the

maximum number of nearest neighbor connections used in the reference set ARG.

Procedure: Single-Object Replacement Mutation

Input: Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛))

 Constant: 𝑝

Initialize: 𝒞 = ∅

Add Γ𝑃 to list of permutations, 𝒫

Add 𝑝 random permutations of Γ𝑃 to 𝒫

For Each Γ ∈ 𝒫

 For 𝑖 = 1 to 𝑛

 Γ′ = Γ

 Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object 𝑥(𝑖)

 𝜓𝑏𝑒𝑠𝑡 = 0

 For Each 𝑥⋆ ∈ 𝒳

 Replace a single object: Γ′(𝑖) = 𝑥⋆

 Evaluate the fitness: 𝜓(Γ′) = Ψ(𝑆, Γ′)

 If 𝜓(Γ′) > 𝜓𝑏𝑒𝑠𝑡 Then

 𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆

 End If

 End For

 Replace with best object: Γ′(𝑖) = 𝑥𝑏𝑒𝑠𝑡

 Add to list of children: 𝒞 = 𝒞 ∪ Γ′

 End For

End For

Output: 𝒞

Figure 3.8 Outline of the single-object replacement mutation algorithm.

3.7.2 One-Seed Set Reconstruction

The set reconstruction methods are based on the idea that the best possible

solution can be reconstructed from a small starting seed of just one or two objects. Given

48

sketch set 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛), we define a partial sketch 𝑆′ = (𝑜(1)
′ , 𝑜(2)

′ , … , 𝑜(𝑡)
′) ⊂ 𝑆

which only contains some of the original objects. Likewise, we define a partial mapping

function Γ′: 𝑆′ → ℛ with partial fitness 𝜓(Γ′) = Ψ(𝑆′, Γ′), which only considers the

specified subset of sketch objects. The idea behind the one-seed mutation method is to

start with a single object 𝑆′ = (𝑜(1)
′) ⊂ 𝑆 and add objects one at a time until we use all of

the objects in the sketch. The overall outline of the one-seed set reconstruction method is

shown in Figure 3.9. Given a parent mapping function Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), we

cycle through each object 𝑥(𝑖) ∈ Γ𝑃 and use it as the seed object for a partial sketch. We

then consider all possible mappings of the seed object onto an object from the parent, and

create a partial solution Γ′ for each one. For each partial solution, we randomly pick an

unassigned sketch object 𝑜𝑢 ∈ 𝑆 − 𝑜(1)
′ and find the set of nearest neighbors 𝒳 ⊆ ℛ to

which 𝑜𝑢 could be assigned while maintaining full connectivity. As with the SOR

mutation, we create a set of temporary partial mapping functions, each with 𝑜𝑢 assigned

to a different neighbor object 𝑥⋆ ∈ 𝒳. The neighbor that produces the greatest partial

fitness is added to the partial sketch 𝑆′. We continue to map the unassigned sketch

objects of 𝑆 to the best neighbor objects in this greedy manner until 𝑆′ = 𝑆. Once we

have a complete mapping function, we add it to the list of children, 𝒞.

49

Procedure: One-Seed Set Reconstruction Mutation

Input: Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where each 𝑥(𝑖) ∈ ℛ

Initialize: 𝒞 = ∅

Initialize list of index locations: 𝐼 = {1, 2, … , 𝑛}

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝐿𝑆(𝑜𝑖) = 𝐿ℛ(𝑥(𝑗))

 Clear Γ′

 Create the partial ordered sketch: 𝑆′ = (𝑜𝑖)

 Update remaining index locations: 𝐼′ = 𝐼 − 𝑖
 Define Γ′(𝑜𝑖) = 𝑥(𝑗)

 Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object 𝑥(𝑗)

 While |𝐼′| > 0

 Pick an index 𝑘 ∈ 𝐼′ randomly

 Add 𝑜𝑘 to the end of the partially ordered sketch: 𝑆′ = (… , 𝑜𝑘)

 𝜓𝑏𝑒𝑠𝑡 = 0

 For Each 𝑥⋆ ∈ 𝒳

 Define Γ′(𝑜𝑘) = 𝑥⋆

 Evaluate the partial fitness: 𝜓(Γ′) = Ψ(𝑆′, Γ′)

 If 𝜓(Γ′) > 𝜓𝑏𝑒𝑠𝑡 Then

 𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆

 End If

 End For

 Define Γ′(𝑜𝑘) = 𝑥𝑏𝑒𝑠𝑡

 Remove this index location: 𝐼′ = 𝐼′ − 𝑘

 Update 𝒳 as the nearest neighbors of the image of Γ′

 End While

 Add Γ′ to list of children: 𝒞 = 𝒞 ∪ Γ′

End For

Output: 𝒞

Figure 3.9 Outline of the one-seed set reconstruction mutation algorithm.

The one-seed set reconstruction mutation solves many of the problems faced by

the SOR mutation operator. Individuals rarely stall over a valid match without

converging to a locally optimal solution. Different orderings of buildings becomes less

of an issue since the entire mapping function must be reconstructed. The one-seed

mutation also tends to converge faster than the SOR mutation since more of the solution

is being replaced, although this can cause individuals to become trapped in sub-optimal

local solutions. The complexity of the one-seed method can be derived as 𝑂(𝑛5𝜔𝐾),

50

which is greater than the SOR method, assuming that only a few permutations are

considered. Because of the exponential term on 𝑛, this method is limited to relatively

small sketch sizes; our experiments use sketches of five objects. The greater complexity

of the one-seed method is compensated by the faster convergence rate, which will be

shown in Chapter 4.

Given that we always try to recover the best alignment between the sketch and

each chromosome, each partial solution may be oriented differently from its previous

version. As the set reconstruction methods add additional objects, the resulting

orientation of each partial solution becomes increasingly more difficult to change. When

there are only two objects, the partial solution is allowed to rotate to whichever angle best

matches the corresponding objects of the sketch, essentially relying only on the shape of

the F-histograms to evaluate the fitness. This means that the second object of the partial

solution defines the initial orientation, and the remaining objects must conform to this

orientation.

3.7.3 Two-Seed Set Reconstruction

The two-seed set reconstruction mutation method is almost identical to the one-

seed method with the exception that we use two seed objects instead of just one. By

using two seeds, we define an edge relationship between two objects, which determines

the individual’s initial orientation. This allows a single mutation to explore many

different possible orientations, but incurs a significant computational overhead. For a

parent mapping function Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), we cycle through each pair of objects

51

(𝑥(𝑖), 𝑥(𝑗)) ∈ Γ𝑃 × Γ𝑃 and use them as the seed objects for a partial sketch. We then

consider all possible mappings of the seed objects onto a pair of objects from the parent,

and create a partial solution, Γ′ for each one. This results in a complexity of 𝑂(𝑛7𝜔𝐾),

significantly greater than any of the other methods, but with the advantage of searching

many more possible mappings. Again, the high complexity restricts this method to small

sketch sizes. Unlike the one-seed method, the two-seed mutation provides the option to

check individual edges for compatibility. Although we don’t make use of this property in

our experiments, one could conceive of a representation in which edges are compared

directly. This could greatly reduce the number of possible mappings and the overall

complexity of the two-seed method. The remainder of the algorithm is the same as the

one-seed method and is given in Figure 3.10.

52

Procedure: Two-Seed Set Reconstruction Mutation

Input: Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where each 𝑥(𝑖) ∈ ℛ

Initialize: 𝒞 = ∅

Initialize list of index locations: 𝐼 = {1, 2, … , 𝑛}

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝑖 ≠ 𝑗

 For Each (𝑘, 𝑙) ∈ 𝐼 × 𝐼 such that 𝑘 ≠ 𝑙

 If 𝐿𝑆(𝑜𝑖) ≠ 𝐿ℛ(𝑥(𝑘)) Or 𝐿𝑆(𝑜𝑗) ≠ 𝐿ℛ(𝑥(𝑙)) Then

 Continue

 End If

 Clear Γ′

 Create the partial ordered sketch: 𝑆′ = (𝑜𝑖, 𝑜𝑗)

 Update remaining index locations: 𝐼′ = 𝐼 − {𝑖, 𝑗}

 Define Γ′(𝑜𝑖) = 𝑥(𝑘) and Γ′(𝑜𝑗) = 𝑥(𝑙)

 Get the set of nearest neighbors 𝒳 ⊆ ℛ of the image of Γ′

 While |𝐼′| > 0

 Pick an index 𝑚 ∈ 𝐼′ randomly

 Add 𝑜𝑚 to the end of the partially ordered sketch: 𝑆′ = (… , 𝑜𝑚)

 𝜓𝑏𝑒𝑠𝑡 = 0

 For Each 𝑥⋆ ∈ 𝒳

 Define Γ′(𝑜𝑚) = 𝑥⋆

 Evaluate the partial fitness: 𝜓 (Γ′) = Ψ(𝑆′, Γ′)

 If 𝜓(Γ′) > 𝜓𝑏𝑒𝑠𝑡 Then

 𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆

 End If

 End For

 Define Γ′(𝑜𝑚) = 𝑥𝑏𝑒𝑠𝑡

 Remove this index location: 𝐼′ = 𝐼′ − 𝑚

 Update 𝒳 as the nearest neighbors of the image of Γ′

 End While

 Add Γ′ to list of children: 𝒞 = 𝒞 ∪ Γ′

 End For

End For

Output: 𝒞

Figure 3.10 Outline of the two-seed set reconstruction mutation algorithm.

3.7.4 VF2 Subgraph Isomorphism

Since the sketch and reference database are both stored as attributed relational

graphs, it makes sense to use existing graph matching techniques to solve the subgraph

isomorphism problem. The entire evolutionary algorithm could in fact be replaced by a

53

general algorithm for locating subgraph isomorphisms; however the feasibility of this

approach decreases as the size of the search space grows very large. Instead, we use a

graph matching algorithm as a local improvement operator in the form of a mutation.

This allows the size of the graph-based search to remain bounded while the evolutionary

algorithm handles the overall global search.

The VF2 algorithm developed by Cordella et al. [Cordella, et al., 2004] is well

suited for use as a local search mutation operator. It can handle large graphs and

evaluates isomorphisms based on node and edge compatibility. The input to the

algorithm is a pair of graphs, 𝐺𝑁𝑁 and 𝐺𝑆. Given a parent mapping function Γ𝑃 =

(𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝐺𝑁𝑁 is a subgraph of 𝐺ℛ containing the objects in Γ𝑃 and the 𝑁

nearest objects to the objects in Γ𝑃. 𝐺𝑆 is the ARG of the sketch being matched.

Additionally, we must define node and edge compatibility functions. The VF2 algorithm

works by performing a tree search in which all possible mappings from 𝐺𝑁𝑁 onto 𝐺𝑆 are

constructed one node at a time. The addition of new nodes to the mapping function is

governed by a set of feasibility rules, which require that new nodes and the edges they

induce are compatible with each other. If a node or an induced edge is incompatible, that

search path is discarded and a new path is considered.

Fundamentally, the VF2 graph matching algorithm is similar to the set

reconstruction methods described above. A small partial mapping is grown one object at

a time until a complete matching is defined. In the set reconstruction methods, the object

which produces the best partial mapping fitness is added to the mapping function,

whereas in the VF2 algorithm, any object which satisfies the compatibility criteria is

considered for inclusion. For the VF2-based mutation, any object which produces a

54

partial mapping function with a partial fitness greater than a given threshold satisfies the

compatibility criteria. It should be noted that computation of the partial fitness is

dependent on the entire partial sketch, not just the new object and the induced edges.

This is because the addition of a new object can change the overall orientation of the

sketch, which can have a significant impact on the sketch fitness.

The VF2 algorithm is guaranteed to find all compatible subgraphs, provided that

the compatibility of each new node is dependent only on itself and the edges it induces.

When this is the case, there are 𝑛! ways to build a matching subgraph of 𝑛 nodes. To

prevent redundancy, the graph nodes are given arbitrary index values and only nodes with

index values greater than any of the nodes already present in the partial map are

considered. This ensures that each possible subgraph can be reached, but only in one

order. In the case of sketch matching, the compatibility of new nodes is dependent on the

existing partial map, which means that the order in which objects are added can influence

the partial fitness values at each stage. If the addition of an object lowers the partial

fitness value below the given threshold, the search path will be discarded, even if the

addition of another object would raise the partial fitness above the threshold. The VF2

algorithm was not designed to handle such cases, so the compatibility functions must be

changed to accept a copy of the entire partial solution in addition to the two nodes being

compared. We can minimize the risk of missing a compatible subgraph by randomizing

the index order of the nearest neighbor graph and repeating the search with multiple

fitness thresholds. If a compatible subgraph is not found using a high initial threshold,

the search is repeated with a new random index order and a lower fitness threshold.

Eventually the threshold will be low enough that at least one compatible subgraph is

55

found. The results of the graph matching algorithm are returned as child solutions. The

entire VF2 subgraph isomorphism mutation method is given in Figure 3.11.

Procedure: VF2 Subgraph Isomorphism Mutation

Input: Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛)

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where each 𝑥(𝑖) ∈ ℛ

 Constants: 𝜓min, 𝛿, 𝑁

Initialize: 𝒞 = ∅

Construct the graph 𝐺𝑆 from the sketch 𝑆

While 𝒞 = ∅

 Get the set of 𝑁 nearest neighbors 𝒳 ⊆ ℛ of the parent Γ𝑃

 Shuffle the order of 𝒳

 Construct the graph 𝐺𝑁𝑁 from 𝒳

 Run the VF2 algorithm on 𝐺𝑁𝑁 and 𝐺𝑆 using fitness threshold 𝜓min

 Add the results to 𝒞

 Let 𝜓min = 𝜓min − 𝛿

End While

Output: 𝒞

Figure 3.11 Outline of the VF2 subgraph isomorphism mutation algorithm.

3.7.5 Mutation Example

We now present an example which demonstrates each mutation process as a

chromosome converges to the ideal solution. Figure 3.12a shows an example search

space containing 11 buildings shown in red, and 3 parking lots shown in green, which

form the reference set. The reference set ARG is computed with an edge between every

pair of objects. The sketch in Figure 3.12b is a simplified representation of the five

objects in the lower-left of the reference set, rotated one quarter-turn. Our goal is to

recover the mapping function Γ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) from a random initialization.

56

Figure 3.12 Reference set and sketch used in the mutation example. (a) The ground truth used as the

reference set. (b) The sketch to be matched.

Suppose that after initializing the algorithm, the population consists of the four

individuals given in Figure 3.13.

Penultimate Population

Γ1 = (𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11)

Γ2 = (𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7)

Γ3 = (𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8)

Γ4 = (𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2)

Figure 3.13 Penultimate population of the mutation example.

Notice that because the third object in the sketch is a parking lot, all of the chromosomes

must also have a parking lot as the third object. A different mutation operator will be

57

applied to each chromosome in this example to demonstrate how each one converges to

the ideal solution.

The SOR mutation is applied to Γ1 = (𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11), with the main events

which lead to convergence shown in Figure 3.14. First, several permutations of Γ1 are

chosen, of which Γ′ = (𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10) is the specific permutation which could

potentially match the sketch. Only a single object is incorrect, and as we cycle through

each object to test for replacement, we find that replacing 𝑥4 with 𝑥7 produces a child

chromosome with very high fitness, which is returned as the child.

SOR Mutation on Γ1

Permute Γ′ = (𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10)

Pick a single object 𝑐𝑖 = 𝑥4

Get list of possible replacements 𝒳 = {𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥13, 𝑥14}

Find best replacement 𝑥𝑏𝑒𝑠𝑡 = 𝑥7

Replace 𝑐𝑖 with 𝑥𝑏𝑒𝑠𝑡 Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10)

Figure 3.14 Example of the SOR mutation method.

The one-seed mutation is applied to Γ2 = (𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7) with the main events

leading to convergence shown in Figure 3.15. Each object in the sketch is evaluated as

the seed object, and when 𝑜1 is assigned to the chromosome object 𝑥7, the remaining

objects can be assigned one at a time such that the ideal solution is recovered. Similarly,

the two-seed mutation is applied to Γ3 = (𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8) in Figure 3.16. Note that in

this case, two sketch objects must already be assigned to the ideal reference objects in

order for a complete convergence to occur in a single mutation. This occurs in this

58

example when 𝑜1 is assigned to 𝑥7 and 𝑜4 is assigned to 𝑥11, allowing the ideal solution

to be formed by adding the remaining objects one at a time.

One-Seed Mutation on Γ2

Pick the seed object Γ′(𝑜1) = 𝑥7

Get list of neighbor objects 𝒳 = {𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14}

Pick next sketch object randomly 𝑜𝑘 = 𝑜4

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11

Update chromosome Γ′(𝑜4) = 𝑥11

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′(𝑜5) = 𝑥10

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′(𝑜3) = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′(𝑜2) = 𝑥12

Return child Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10)

Figure 3.15 Example of the one-seed set reconstruction mutation method.

59

Two-Seed Mutation on Γ3

Pick the two seed objects Γ′(𝑜1) = 𝑥7 and Γ′(𝑜4) = 𝑥11

Get list of neighbor objects 𝒳 = {𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14}

Pick next sketch object randomly 𝑜𝑘 = 𝑜3

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9

Update chromosome Γ′(𝑜3) = 𝑥9

Pick next sketch object randomly 𝑜𝑘 = 𝑜2

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12

Update chromosome Γ′(𝑜2) = 𝑥12

Pick next sketch object randomly 𝑜𝑘 = 𝑜5

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10

Update chromosome Γ′(𝑜5) = 𝑥10

Return child Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10)

Figure 3.16 Example of the two-seed set reconstruction mutation method.

The VF2 subgraph isomorphism mutation is applied to Γ4 = (𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2)

with the main events listed in Figure 3.17. First, the graph of the sketch is built, which

can be saved for use in later mutations. The neighbor objects of the parent are then

shuffled and used to create the neighbor graph. These graphs are used as the input to the

VF2 algorithm, which returns all subgraphs of the neighbor graph which match the sketch

graph above a given threshold. Of these, the ideal solution is returned as the best child.

Notice that unlike the previous methods, the parent does not need to contain any of the

objects found in the child, allowing the VF2 algorithm to have the largest local search

space.

60

VF2 Subgraph Isomorphism Mutation on Γ4

Build the sketch graph 𝐺𝑆 = (𝒪, 𝐸𝒪 , 𝐿𝒪, 𝐻𝒪)

Get list of neighbor objects 𝒳 = {𝑥1, 𝑥2 … , 𝑥14}

Shuffle the order 𝒳 = shuffle(𝒳)

Build the nearest neighbor graph 𝐺𝑁𝑁 = (𝒳, 𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳)

Run VF2 algorithm 𝒞 = match(𝐺𝑁𝑁, 𝐺𝑆)

Return best child Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) ∈ 𝒞

Figure 3.17 Example of the VF2 subgraph isomorphism mutation method.

61

4 EXPERIMENTS AND RESULTS

4.1 Experiment Setup

To verify its applicability on real data, the evolutionary algorithm developed in

Chapter 3 is tested with a ground truth satellite image of Columbia, MO. The image was

hand segmented into a reference set ℛ of 2467 buildings and 378 parking lots, shown in

Figure 4.1. The reference set contains several different types of regions including some

urban, suburban, and rural areas arranged in both structured road grids and less structured

residential areas. The reference ARG 𝐺ℛ (Figure 3.6) was built by calculating the HoF

relationships between each object and its 50 nearest neighbors, provided that the two

objects are within 500 pixels of each other and do not contain more than five other

objects in between. The latter two restrictions further reduce the overall size of the

search space by removing relationships that are unlikely to match to locally confined

sketches. The F-histograms were calculated using a 2 degree interval, which provides

enough information to distinguish most spatial configurations. All of the calculations

required to build 𝐺ℛ were performed a priori, leaving only the input sketch ARG to be

computed for each search.

62

Figure 4.1 The reference set ℛ used in the experiments. The set contains 2467 buildings shown in red and

347 parking lots shown in green from downtown Columbia, MO and the University of Missouri campus.

The experiments are divided into two categories, based on the type of sketch

being matched. The first is a simple resubstitution search, in which the sketch is taken

directly from the reference database, without modification. This serves to show that the

algorithm can search the large reference set for an exact copy of the sketch. Examples of

resubstitution sketches are given in Figure 4.2. The resubstitution sketches for the

experiments are randomly generated and each contains a set number of objects, which

can be either buildings or parking lots. They are generated by first selecting a single seed

object at random from the reference set. All of the connected neighbor objects of this

seed are sorted by distance and used to create the rest of the sketch. Each remaining

object is chosen from the list of neighbors, with the closest object having a 50% chance

of being picked, the second having a 25% chance, the third having a 12.5% chance, etc.

63

This ensures that the sketch is relatively compact, while still allowing for random

variation. Each pair of objects in the sketch must have a relationship defined in 𝐺ℛ to

ensure full connectivity. If a suitable set of objects cannot be found for a given seed, a

new seed is randomly chosen.

Figure 4.2 Examples of resubstitution sketches. (a) Original ground truth. (b) Resubstitution sketch.

The second experiment type uses simplified sketches. These are resubstitution

sketches that have been simplified by reducing each object to its bounding box and

64

applying a random rotation to the entire sketch. When two objects’ bounding boxes

intersect, one object overwrites part of the other. The object with the most common label

in the reference set overwrites the other, which for our experiments allows buildings to be

completely surrounded by parking lots. If the two objects have the same label, the one

with the greater extent (ratio of original area to bounding box area) overwrites the other.

If through the simplification process an object is completely overwritten, a new

resubstitution sketch is chosen to be simplified. These simplified sketches show how the

algorithm can handle the imperfections and misalignments of actual hand-drafted

sketches and yet provide the ability to accurately score the results. Examples of

simplified sketches are given in Figure 4.3.

65

Figure 4.3 Examples of simplified sketches. (a) Original ground truth. (b) Simplified sketch.

4.2 Comparison of the Mutation Methods

The first experiment performed compares the four different mutation operators

using both resubstitution and simplified sketches. For each type of sketch, 100 random

test sets were created, each containing five objects. They may contain any combination

of buildings and parking lots, and are guaranteed to be a complete subgraph of 𝐺ℛ. For

each test set, the search algorithm is run 30 times using each mutation operator. This

results in 3000 searches for each type of mutation. The specific algorithm parameters are

66

chosen to reflect the differences between each mutation operator and are summarized in

Table 4.1. The SOR mutation method uses a population size of 𝜂 = 50 individuals with

a replacement rate of 𝜏 = 50 generations and 𝜌 = 50%. Additionally, the SOR mutation

method evaluates five different permutations of the parent chromosome with each

mutation operation. The set reconstruction methods use the same population size as the

SOR method, but with a more aggressive replacement rate of 𝜏 = 10 generations and 𝜌 =

80%. These parameters were chosen after some initial experimentation, which indicated

that the set reconstruction methods would often converge to locally optimal solutions

much faster than the SOR method, often within only a few generations. The aggressive

replacement strategy allows new solutions to compete against older stalled individuals

more often, improving the overall rate of convergence. The lower replacement frequency

of the SOR mutation method provides more time for individuals to perform a local

search, since this method makes smaller incremental changes than the set reconstruction

methods. The VF2 subgraph isomorphism mutation method uses a much smaller

population size of 𝜂 = 10 with a replacement rate of 𝜏 = 2 generations and 𝜌 = 80%.

Because the VF2 algorithm locates all matching subgraphs in a local neighborhood, there

is no need to repeat the mutation multiple times in the same area. After each generation,

only the top two individuals are retained. The rest of the population is replaced with new

random individuals. The VF2 method uses a neighborhood size of 50 objects and an

initial fitness threshold of 𝜓min = 0.95. This threshold is decremented by 𝛿 = 0.05 after

each local search that returns no children.

67

Table 4.1 Mutation Method Comparison Search Parameters

Mutation

Method

Population

Size (𝜂)

Replacement

Frequency (𝜏)

Replacement

Percent (𝜌)

SOR 50 50 Generations 50%

1-Seed 50 10 Generations 80%

2-Seed 50 10 Generations 80%

VF2 10 2 Generations 80%

For each search, we use the elastic angle object set comparison method with a

maximum search time of 1000 generations. In an application setting, a minimum fitness

threshold would be an appropriate termination criterion, which continues searching until

at least one individual in the population has a fitness value greater than or equal to the

threshold. However, this could terminate before the ideal match is found if the threshold

is poorly chosen or if the ideal match does not have the highest fitness value. We

therefore terminate the search only after at least one individual in the population is found

to be identical to the correct ground truth match, or after the maximum number of

generations has been reached, in order to measure the actual search time required to find

the ideal match.

4.2.1 Resubstitution

The results of the mutation comparison experiment using resubstitution sketches

are shown in Table 4.2, and Figure 4.4. This experiment clearly shows that the SOR

mutation method simply cannot perform as well as the set reconstruction methods or the

VF2 algorithm. It only finds the ideal match 51.9% of the time and takes much more

time to run that any of the other methods. This is largely because of the small

incremental changes that are made with each mutation. As was shown in [Buck, et al.,

68

2010], the SOR mutation method requires a large population size and a high generation

limit. In that study, the SOR mutation method was used with population sizes ranging up

to 1000 individuals and with a 10,000 generation limit. With these parameters, the SOR

mutation was able to find the ideal match 94.8% of the time, however at the cost of

greatly increased runtime.

The set reconstruction methods make much more drastic changes than the SOR

method during each mutation step, allowing them to converge more quickly and also

escape local minima with less effort. The one-seed mutation method performed well,

finding the ideal match every time and requiring the fewest generations of all the

methods. The two-seed mutation method found the ideal match for almost all of the tests,

but took significantly longer to converge. This is to be expected due to the additional

computational overhead of using a second seed. It should also be noted that for all of the

methods except the SOR mutation, the average number of generations and runtime is

greater than the median value, implying that a majority of the test sketches were easy to

find, with only a few difficult ones.

The best method for the resubstitution experiments is the VF2 subgraph

isomorphism mutation method. Like the one-seed method, the VF2 method found all of

the test sets in the reference database, and with the fastest runtime of any of the mutation

methods. The deterministic nature of the VF2 algorithm allows it to search a local

neighborhood only one time before moving on to a new location. This proves to be a

very efficient strategy, requiring fewer redundant calculations than the set reconstruction

or SOR mutation methods.

69

Figure 4.4 graphs the results of the resubstitution experiments. In Figure 4.4 (a)

and (b), the maximum and mean population fitness values are plotted for each generation,

averaged over all of the tests. Figure 4.4a shows that the top fitness values increase very

quickly and then level off, implying that reasonable, though perhaps not ideal, solutions

can be found very quickly using any of the mutation methods. Figure 4.4b gives the

average fitness value of the population, showing the drops which occur at regular

intervals corresponding to the replacement rates of the algorithms. The SOR method can

be seen to have the slowest improvement rate of any of the methods, which explains its

low score. In Figure 4.4 (c) and (d), the average number of generations and runtime for

each method is plotted for each test. Since the mutation methods each use different

parameters, the runtime is a more reliable comparison criteria than the number of

generations, which can be misleading. The VF2 algorithm performed the best for almost

all the tests, and the SOR mutation method did the worst.

Table 4.2 Mutation Method Comparison with Resubstitution Sketches Results

Mutation

Method

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

SOR 51.9% 652 931 2594 2865

1-Seed 100% 14 5 159 44

2-Seed 99.4% 36 12 1703 494

VF2 100% 17 9 40 14

70

Figure 4.4 Results of the resubstitution experiments. (a) Top fitness value per generation. (b) Average

fitness value per generation. (c) Average generations to convergence per test. (d) Average runtime to

convergence per test.

Figure 4.5 shows two examples of the resubstitution experiment. In both

examples, a set of five objects is chosen from the reference set for use as the ground

truth. These objects are copied directly into the sketch and used for matching with each

of the three mutation methods. The top five results found over all runs of each set are

listed with their respective fitness values. The top match for each experiment is the ideal

recovered match and the remaining results all share a similar spatial configuration. For

71

example, the second-best result of the first set in Figure 4.5 could match the sketch via a

180° rotation. The building which is completely surrounded by a parking lot in the

sketch is surrounded on three sides in the second-best match and nearly all four sides in

the fourth-best match. The second example set in Figure 4.5 produced very high scoring

results, which could each match the sketch with a rotation.

Figure 4.5 Examples of top matches for the resubstitution sketches. Buildings are shown in red and

parking lots are shown in green. In both examples, the top match is the correct mapping to the ground truth

set, and the remaining high scoring matches all share similar spatial configurations.

4.2.2 Simplified Sketches

The results of the mutation comparison experiment using simplified sketches are

given in Table 4.3 and Figure 4.6. Again, the SOR mutation method performed rather

poorly, and all of the methods had lower convergence rates and longer search times with

the simplified sketches than with the resubstitution sketches. This can be attributed to the

more complex search that occurs when the sketch does not perfectly match the ground

truth. The one-seed method found the highest number of ideal matches, although the

VF2 algorithm had the fastest average runtime. An interesting result is the particularly

72

long runtime of the two-seed set reconstruction mutation. The two-seed method

converged to the correct match slightly less often than the one-seed method, which

implies that the greater complexity of the two-seed method is unjustified. Although the

two-seed method considers all possible edge assignments, the single starting seed of the

one-seed method appears to be sufficient for matching even the simplified sketch

configurations. Arguably, the added flexibility of the elastic angle object set comparison

method allows the one-seed method to handle arbitrary orientations of the sketch sets.

However, not all of the test sets were easy to find. The significant difference between the

mean and median number of generations and the total runtime of the set reconstruction

methods shows that they both have difficulty finding the ideal match for a small portion

of the test sets. This is also shown by the sudden rise in runtime and generations to

convergence for the last few tests in Figure 4.6c and Figure 4.6d.

Table 4.3 Mutation Method Comparison with Simplified Sketches Results

Mutation

Method

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

SOR 49.1% 681 1000 3127 3710

1-Seed 97.0% 60 12 539 103

2-Seed 96.5% 81 21 6404 1231

VF2 94.0% 81 11 216 19

73

Figure 4.6 Results of the experiments with simplified sketches. (a) Top fitness value per generation. (b)

Average fitness value per generation. (c) Average generations to convergence per test. (d) Average

runtime to convergence per test.

Figure 4.7 shows two examples of experiments with simplified sketches. The

ground truth sets are chosen in the same way as the resubstitution experiments, and each

sketch is created by simplifying and rotating the objects. The sketches are then matched

back onto the reference set using each of the mutation operators. The top five results

found for each sketch are listed along with their corresponding fitness values. In the first

example, the top match is the ideal mapping to the ground truth, and the remaining high-

74

scoring results all share a similar spatial configuration. The orientation of the set with

respect to the sketch has little impact on the fitness value. The second example shows a

set which did not converge to the ideal match, although all of the top-scoring results have

a similar spatial configuration with the sketch. The ideal match for this configuration has

a fitness of 0.976 due to the simplification process, which is lower than the fitness of the

results shown. This indicates that although the search was unable to meet our criteria of

finding the actual ground truth location, it was able to provide several alternate locations

with high fitness.

Figure 4.7 Examples of top matches for the simplified sketches. Buildings are shown in red and parking

lots are shown in green. The top match is the correct mapping to the ground truth set in the first example,

whereas the ideal match is not one of the top scoring matches for the second example. All of the top

matches for each example share a similar spatial configuration.

4.3 Impact of Sketch Size

The results of the first experiment show that the best mutation methods are the

one-seed set reconstruction method and the VF2 subgraph isomorphism method. Both of

these had very high convergence rates and relatively short runtimes. The second

75

experiment investigates the impact of the number of objects in the sketch using these two

mutation methods. For sketch sizes of 4, 6, 8, 10, and 12 objects, 100 resubstitution and

100 simplified sketches are created from the Columbia reference database. Each sketch

is matched using both the one-seed and VF2 mutation operators 10 times apiece.

Altogether, this results in 1000 searches with each mutation operator for each sketch size.

The algorithm parameters are identical to the first experiment, with the exception of a

100 generation limit rather than 1000 generations. This is done to limit the total search

time for particularly large sketches. Again, the elastic angle method is employed and the

search stops if the ideal match is found.

4.3.1 Resubstitution

The results of the sketch size experiment using resubstitution sketches are given

in Table 4.4. The table shows some interesting trends, some of which are expected, while

others are not. In general, both mutation methods had high convergence rates for sketch

sizes less than 10 objects, and performed worse for larger sketches. The one-seed method

had slightly higher convergence rates for all but the smallest sketch size of 4 objects. The

search times increase exponentially as the sketch size increases. For 8 objects or fewer,

the VF2 method ran the quickest, however for more than 8 objects, the one-seed method

was faster. There is a significant disparity between the runtimes and convergence rates of

the two mutation methods for 12 objects, implying that the one-seed mutation method is

better suited for handling large sketch sizes.

76

Table 4.4 Sketch Size Comparison with Resubstitution Sketches Results

Mutation

Method

Number of

Objects in Sketch

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

1-Seed

4 95.1% 22 11 89 40

6 98.5% 12 3 207 40

8 99.6% 9 2 494 83

10 94.8% 13 2 1258 150

12 86.2% 20 2 3304 502

VF2

4 98.7% 16 9 26 10

6 96.6% 19 11 81 24

8 98.1% 19 11 189 62

10 90.8% 26 13 1777 563

12 76.5% 39 23 4986 2617

Figure 4.8 shows how the fitness values of the population change over time for

each sketch size. The trends are very similar to the mutation comparison experiment,

where the top fitness value rises very quickly and then levels off. Large sketch sizes

result in lower fitness values overall, and a greater disparity between the two mutation

methods. The one-seed method consistently has the same or higher fitness values than

the VF2 method for all sketch sizes. Figure 4.9 shows the impact of sketch size on search

time and generations required for convergence. The graphs show that larger sketches

take longer to converge and require more generations. The largest sketch sizes of 10 and

12 objects had some tests which failed to converge at all. Apart from these few tests, the

number of generations required for the VF2 algorithm increased as the sketch size

increased, whereas the number of generations for the one-seed actually decreased. This

shows that the one-seed method is particularly well suited for handling large sketch sizes,

whereas the VF2 method does better for small sketches. This is reflected in the search

times, where the VF2 method performs faster for all but the largest sketches.

77

Top Fitness Value per Generation Average Fitness Value per Generation

4
 O

b
je

ct
s

6
 O

b
je

ct
s

8
 O

b
je

ct
s

1
0

 O
b

je
ct

s

1
2

 O
b

je
ct

s

Figure 4.8 Impact of sketch size on fitness values for resubstitution sketches.

78

Average Generations to

Convergence per Test

Average Runtime to

Convergence per Test

4
 O

b
je

ct
s

6
 O

b
je

ct
s

8
 O

b
je

ct
s

1
0

 O
b

je
ct

s

1
2

 O
b

je
ct

s

Figure 4.9 Impact of sketch size on convergence time for resubstitution sketches.

79

4.3.2 Simplified Sketches

The results of the sketch size experiments using simplified sketches are given in

Table 4.5. Recall that the sketches for each sketch size are generated independently for

both the resubstitution and simplified cases, so one should be careful when comparing the

two cases directly. Overall, the trends for the simplified sketches are similar to the

resubstitution sketch results, but more prominent. The convergence rates are lower

across the board, which should be expected due to the simplification process. An

interesting trend that was less visible with resubstitution sketches shows that very small

sketches can be difficult to match. For sketches with only 4 objects, both the one-seed

and the VF2 mutation methods found about 80% of the test sketches. While not as good

as the resubstitution sketches, this is still a fairly high recall rate and could still produce

results valuable to a human analyst. The lower convergence rates for small sketches may

be because there are many configurations which could potentially match just 4 objects.

Likewise, this might explain why there is an increase in convergence rates for very large

sketches with 12 objects. There are fewer object configurations in the reference database

which have compatible labels and are fully connected for large sketches, which reduces

the size of the search space.

80

Table 4.5 Sketch Size Comparison with Simplified Sketches Results

Mutation

Method

Number of

Objects in Sketch

Percent

Found

Average

Generations

Median

Generations

Average

Time (s)

Median

Time (s)

1-Seed

4 80.6% 36 18 151 60

6 95.6% 16 5 318 84

8 93.4% 18 5 771 194

10 81.7% 28 7 2171 693

12 87.2% 20 3 4317 874

VF2

4 80.4% 32 15 97 18

6 94.3% 22 11 143 48

8 86.0% 31 17 744 206

10 69.2% 43 23 5927 1308

12 78.8% 38 20 11009 3506

Figure 4.10 again shows the effect of sketch size on the population fitness values

over time. The graphs are very similar to the resubstitution results in Figure 4.8 with

lower fitness values in general for larger sketches and the one-seed method

outperforming the VF2 in terms of population fitness. Figure 4.11 shows how the

simplified sketches performed in terms of runtime and generations required to converge.

The trends are similar to the resubstitution experiments in Figure 4.9, but requiring more

time and generations, as verified by Table 4.5. A greater percentage of sketches failed to

converge, as indicated by the large jumps in the average generation plots toward the last

few tests for each sketch size. This is likely due to the rough simplification, which may

make it difficult to ever recover the original ground truth location. The one-seed method

again requires fewer generations, but takes more time for all but the largest sketch sizes.

From these results, we can conclude that an ideal sketch size contains about 6 objects.

With this size sketch, the VF2 mutation method provides the fastest search, although the

one-seed method may produce higher scoring results. As the sketch size increases, the

one-seed mutation method is preferable as the VF2 method quickly becomes intractable.

81

One possible strategy for matching a large sketch would be to break it into smaller sub-

sketches and match each of these individually. However, this brings additional problems

such as determining the best sub-sketches to use and how to recombine them into a

complete solution.

82

Top Fitness Value per Generation Average Fitness Value per Generation

4
 O

b
je

ct
s

6
 O

b
je

ct
s

8
 O

b
je

ct
s

1
0

 O
b

je
ct

s

1
2

 O
b

je
ct

s

Figure 4.10 Impact of sketch size on fitness values for simplified sketches.

83

Average Generations to

Convergence per Test

Average Runtime to

Convergence per Test

4
 O

b
je

ct
s

6
 O

b
je

ct
s

8
 O

b
je

ct
s

1
0

 O
b

je
ct

s

1
2

 O
b

je
ct

s

Figure 4.11 Impact of sketch size on convergence time for simplified sketches

84

4.4 Real-World Example

As a final example of the usefulness of the matching framework we have

developed, consider the following example. The sketch in Figure 4.12 was hand-drafted

to indicate a particular region of the Columbia reference image. The sketch was used as

the input to the matching algorithm using the one-seed mutation method, a population

size of 50 individuals, and a 10 generation limit. These parameters limit the search time

to an amount reasonable to a human analyst. The top 10 matches found after 10

generations are shown in Figure 4.13. The top result is, in fact, the location that the

sketch is intended to represent, rotated 90 degrees. The remaining results all share a

similar configuration, with seven buildings and a parking lot. Some of the results are

rotated to odd angles, but if the underlying road network and individual building

orientations are ignored, one could imagine that the sketch might be matched to these

results.

The invariance to rotation and the individual object shapes is one of the key

characteristics of this matching algorithm. Significant simplifications have been made to

both the size and shape of the sketch objects, yet the algorithm is still able to find the

ideal matching location using relative directional spatial relationships. One future

challenge for this work will be to incorporate road networks and other object features to

help guide the search and ensure that the results make sense.

85

Figure 4.12 Hand-drafted example sketch.

Figure 4.13 Top 10 matching locations of the real-world example sketch.

86

5 CONCLUSION

Spatial relationships play an important role in describing scene configurations. A

sketch can be described solely in terms of the spatial relationships between objects and

still contain enough information to locate a matching copy within a large geospatial

database. The evolutionary framework we have developed performs this search and

provides many adjustable parameters to satisfy specific problem constraints. Each of the

mutation operators provides a different search strategy which affects the performance of

the algorithm. It was determined through experimentation that the one-seed set

reconstruction method and the VF2 subgraph isomorphism hybrid method provide the

fastest and most reliable searches. The VF2 method is optimized for small sketch sizes,

whereas the one-seed method performs better for large sketches. Both methods have very

high convergence rates and will yield high-scoring matches very quickly, even if the ideal

match cannot be found.

The matching algorithm sits at the end of the T2S pipeline, allowing sketches

which are created from linguistic descriptions to be matched onto actual ground truth

satellite imagery. This has many applications in the geospatial intelligence community,

such as locating a person from just a linguistic description of his or her surroundings.

Future work in this area may incorporate additional reasoning abilities to be able to infer

a person’s intent or future location.

The evolutionary framework of the matching algorithm suggests that it will be

able to scale up to reference databases several orders of magnitude larger than the one

used for these experiments. At these scales, it may be helpful to include additional

87

matching criteria beyond simple spatial relationships. In urban and suburban

environments, road networks can provide a useful constraint for allowable match

locations, and additional labels can help to quickly limit the search space. For example,

sketches containing more descriptive labels such as, “restaurant”, “church”, or “house”

could restrict searches to certain areas.

It seems advisable to continue the use of fuzzy methods in designing future search

algorithms. The inherent ambiguity of building a sketch from linguistic descriptions and

matching it to a real-world location requires techniques which can handle uncertainty. As

additional features are added as search criteria, a fuzzy aggregation operator can be used

to determine a single matching score. Although the methods here are presented

specifically for the case of matching geospatial objects, they could be applied to any

problem in which a specific spatial configuration is to be found from within a much

larger database of objects.

88

REFERENCES

[Allen, et al., 2008] J. F. Allen, M. Swift, and W. de Beaumont, "Deep semantic analysis

of text," in Proceedings of the 2008 Conference on Semantics in Text Processing,

Venice, Italy, 2008, pp. 343-354.

[Barnea & Silverman, 1972] D. I. Barnea and H. F. Silverman, "A Class of Algorithms

for Fast Digital Image Registration," Computers, IEEE Transactions on, vol. 21,

pp. 179-186, 1972.

[Bloch, 1999] I. Bloch, "Fuzzy relative position between objects in image processing: A

morphological approach," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 21, pp. 657-664, 1999.

[Bloch, et al., 2006] I. Bloch, O. Colliot, and R. M. Cesar, Jr., "On the ternary spatial

relation 'Between'," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 36, pp. 312-327, 2006.

[Brown, 1992] L. G. Brown, "A survey of image registration techniques," ACM Comput.

Surv., vol. 24, pp. 325-376, 1992.

[Bruns & Egenhofer, 1996] H. T. Bruns and M. Egenhofer, "Similarity of spatial scenes,"

in Seventh International Symposium on Spatial Data Handling (SDH '96), Delft,

the Netherlands, 1996, pp. 31-42.

[Buck, et al., 2010] A. R. Buck, J. M. Keller, and M. Skubic, "A modified genetic

algorithm for matching building sets with the histograms of forces," in

Evolutionary Computation (CEC), 2010 IEEE Congress on, 2010, pp. 1-7.

[Buck, et al., 2011] A. R. Buck, J. M. Keller, M. Skubic, M. Detyniecki, and T. Baerecke,

"Object set matching with an evolutionary algorithm," in Computational

Intelligence for Security and Defense Applications (CISDA), 2011 IEEE

Symposium on, Paris, France, 2011, pp. 43-50.

[Chan & Vese, 2001] T. F. Chan and L. A. Vese, "Active contours without edges," Image

Processing, IEEE Transactions on, vol. 10, pp. 266-277, 2001.

[Conte, et al., 2004] D. Conte, P. Foggia, C. Sansone, and M. Vento, "Thirty years of

graph matching in pattern recognition," International Journal of Pattern

Recognition and Artificial Intelligence, vol. 18, pp. 265-298, 2004.

[Cordella, et al., 1998] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, "Subgraph

transformations for the inexact matching of attributed relational graphs,"

Computing, vol. 12, pp. 43-52, 1998.

89

[Cordella, et al., 1999] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,

"Performance evaluation of the VF graph matching algorithm," in Proceedings of

the International Conference on Image Analysis and Processing, 1999, pp. 1172-

1177.

[Cordella, et al., 2004] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, "A

(sub)graph isomorphism algorithm for matching large graphs," Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 26, pp. 1367-1372, 2004.

[Cremers, et al., 2006] D. Cremers, N. Sochen, and C. Schnörr, "A multiphase dynamic

labeling model for variational recognition-driven image segmentation,"

International Journal of Computer Vision, vol. 66, pp. 67-81, 2006.

[De Castro & Morandi, 1987] E. De Castro and C. Morandi, "Registration of translated

and rotated images using finite fourier transforms," Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 9, pp. 700-703, 1987.

[Dubois & Jaulent, 1987] D. Dubois and M. C. Jaulent, "A general approach to parameter

evaluation in fuzzy digital pictures," Pattern Recognition Letters, vol. 6, pp. 251-

259, 1987.

[Egenhofer & Franzosa, 1991] M. Egenhofer and R. Franzosa, "Point-set topological

spatial relations," International Journal of Geographical Information Systems,

vol. 5, pp. 161-174, 1991.

[Egenhofer, 1997] M. J. Egenhofer, "Query processing in spatial-query-by-sketch,"

Journal of Visual Languages and Computing, vol. 8, pp. 403-424, 1997.

[Fisher, 1993] N. I. Fisher, Statistical analysis of circular data. Cambridge, England;

New York, NY, USA: Cambridge University Press, 1993.

[Freeman, 1975] J. Freeman, "The modeling of spatial relations," Computer Graphics

and Image Processing, vol. 4, pp. 156-171, 1975.

[Goldberg, 1989] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA: Addison-Wesley, 1989.

[Holland, 1975] J. H. Holland, Adaptation in Natural and Artificial Systems. University

of Michigan Press, Ann Arbor, 1975.

[Houck, et al., 1996] C. Houck, J. Joines, and M. Kay, "Utilizing lamarckian evolution

and the baldwin effect in hybrid genetic algorithms," Meta-Heuristic Research

and Applicat. Group, Depart. Ind. Eng., North Carolina State Univ., Raleigh, CA,

NCSU-IE Tech. Report 96-01,1996.

90

[Keller, et al., 1999] J. M. Keller, P. Gader, and W. Xiaomei, "LADAR scene description

using fuzzy morphology and rules," in Computer Vision Beyond the Visible

Spectrum: Methods and Applications, 1999. (CVBVS '99) Proceedings. IEEE

Workshop on, 1999, pp. 120-129.

[Keller & Sztandera, 1990] J. M. Keller and L. Sztandera, "Spatial relations among fuzzy

subsets of an image," in Uncertainty Modeling and Analysis, 1990. Proceedings.,

First International Symposium on, 1990, pp. 207-211.

[Keller & Wang, 1995] J. M. Keller and X. Wang, "Comparison of spatial relation

definitions in computer vision," in Proceedings of ISUMA - NAFIPS '95 The

Third International Symposium on Uncertainty Modeling and Analysis and

Annual Conference of the North American Fuzzy Information Processing Society,

1995, pp. 679-684.

[Keller & Wang, 2000] J. M. Keller and X. Wang, "A fuzzy rule-based approach to scene

description involving spatial relationships," Computer Vision and Image

Understanding, vol. 80, pp. 21-41, 2000.

[Krishnapuram, et al., 1993] R. Krishnapuram, J. M. Keller, and Y. Ma, "Quantitative

analysis of properties and spatial relations of fuzzy image regions," Fuzzy

Systems, IEEE Transactions on, vol. 1, pp. 222-233, 1993.

[Lowe, 2004] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"

International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[Marjamaa, et al., 2001] J. Marjamaa, O. Sjahputera, J. M. Keller, and P. Matsakis,

"Fuzzy scene matching in LADAR imagery," in Fuzzy Systems, 2001. The 10th

IEEE International Conference on, 2001, pp. 692-695.

[Mark & Egenhofer, 1994] D. M. Mark and M. J. Egenhofer, "Modeling spatial relations

between lines and regions: combining formal mathematical models and human

subjects testing," Cartography and Geographic Information Systems, vol. 21, pp.

195-212, 1994.

[Matsakis, et al., 2004] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa, "The

use of force histograms for affine-invariant relative position description," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, pp. 1-18,

2004.

[Matsakis, et al., 2001] P. Matsakis, J. M. Keller, L. Wendling, J. Marjamaa, and O.

Sjahputera, "Linguistic description of relative positions in images," Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 31, pp. 573-

588, 2001.

91

[Matsakis & Wendling, 1999] P. Matsakis and L. Wendling, "A new way to represent the

relative position between areal objects," Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 21, pp. 634-643, 1999.

[Miyajima & Ralescu, 1994] K. Miyajima and A. Ralescu, "Spatial organization in 2D

segmented images: Representation and recognition of primitive spatial relations,"

Fuzzy Sets and Systems, vol. 65, pp. 225-236, 1994.

[Moscato, 1989] P. Moscato, "On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms," Caltech Concurrent Computation

Program, Publication Report 790,1989.

[Nedas & Egenhofer, 2008] K. A. Nedas and M. J. Egenhofer, "Spatial-scene similarity

queries," Transactions in GIS, vol. 12, pp. 661-681, 2008.

[Parekh, 2007] G. Parekh, "Scene matching between a quantitative map and a qualitative

hand drawn sketch," M.S., University of Missouri-Columbia, 2007.

[Parekh, et al., 2007] G. Parekh, M. Skubic, O. Sjahputera, and J. M. Keller, "Scene

matching between a map and a hand drawn sketch using spatial relations," in

Robotics and Automation, 2007 IEEE International Conference on, 2007, pp.

4007-4012.

[Reddy & Chatterji, 1996] B. S. Reddy and B. N. Chatterji, "An FFT-based technique for

translation, rotation, and scale-invariant image registration," Image Processing,

IEEE Transactions on, vol. 5, pp. 1266-1271, 1996.

[Riklin-Raviv, et al., 2007] T. Riklin-Raviv, N. Kiryati, and N. Sochen, "Prior-based

segmentation and shape registration in the presence of perspective distortion,"

International Journal of Computer Vision, vol. 72, pp. 309-328, 2007.

[Rodriguez & Jarur, 2005] M. A. Rodriguez and M. C. Jarur, "A genetic algorithm for

searching spatial configurations," Evolutionary Computation, IEEE Transactions

on, vol. 9, pp. 252-270, 2005.

[Rosenfeld, 1979] A. Rosenfeld, "Fuzzy digital topology," Information and Control, vol.

40, pp. 76-87, 1979.

[Rosenfeld, 1983] A. Rosenfeld, "On connectivity properties of grayscale pictures,"

Pattern Recognition, vol. 16, pp. 47-50, 1983.

[Rosenfeld, 1984] A. Rosenfeld, "The fuzzy geometry of image subsets," Pattern

Recognition Letters, vol. 2, pp. 311-317, 1984.

92

[Shackelford & Davis, 2003a] A. K. Shackelford and C. H. Davis, "A hierarchical fuzzy

classification approach for high-resolution multispectral data over urban areas,"

Geoscience and Remote Sensing, IEEE Transactions on, vol. 41, pp. 1920-1932,

2003.

[Shackelford & Davis, 2003b] A. K. Shackelford and C. H. Davis, "A combined fuzzy

pixel-based and object-based approach for classification of high-resolution

multispectral data over urban areas," Geoscience and Remote Sensing, IEEE

Transactions on, vol. 41, pp. 2354-2363, 2003.

[Shapiro & Haralick, 1981] L. G. Shapiro and R. M. Haralick, "Structural descriptions

and inexact matching," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 3, pp. 504-519, 1981.

[Sjahputera, 2004] O. Sjahputera, "Object registration in scene matching based on spatial

relationships," Ph. D., University of Missouri-Columbia, 2004.

[Sjahputera & Keller, 2005a] O. Sjahputera and J. M. Keller, "Particle swarm over scene

matching," in Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005

IEEE, 2005, pp. 108-115.

[Sjahputera & Keller, 2005b] O. Sjahputera and J. M. Keller, "Possibilistic c-means in

scene matching," in Fourth International Conference of the European Society for

Fuzzy Logic and Technology (EUSFLAT), 2005, pp. 669-675.

[Sjahputera & Keller, 2007] O. Sjahputera and J. M. Keller, "Scene matching using F-

histogram-based features with possibilistic C-means optimization," Fuzzy Sets

Syst., vol. 158, pp. 253-269, 2007.

[Sjahputera, et al., 2003] O. Sjahputera, J. M. Keller, and P. Matsakis, "Scene matching

by spatial relationships," in Fuzzy Information Processing Society, 2003. NAFIPS

2003. 22nd International Conference of the North American, 2003, pp. 149-154.

[Sjahputera, et al., 2000] O. Sjahputera, J. M. Keller, P. Matsakis, P. Gader, and J.

Marjamaa, "Histogram-based scene matching measures," in Fuzzy Information

Processing Society, 2000. NAFIPS. 19th International Conference of the North

American, 2000, pp. 392-396.

[Skubic, et al., 2003] M. Skubic, C. Bailey, and G. Chronis, "A sketch interface for

mobile robots," in Systems, Man and Cybernetics, 2003. IEEE International

Conference on, 2003, pp. 919-924 vol.1.

[Skubic, et al., 2004] M. Skubic, S. Blisard, C. Bailey, J. A. Adams, and P. Matsakis,

"Qualitative analysis of sketched route maps: translating a sketch into linguistic

descriptions," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 34, pp. 1275-1282, 2004.

93

[Sledge, et al., 2011] I. Sledge, J. Keller, S. Wenbo, and C. Davis, "Conflation of vector

buildings with imagery," Geoscience and Remote Sensing Letters, IEEE, vol. 8,

pp. 83-87, 2011.

[Sledge & Keller, 2009] I. J. Sledge and J. M. Keller, "Mapping natural language to

imagery: Placing objects intelligently," in Fuzzy Systems, 2009. FUZZ-IEEE

2009. IEEE International Conference on, 2009, pp. 518-523.

[Svedlow, et al., 1978] M. Svedlow, C. D. McGillem, and P. E. Anuta, "Image

Registration: Similarity Measure and Preprocessing Method Comparisons,"

Aerospace and Electronic Systems, IEEE Transactions on, vol. 14, pp. 141-150,

1978.

[Tsai & Fu, 1979] W.-H. Tsai and K.-S. Fu, "Error-correcting isomorphisms of attributed

relational graphs for pattern analysis," Systems, Man and Cybernetics, IEEE

Transactions on, vol. 9, pp. 757-768, 1979.

[Ullmann, 1976] J. R. Ullmann, "An algorithm for subgraph isomorphism," J. ACM, vol.

23, pp. 31-42, 1976.

[Winston, 1975] P. Winston, "Learning structural descriptions from examples," in P.

Winston (ed.), The Psychology of Computer Vision, McGraw-Hill, New York,

1975.

[Wong, 1978] R. Y. Wong, "Sequential scene matching using edge features," Aerospace

and Electronic Systems, IEEE Transactions on, vol. 14, pp. 128-140, 1978.

