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ABSTRACT 

This thesis presents a framework for modeling and comparing the spatial 

configuration of sets containing two-dimensional geospatial objects.  This situation can 

arise in the conflation of a hand or machine drafted map to a satellite image, or in the 

correspondence problem of matching two images taken under different viewing 

conditions.  We focus here on the specific problem of matching a sketched map 

containing several 2D objects to actual satellite imagery.  Spatial relationships between 

objects are captured by the histograms of forces and used to construct an attributed 

relational graph representation of the scene.  Scene matching is performed with an 

evolutionary algorithm, combined with a local-search heuristic.  Four problem-specific 

mutation operators are developed and tested experimentally. 

 



1 

 

1. INTRODUCTION 

1.1 Problem Statement 

Geospatial intelligence is a growing field which seeks to describe and analyze 

spatial information about the earth.  Objects and landmarks that appear in geospatial 

images can be related to each other by their spatial relationships.  Several techniques 

have been developed for modeling spatial relationships which make it easy to describe 

object configurations using natural language.  A statement such as “The building is to the 

right of the parking lot” conveys a spatial relationship between two objects using 

qualitative descriptors.  The ambiguous nature of statements such as these calls for the 

use of fuzzy methods, such as the histograms of forces [Matsakis & Wendling, 1999], to 

describe spatial relations.  Using the histograms of forces, a set of linguistic descriptions 

can be obtained from a fuzzy rule system [Matsakis, et al., 2001] and then used to 

construct a sketch depicting a set of objects and their spatial configuration [Sledge & 

Keller, 2009]. 

For the purposes of this work, a sketch is a simple representation of the spatial 

configuration of a group of geospatial objects.  Apart from a small collection of labels 

such as “building” and “parking lot”, the only defining features of these sketches are the 

shapes, sizes, and spatial relationships between the objects.  Given a sketch and a 

geospatial database containing a large number of reference objects, our goal is to find the 

set of objects from the reference database which most closely matches the spatial 

configuration of the sketch.  This is accomplished with an evolutionary algorithm and 

several problem-specific local search mutation operators.  Although designed for sketch 
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matching, this method can be extended to any situation in which we must locate a 

specific arrangement within a large search area. 

 

1.2 Overview 

The focus of this work is the development of an evolutionary framework for 

matching geospatial object configurations.  We begin by reviewing the theory of spatial 

relationships and how they can be modeled quantitatively.  The histograms of forces are 

reviewed and the concept of a main direction is defined.  We then discuss how spatial 

relationships can be used for scene matching and describe how sketches and the 

geospatial reference database can be created.  The concept of scene matching is cast as a 

subgraph isomorphism problem and we describe how spatial configurations can be 

represented as attributed relational graphs.  A brief history of graph matching is given 

and the VF2 subgraph isomorphism algorithm is described in detail.  The overall 

matching algorithm is then presented in terms of an evolutionary framework.  By using a 

local search operator to improve candidate solutions, the framework becomes a type of 

memetic algorithm. 

The design of the matching algorithm begins by defining a similarity measure 

between two sets of objects based on their spatial configuration.  This is accomplished by 

using attributed relational graphs in which each object is represented as a node of the 

graph, and the force histogram relationships between objects are stored as edge attributes.  

A rotation-invariant similarity measure is defined which is used to compute the fitness 

value of each candidate solution.  The evolutionary algorithm creates a population of 
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individual object sets in the reference database which could each potentially match the 

spatial configuration of the sketch.  Each candidate solution is improved through one of 

four possible local search mutation methods.  These methods are described in detail and 

are tested in the experiments section. 

The first set of experiments compares the different mutation methods.  This is 

done for both resubstitution sketches which come directly from the reference database, 

and simplified sketches which have undergone some simplification and rotation.  The 

second set of experiments investigates the impact of sketch size on matching 

performance.  Sketches containing between 4 and 12 objects are matched onto the 

reference database using one of the two leading mutation methods.  The results show that 

the evolutionary framework can successfully locate high quality matches of a sketch, and 

that some mutation operators are better suited for different problem sizes.   
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2 LITERATURE REVIEW 

2.1 Spatial Relationships 

The concept of space is so intrinsically fundamental to human nature that we 

often accept its existence as part of everyday life without a second thought.  Yet the 

psychological aspect of how we perceive space has taken on new meaning as we seek to 

give machines more human-like capabilities.  As humans, we can easily identify distinct 

objects in a scene and understand how they are related spatially.  For computers, this is 

not such a simple task, and object recognition has been one of the key pillars of computer 

vision since the origin of the field.  By defining regions of an image as distinct objects, a 

computer can begin to perform qualitative reasoning about the image and the objects it 

contains.  The spatial organization of objects in an image is an important high-level 

feature that can be used to represent scenes and provide a way to compare and 

communicate scene content. 

Some of the earliest work with spatial relations in regard to computer vision is 

credited to Winston, who in [Winston, 1975] developed a machine algorithm for 

recognizing the spatial relationships between simple 3D block models, represented as line 

drawings.  In his work, object relationships were deduced from a set of crisp rules and 

were combined in a graph structure to create an entire scene description.  In [Freeman, 

1975], Freeman studied the essential spatial relationships required to describe a scene.   

He proposed 13 primitive spatial relations: 1) LEFT OF, 2) RIGHT OF, 3) ABOVE, 4) 

BELOW, 5) BEHIND, 6) IN FRONT OF, 7) BESIDE, 8) NEAR, 9) FAR, 10) 

TOUCHING, 11) BETWEEN, 12) INSIDE, and 13) OUTSIDE.  Freeman also noted that 
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these relations can be difficult to define and are context sensitive.  He was among the first 

to suggest the use of fuzzy sets to capture the inherent uncertainty in their meaning. 

 Rosenfeld developed several methods for evaluating the spatial properties of 

image objects as fuzzy sets [Rosenfeld, 1979], [Rosenfeld, 1983], [Rosenfeld, 1984].  He 

defined terms such as the connectedness, adjacency, and surroundedness of objects using 

fuzzy relations.  These efforts were further generalized in [Dubois & Jaulent, 1987].  

Keller and Szatendera [Keller & Sztandera, 1990] used fuzzy sets to evaluate the relative 

position of objects by comparing their projections onto the principle axes.   

 Geographic Information Systems (GIS) have played a key role in developing the 

theory of spatial relations.  In [Egenhofer & Franzosa, 1991], Egenhofer studied the 

topological relationships between 2D objects and defined the 9-intersection model for 

spatial relations.  This model creates a 3x3 matrix which represents the intersecting 

interior, exterior, and boundary regions between two objects.  In [Mark & Egenhofer, 

1994], human test subjects were presented with various configurations of a road 

intersecting a park and asked to divide the examples into similar groups.  The results 

show that the 9-intersection model provides a sound basis for representing line-region 

topological spatial relationships. 

 Although topology can often characterize the spatial relationships of intersecting 

objects, direction and distance are usually more descriptive measures for non-intersecting 

objects.  As a simplification of the work in [Dubois & Jaulent, 1987], Krishnapuram et al. 

[Krishnapuram, et al., 1993] developed an aggregation method for assessing the spatial 

properties and relationships of fuzzy image regions.  These are viewed as possibility 
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distributions defined over the 𝛼-cut sets of the fuzzy regions.  Using this method, they are 

able to mathematically define the primitive spatial relations defined in [Freeman, 1975].   

A histogram-based approach is presented in [Miyajima & Ralescu, 1994], which 

models the relative angles between objects in raster images.  Given two objects 𝐴 and 𝐵, 

Miyajima and Ralescu consider all pairs of points (𝑎, 𝑏) where 𝑎 is a point in 𝐴 and 𝑏 is a 

point in 𝐵.  The angle defined by the pair (𝑎, 𝑏) is recorded on a histogram of angles, 

which can be compared to predefined fuzzy sets of the primitive directions using a 

compatibility method.  A comparison of the various fuzzy methods for generating fuzzy 

spatial relationships was made in [Keller & Wang, 1995]. 

 

2.2 Histograms of Forces 

As a generalization of the histograms of angles, the histograms of forces 

[Matsakis & Wendling, 1999] provides a solid mathematical foundation for evaluating 

the spatial relationship between a pair of 2D objects.  This method can process both raster 

and vector data, and also has the capability to evaluate fuzzy objects.  The framework 

allows for the computation of multiple spatial representations, such as the histograms of 

constant and gravitational forces.  The histogram of constant forces provides a global 

perspective and is similar to the histogram of angles, whereas the histogram of 

gravitational forces places more emphasis on regions that are close to one another. 
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2.2.1 Definition of the F-Histogram 

The spatial relationship between a pair of two-dimensional objects 𝐴 and 𝐵 can be 

represented by the forces acting between them.  For every direction 𝜃, the sum of 

elementary forces acting between 𝐴 and 𝐵 in direction 𝜃 are computed (Figure 2.1).  

These forces are aggregated into the F-histogram 𝐹𝑟
𝐴𝐵(𝜃), which maps ℝ → ℝ+ and 

represents the degree of support for the proposition, “𝐴 is in direction 𝜃 of 𝐵.”  Provided 

that 𝐴 and 𝐵 are both non-empty regions and 𝜃 is evaluated on a fine enough scale, 𝐹𝑟
𝐴𝐵 

will have at least one element greater than zero.  The magnitude of the individual forces 

are calculated as an inverse ratio of 𝑑𝑟, where 𝑑 represents the distance between the 

points of 𝐴 and 𝐵, and 𝑟 provides a way of capturing different information.  When 𝑟 = 0, 

we obtain the histogram of constant forces (𝐹0), which provides a global perspective, 

independent of the distance between 𝐴 and 𝐵.  When 𝑟 = 2, we obtain the histogram of 

gravitational forces (𝐹2), which gives a local view, more sensitive to nearby points, but 

independent of global scale. 

 

 

Figure 2.1  Calculation of the histograms of forces.  (a) A force histogram 𝐹𝑟
𝐴𝐵  is the scalar resultant of 

elementary forces exerted by the points of 𝐴 on those of 𝐵.  Each one pulls 𝐵 in direction 𝜃.  (b) The 

histogram of constant forces (𝑟 = 0) is one representation of the spatial relationship between 𝐴 and 𝐵 

providing a global perspective.  (c) The histogram of gravitational forces (𝑟 = 2) is another possible 

representation, which is more sensitive to nearby points. 
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2.2.2 Main Direction 

In many instances, it is useful to reduce the spatial relationship between two 

objects to a single scalar direction 𝜑𝐴𝐵, called the main direction.  This can be 

accomplished in a variety of ways, such as measuring the angle between the centroids or 

bounding boxes.  However, for complex shapes this can produce results which are 

inconsistent with human intuition.  In [Matsakis, et al., 2001], a method is presented 

which uses both the 𝐹0 and 𝐹2 histograms to evaluate the degree of support for the 

proposition, “𝐴 is in direction 𝜃 of 𝐵.”  This can be used to create an accurate linguistic 

description, or to find the angle which maximizes the degree of support.  The use of both 

constant and gravitational force histograms is especially important in cases where they 

would by themselves indicate different primary directions such as in (Figure 2.2). 

For each angle 𝜃, the forces of 𝐹𝑟
𝐴𝐵 are categorized as effective, contradictory, or 

compensatory.  Effective forces are those which support the proposition, “𝐴 is in 

direction 𝜃 of 𝐵,” and contradictory forces are those which oppose it.  Some effective 

forces may be relabeled as compensatory forces to help balance the contradictory forces.  

From these sets of forces, four values are computed, 𝑎0
𝐴𝐵(𝜃), 𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃), and 

𝑏2
𝐴𝐵(𝜃).  Here, 𝑎𝑟

𝐴𝐵 represents the calculated degree of truth according to the F-histogram 

𝐹𝑟
𝐴𝐵, and 𝑏𝑟

𝐴𝐵 represents the percentage of forces which are effective.  Details of this 

computation can be found in [Matsakis, et al., 2001].  By evaluating all directions, the 

main direction histogram is defined as 

 Φ𝐴𝐵(𝜃) = max{𝑎0
𝐴𝐵(𝜃), min{𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃)}}. (2.1) 
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Figure 2.2  Calculation of the main direction.  (a) A pair of objects for which the constant and gravitational 

force histograms indicate different primary directions.  (b) The 𝐹0
𝐴𝐵  and 𝐹2

𝐴𝐵  histograms can be combined 

into the main direction histogram, Φ𝐴𝐵 .  The centroid of this histogram gives the scalar main direction 𝜑𝐴𝐵  

which is a compromise between the primary directions of the two F-histograms.  (c) 𝜑𝐴𝐵  is computed using 

polar vector summation where each angle of Φ𝐴𝐵  is treated as a vector.  By summing all of the vectors and 

computing the resultant angle, we avoid the problem of the periodic boundary. 

 

Skubic et al. define the main direction as the direction 𝜃 for which Φ𝐴𝐵(𝜃) is 

maximum [Skubic, et al., 2004].  A more robust approach is to use the centroid of 

Φ𝐴𝐵(𝜃), which is the method used in the remainder of this work.  Because Φ𝐴𝐵  is a 

periodic function, polar vector summation must be used (Figure 2.2c) when computing 

the centroid to ensure that all directions are treated equally [Fisher, 1993].  This is 

especially true for cases in which 𝐴 surrounds 𝐵 or vice versa for which there is no 

suitable 2𝜋 range of Φ𝐴𝐵 that could serve as a linear mapping.  The main direction is 

defined as 

 𝜑𝐴𝐵 = atan2 (∑ sin(Φ𝐴𝐵(𝜃))
𝜃∈[0,2𝜋]

, ∑ cos(Φ𝐴𝐵(𝜃))
𝜃∈[0,2𝜋]

) (2.2) 

where atan2(𝑦, 𝑥): ℝ × ℝ → [0,2𝜋) is the two-argument variation of the arctangent 

function.  Although the main direction could be computed from just the centroid of either 

the 𝐹0 or 𝐹2 histogram, using a common value reinforces the fact that the two histograms 
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are a pair with a single reference axis.  This gives a unified framework that is consistent 

with the natural human interpretation of spatial relationships. 

 

2.3 Text to Sketch 

One of the principle motivations for studying spatial relationships is to simplify 

the human-computer communication barrier for describing and representing scenes.  

Linguistic interpretation of scene content allows both humans and computers to interact 

using the same language.  Fuzzy methodologies are particularly useful in this context for 

their ability to model the inherent uncertainty in a linguistic spatial relationship.  In 

[Keller, et al., 1999] and [Keller & Wang, 2000], a fuzzy rule base is used to generate 

linguistic descriptions of scenes using LADAR imagery.  This method is refined in 

[Matsakis, et al., 2001], which presents a robust algorithm for creating linguistic 

descriptions from force histograms.  This method is used in [Skubic, et al., 2004] to 

interpret hand-drawn sketches and provide a navigable route for a robot through a scene 

using a set of linguistic rules. 

Sketches are a useful way to communicate spatial content.  Although a sketch 

contains quantitative information, it is often drawn to represent only qualitative spatial 

relationships.  The task of building a quantitative sketch from a qualitative linguistic 

description is called “Text to Sketch” (T2S) [Sledge & Keller, 2009].  The inverse of this 

problem is solved using the histograms of forces and the fuzzy rule method in [Matsakis, 

et al., 2001].  The resulting linguistic description can be used to verify the quality of the 

sketch created by the T2S system.  To construct a sketch, individual descriptions are 
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modeled as fuzzy region templates [Bloch, 1999].  These images represent the degree to 

which a region matches a particular linguistic description.  The objects described can then 

be placed at the most probable locations and the resulting image tested for linguistic 

similarity to the original description.  This iterative process allows very simple sketches 

to be created using only linguistic spatial information. 

 To create more complicated sketches involving actor movement or inter-object 

relationships, some additional natural language processing is required.  Logical form 

graphs can be parsed directly from sentences to create deep semantic representations 

[Allen, et al., 2008].  These graphs contain all of the relations between words and the 

underlying objects they describe.  Through additional processing, logical form graphs can 

be used to infer information about the actor and objects in the scene, as well as their 

relationships.  This would allow for more complex sketch building techniques. 

 

2.4 Scene Matching 

A scene can be defined as a certain configuration of objects or image features.  

Often we are presented with two views of the same scene and wish to identify the 

correspondence between the two, or we may want to find an instance of one scene within 

a larger image.  Scene matching is a high-level computer vision task which seeks to find 

corresponding regions in multiple images which represent the same scene. 

The core requirement of scene matching is image registration, where scene 

elements of one image are assigned to those of another image.  Several examples of 
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image registration algorithms are provided in [Brown, 1992].  In general, they fit into one 

of the following categories: 

1. Techniques which use pixel values directly.  In [Svedlow, et al., 1978], a cross-

correlation measure is used for registering multiple views of a common scene in 

Landsat satellite images.  While correlation methods are typically used for this 

class of problem, other similarity measures such as the sequential similarity 

detection algorithm [Barnea & Silverman, 1972] can be employed which improve 

the efficiency. 

2. Techniques which use the frequency domain.  As shown in [De Castro & 

Morandi, 1987] and [Reddy & Chatterji, 1996], the FFT of an image can be used 

for registration, and can be made invariant to affine transformations. 

3. Techniques which use low-level image features, such as edges or keypoints.  

Edges can be used for registration as in [Wong, 1978], where an edge extraction 

algorithm and a sequential, hierarchical search method seek to maximize the 

cross-correlation of features.  In [Lowe, 2004] the SIFT keypoint detector is used 

to find scene elements which can be identified across multiple viewing scales and 

orientations, providing a robust algorithm for scene matching at the image level. 

4. Techniques which use high-level image features such as segmented objects and 

the relationships between objects.  This work fits into this fourth type, and focuses 

on spatial relationships for scene matching. 

 

In [Sjahputera, et al., 2000] the histograms of forces are used to evaluate the 

similarity between sets of linguistic spatial descriptions, such as those generated in 
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[Keller, et al., 1999] and [Keller & Wang, 2000] using LADAR imagery.  Later in 

[Marjamaa, et al., 2001] and [Sjahputera, et al., 2003] scenes were compared directly 

using the set of all force histograms between objects as a scene descriptor.  The force 

histograms were compared in order to recover the estimated sensor pose parameters 

between the two scenes.  The effects of affine transformations on the histograms of forces 

were studied in [Matsakis, et al., 2004] and an affine-invariant force histogram 

representation was proposed.  In [Sjahputera, 2004] normalized force histograms were 

used to generate scene descriptors representing all the spatial relationships between 

objects in a scene.  A nearest neighbor (NN) method and a fuzzy sequential nearest 

neighbor (FSNN) method were introduced to build a correspondence map between two 

scene descriptors.  This resulted in a one-to-one mapping between the objects in the two 

different scenes.  A particle swarm optimization (PSO) algorithm was used in [Sjahputera 

& Keller, 2005a] for finding the best correspondence map between two scene descriptors 

and a possibilistic c-means (PCM) algorithm was used in [Sjahputera & Keller, 2005b] 

and [Sjahputera & Keller, 2007]. 

Scene matching techniques have also been used for robot path planning.  In 

[Skubic, et al., 2003] a sketch interface is demonstrated using a PDA that can provide a 

robot with a hand-drawn map of object locations and a desired path.  In [Skubic, et al., 

2004] the histograms of forces are used to generate linguistic descriptions of relative 

object locations within a sketch.  These are compared to a user-defined set of linguistic 

rules describing the desired robot path.  In [Parekh, et al., 2007] and [Parekh, 2007], 

Parekh used the histograms of forces to build object correspondence maps between a 
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sketch and the observed environment.  He also proposed a novel evolutionary algorithm 

for scene matching (EASM) and compared it to the FSNN method. 

The geospatial community has been interested in scene matching for the task of 

locating a group of objects within a large geospatial database by means of a sketch.  In 

[Bruns & Egenhofer, 1996], the spatial similarity of two scenes is evaluated in terms of 

topological, directional, and metrical properties.  Using crisp definitions of these 

properties, scene similarity is computed by counting the number of gradual changes 

required to transform one scene into another.  A spatial query language is used in 

[Egenhofer, 1997] to find scenes that match a user input sketch. Here, Egenhofer outlines 

a constraint relaxation method that emphasizes cognitively important criteria while 

suppressing aspects of lesser importance.  In [Nedas & Egenhofer, 2008] the crisp spatial 

properties defined above are used to construct a graph-based representation of a scene.  

Scene matching is then cast as a constraint satisfaction problem, which has the ability to 

find a small sketch in a large scene using a constrained subgraph isomorphism.  Graph-

based matching methods are discussed in greater detail in Section 2.6. 

 

2.5 Image Segmentation 

The use of spatial relationships for scene matching with a geographic information 

system requires a certain amount of preprocessing on the geospatial database.  A raw 

satellite image contains only pixel-level information.  In order to compute spatial 

relationships between objects in the image, they must first be located.  Segmenting 

buildings and objects in satellite imagery is a difficult task and requires the use of some 
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high-level features, such as texture.  In [Shackelford & Davis, 2003a] a fuzzy classifier is 

proposed for segmenting high-resolution multispectral data over urban areas.  This 

method uses both spectral and spatial properties to determine the appropriate fuzzy class 

for each pixel in an image.  An expanded version of the classifier is given in [Shackelford 

& Davis, 2003b] which further classifies segmented regions using their structural and 

spatial properties. 

An alternative approach to image segmentation is the energy minimization of 

contours which define segment boundaries.  In [Chan & Vese, 2001] an active contour 

model is used with the level set method to perform segmentation.  This is integrated with 

the use of shape priors in [Cremers, et al., 2006] and [Riklin-Raviv, et al., 2007] to locate 

objects seen from different viewing angles and with partial occlusions.  The use of shape 

priors for locating objects in a satellite image is proposed in [Sledge, et al., 2011].  By 

using vector building outlines taken from a GIS database as shape priors, the level set 

method can produce crisp object boundaries and a reasonably accurate segmentation.  In 

this thesis, exact object extraction for the reference data, generated either by hand or from 

a geospatial database, was used so that the effects of the matching process could be 

studied directly.   

 

2.6 Graph-Based Methods 

Graphs provide a powerful analytic and modeling tool used in many fields, 

including computer vision.  They can be used to model a collection of objects and their 

individual relationships, making them very useful for representing spatial configurations.  
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By casting the scene matching problem as a graph search problem, we can make use of 

the many existing graph matching techniques. 

 

2.6.1 Graph Definitions 

The standard definition of a graph is an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 is the 

vertex set and 𝐸 is the edge set.  A node 𝑣𝑖 ∈ 𝑉 represents some structural entity which is 

related to other nodes by an edge 𝑒𝑘 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸.  If each edge is an ordered pair, then 

the graph is a directed graph, implying that the relationships between nodes are not 

necessarily symmetric.  A complete graph has an edge relationship between every pair of 

possible nodes such that 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∈ 𝑉 × 𝑉}.  The types of graphs used in the 

remainder of this work are all directed graphs, although not all are complete. 

Two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are isomorphic to each other if there 

exists a bijective mapping 𝑀: 𝑉1 → 𝑉2 which preserves the edge structure of the two 

graphs.  Formally, 𝑀 is an isomorphism if and only if every edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1 has a 

unique corresponding edge (𝑀(𝑣𝑖), 𝑀(𝑣𝑗)) ∈ 𝐸2.  A graph 𝐺1
′ = (𝑉1

′, 𝐸1
′) is a subgraph 

of 𝐺1 if 𝑉1
′ ⊆ 𝑉1 and 𝐸1

′ ⊆ 𝐸1.  If 𝐺2 is isomorphic to 𝐺1
′ , then the mapping 𝑀: 𝑉1

′ → 𝑉2 is 

a subgraph isomorphism between the two graphs.  Our goal for scene matching is to find 

a subgraph of 𝐺1 (the reference database) that is isomorphic to 𝐺2 (the sketch). 
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2.6.2 Attributed Relational Graphs 

The usefulness of graph matching as a tool for scene correspondence can be 

greatly enhanced by adding attributes to the nodes and edges.  Such graphs are known as 

attributed relational graphs (ARGs) and are a modest, but powerful extension to the 

standard graph definition.  Work done in [Tsai & Fu, 1979] shows how modeling a 

pattern as a graph of primitives and relationships, each with a set of attributes, can be 

used to find matching patterns.  A standard graph isomorphism compares only the 

syntactic aspect of graphs, and is intolerant of structural differences.  However, by 

comparing attributes and allowing for small errors in the graph structure, one can ease the 

constraints of the search, which is very useful in computer vision. 

An ARG is formally defined as a 4-tuple 𝐺 = (𝑉, 𝐸, 𝐴𝑉 , 𝐴𝐸), where 𝑉 and 𝐸 

follow the same definitions as before, 𝐴𝑉 is a set containing a unary attribute 𝑎𝑖 for each 

node 𝑣𝑖 ∈ 𝑉, and 𝐴𝐸  is a set containing a binary attribute 𝑎𝑖𝑗 for each edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.  

The attributes 𝑎𝑖 and 𝑎𝑖𝑗 can both be further represented as vectors containing multiple 

attributes for each node and edge.  Two ARGs are considered isomorphic only if their 

structural graphs are isomorphic and the associated attributes between nodes and edges 

are compatible.  Depending on the problem, numeric or semantic attributes can be 

compared directly or with some window of tolerance.  Alternatively, more complex 

attributes may require compatibility functions to determine if two node or edge attributes 

are congruent.  The process of finding a match to a pattern ARG will be discussed in the 

next section. 
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2.6.3 Graph Matching 

Graph matching in general is an area of active research and many techniques have 

been developed.  In [Conte, et al., 2004], an attempt is made to classify the many 

different approaches into the broad categories of exact and inexact matching methods.  

Exact matching methods must define a one-to-one correspondence between the nodes and 

edges of two graphs, whereas an inexact method may alter the graph structure or 

attributes in order to find a best match.  Some methods can only handle graph 

isomorphisms or unlabeled graphs, while others can handle subgraph isomorphisms and 

fully labeled ARGs. 

One of the earliest and most influential algorithms in this field is due to Ullmann 

[Ullmann, 1976], which can find both graph and subgraph isomorphisms.  The technique, 

like many of the others that follow, implements a depth-first tree search with branch and 

bound.   These methods work by recursively finding all pairs of compatible nodes 

between graphs, and adding additional compatible nodes to these subgraphs one at a time 

until a complete match is found.  Ullmann’s method includes a refinement procedure 

which seeks to remove incompatible node pairs as early as possible, thereby reducing the 

search time of the algorithm. 

By working in terms of node and edge compatibility, tree search methods are 

easily extendable to ARG matching.  In [Shapiro & Haralick, 1981] an object is 

represented by a structural description, which is stored as an ARG.  A method is 

developed for evaluating ARG similarity by comparing the attributes of the two ARGs.  

The tree search method is further refined by including look-ahead rules to ensure that 

only good paths are followed in the search. 
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2.6.4 VF2 Algorithm 

The VF algorithm [Cordella, et al., 1998], [Cordella, et al., 1999], is a more recent 

graph matching algorithm, capable of finding both isomorphisms and subgraph 

isomorphisms, although it is particularly suited for finding a subgraph isomorphism 

between a small sample graph and a large reference graph.  An updated version was later 

introduced as the VF2 algorithm [Cordella, et al., 2004].  Given two graphs 𝐺1 = (𝑉1, 𝐸1) 

and 𝐺2 = (𝑉2, 𝐸2), the algorithm seeks to find a mapping 𝑀 =

{(𝑛, 𝑚) ∈ 𝑉1 × 𝑉2|𝑛 is mapped onto 𝑚} to represent either an isomorphism between 𝐺1 

and 𝐺2, or a subgraph isomorphism between a subgraph of 𝐺1 and 𝐺2.  This is 

accomplished using a State Space Representation (SSR) in which each state contains a 

partial mapping 𝑀(𝑠) which is a subset of the complete mapping function 𝑀.  𝑀(𝑠) 

uniquely defines the intermediate subgraphs 𝐺1(𝑠) and 𝐺2(𝑠), which contain only the 

nodes included in 𝑀(𝑠) and the induced edges.  The sets 𝑀1(𝑠) and 𝑀2(𝑠) denote the 

projection of 𝑀(𝑠) onto 𝑉1 and 𝑉2 respectively.  An example of a pair of graphs and their 

complete and partial mapping functions is given in Figure 2.3. 
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Figure 2.3  Example of the partial mapping function used in the VF algorithm [Cordella, et al., 1999].  (a) 

Two graphs 𝐺1 and 𝐺2. (b) The only possible mapping 𝑀.  (c) A partial mapping solution 𝑀(𝑠) and the 

corresponding partial node sets 𝑀1(𝑠) and 𝑀2(𝑠).  (d) The corresponding subgraphs 𝐺1(𝑠) and 𝐺2(𝑠). 

 

The transition from state 𝑠 to a new state 𝑠′ involves the addition of a node pair 

(𝑛, 𝑚) to the mapping function, resulting in new intermediate subgraphs.  Typically, only 

a small number of node pairs can be added to 𝑀(𝑠) while maintaining consistency with 

the desired morphism type.  Any node pair which would prevent 𝑀(𝑠) from growing into 

a completely defined mapping function represents an unfruitful path and the resulting 

branches of the SSR can be effectively pruned from the search space. 

The basis of the VF2 algorithm is a set of feasibility rules for evaluating whether 

a node pair (𝑛, 𝑚) can be safely added to a partial mapping function 𝑀(𝑠).  A feasibility 

function is introduced 

 𝐹(𝑠, 𝑛, 𝑚) = 𝐹syn(𝑠, 𝑛, 𝑚) ∧ 𝐹sem(𝑠, 𝑛, 𝑚) (2.3) 
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where 𝐹syn(𝑠, 𝑛, 𝑚) is the syntactic feasibility, which depends on the structure of the 

graphs, and 𝐹sem(𝑠, 𝑛, 𝑚) is the semantic feasibility, which depends on the attributes.  A 

high-level outline of the entire matching algorithm is given in Figure 2.4.  The initial 

input to the recursive matching function is the empty set 𝑀(𝑠0) = ∅, containing no 

matching elements.  For each state that is evaluated, a set of candidate pairs 𝑃(𝑠) is 

generated and evaluated using the above feasibility function.  The pairs which are 

considered feasible are added to the map, and the function is called again recursively.  

The final output of the algorithm occurs each time a complete map is generated, at which 

point the algorithm can either halt, or continue to search for all possible mappings. 

 

VF2 Graph Matching Algorithm 

 

Procedure: Match(𝐺1, 𝐺2, 𝑠) 

Input:  Graphs 𝐺1 and 𝐺2 

 Intermediate state 𝑠; the initial state 𝑠0 has 𝑀(𝑠0) = ∅ 

  

If 𝑀(𝑠) covers all the nodes of 𝐺2 Then 

 Output: 𝑀(𝑠) 

Else 

 Compute the set 𝑃(𝑠) of the pairs candidate for inclusion in 𝑀(𝑠) 

 For Each 𝑝 = (𝑛, 𝑚) in 𝑃(𝑠) 

  If 𝐹(𝑠, 𝑛, 𝑚) == TRUE Then 

   Create a new state 𝑠′ by adding 𝑝 to 𝑀(𝑠) 

   Call Match(𝐺1, 𝐺2, 𝑠′) 

  End If 

 End For 

End If 

Figure 2.4  High-level outline of the VF2 graph matching algorithm [Cordella, et al., 2004]. 

 

To create the set of candidate pairs 𝑃(𝑠) we look at all of the adjacent nodes to 

𝐺1(𝑠) and 𝐺2(𝑠).  The sets 𝑇1
out(𝑠), 𝑇1

in(𝑠), 𝑇2
out(𝑠), and 𝑇2

in(𝑠) are defined as the 

outgoing or incoming nodes of 𝐺1(𝑠) and 𝐺2(𝑠) respectively, shown in Figure 2.5.  The 
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set 𝑃(𝑠) consists of all pairs (𝑛, 𝑚) in which 𝑛 ∈ 𝑇1
out(𝑠) and 𝑚 ∈ 𝑇2

out(𝑠), provided that 

neither of these sets are empty.  If either of these sets are empty, then 𝑇1
in(𝑠) or 𝑇2

in(𝑠) is 

used instead.  For disconnected graphs, these later sets may also be empty, in which case 

the sets 𝑉1 − 𝑀1(𝑠) and 𝑉2 − 𝑀2(𝑠) are used instead. 

 

 

Figure 2.5  The sets 𝑇1
out(𝑠) and 𝑇1

in(𝑠) relative to 𝑀1(𝑠) = {𝑛1, 𝑛2} [Cordella, et al., 1999]. 

 

The syntactic feasibility rule is actually composed of five rules, 

 𝐹syn(𝑠, 𝑛, 𝑚) = 𝑅pred ∧ 𝑅succ ∧ 𝑅in ∧ 𝑅out ∧ 𝑅new, (2.4) 

which are explained in Table 2.1.  The first two are necessary and sufficient conditions to 

ensure acceptable solutions, while the remaining three serve to prune the search space.  

𝑅in and 𝑅out are 1-look-ahead rules and 𝑅new is a 2-look-ahead rule.  In defining the rules, 

some additional notation is used.  Pred(𝐺, 𝑛) and Succ(𝐺, 𝑛) respectively denote the 

predecessor and successor nodes of node 𝑛 in graph 𝐺.  Additionally, 𝑇1(𝑠) = 𝑇1
in(𝑠) ∪

𝑇1
out(𝑠) and �̃�1 = 𝑉1 − 𝑀1(𝑠) − 𝑇1(𝑠) with similar expressions for 𝑇2(𝑠) and �̃�2.  The 

syntactic feasibility rules are formally defined in [Cordella, et al., 2004] as 
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𝑅pred(𝑠, 𝑛, 𝑚)

⇔ (∀𝑛′ ∈ 𝑀1(𝑠) ∩ Pred(𝐺1, 𝑛)∃𝑚′ ∈ Pred(𝐺2, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))

∧ (∀𝑚′ ∈ 𝑀2(𝑠) ∩ Pred(𝐺2, 𝑚)∃𝑛′ ∈ Pred(𝐺1, 𝑛)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠)), 

(2.5) 

 

𝑅succ(𝑠, 𝑛, 𝑚)

⇔ (∀𝑛′ ∈ 𝑀1(𝑠) ∩ Succ(𝐺1, 𝑛)∃𝑚′ ∈ Succ(𝐺2, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))

∧ (∀𝑚′ ∈ 𝑀2(𝑠) ∩ Succ(𝐺2, 𝑚)∃𝑛′ ∈ Succ(𝐺1, 𝑛)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠)), 
(2.6) 

 

𝑅in(𝑠, 𝑛, 𝑚)

⇔ (Card (Succ(𝐺1, 𝑛) ∩ 𝑇1
in(𝑠))

≥ Card (Succ(𝐺2, 𝑚) ∩ 𝑇2
in(𝑠)))

∧ (Card (Pred(𝐺1, 𝑛) ∩ 𝑇1
in(𝑠))

≥ Card (Pred(𝐺2, 𝑚) ∩ 𝑇2
in(𝑠))), 

(2.7) 

 

𝑅out(𝑠, 𝑛, 𝑚)

⇔ (Card(Succ(𝐺1, 𝑛) ∩ 𝑇1
out(𝑠))

≥ Card(Succ(𝐺2, 𝑚) ∩ 𝑇2
out(𝑠)))

∧ (Card(Pred(𝐺1, 𝑛) ∩ 𝑇1
out(𝑠))

≥ Card(Pred(𝐺2, 𝑚) ∩ 𝑇2
out(𝑠))), 

(2.8) 

 

𝑅new(𝑠, 𝑛, 𝑚)

⇔ Card (�̃�1(𝑠) ∩ Pred(𝐺1, 𝑛)) ≥ Card (�̃�2(𝑠) ∩ Pred(𝐺2, 𝑛))

∧ Card (�̃�1(𝑠) ∩ Succ(𝐺1, 𝑛)) ≥ Card (�̃�2(𝑠) ∩ Succ(𝐺2, 𝑛)). 

(2.9) 

 

Table 2.1  Syntactic Feasibility Rules for Subgraph Isomorphism 

Look-

Ahead 
Rule Condition 

0 

𝑅pred 
Iff for each predecessor 𝑛′ of 𝑛 in the partial mapping, the corresponding node 𝑚′ is 

a predecessor of 𝑚, and vice versa. 

𝑅succ 
Iff for each successor 𝑛′ of 𝑛 in the partial mapping, the corresponding node 𝑚′ is a 

successor of 𝑚, and vice versa. 

1 

𝑅in 
Iff the number of predecessors (successors) of 𝑛 that are in 𝑇1

in(𝑠) is greater than or 

equal to the number of predecessors (successors) of 𝑚 that are in 𝑇2
in(𝑠). 

𝑅out 
Iff the number of predecessors (successors) of 𝑛 that are in 𝑇1

out(𝑠) is greater than or 

equal to the number of predecessors (successors) of 𝑚 that are in 𝑇2
out(𝑠). 
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2 𝑅new 

Iff the number of predecessors (successors) of 𝑛 that are neither in 𝑀1(𝑠) nor in 

𝑇1(𝑠) (new models) is greater than or equal to the number of predecessors 

(successors) of 𝑚 that are neither in 𝑀2(𝑠) nor in 𝑇2(𝑠). 

 

 

The semantic feasibility rule will depend on the specific attributes of the graphs, 

but can be represented formally in terms of compatibility relations.  Let 𝑛 ≈ 𝑚 represent 

a compatible pair of nodes, and (𝑛, 𝑛′) ≈ (𝑚, 𝑚′) represent a compatible pair of edges.  

The formal definition is then 

 

𝐹sem(𝑠, 𝑛, 𝑚) ⇔ 𝑛 ≈ 𝑚
∧ ∀(𝑛′, 𝑚′) ∈ 𝑀(𝑠), (𝑛, 𝑛′) ∈ 𝐸1 ⇒ (𝑛, 𝑛′) ≈ (𝑚, 𝑚′)
∧ ∀(𝑛′, 𝑚′) ∈ 𝑀(𝑠), (𝑛′, 𝑛) ∈ 𝐸1 ⇒ (𝑛′, 𝑛) ≈ (𝑚′, 𝑚). 

(2.10) 

The complexity of the VF and VF2 algorithms depend on the specific graphs being 

matched, but can be represented in terms of the best and worst case scenarios.  In the best 

case, the VF algorithm has both a time and spatial complexity of Θ(𝑁2), where 𝑁 is the 

number of nodes in the largest graph.  In the worst case, the time complexity increases to 

Θ(𝑁! 𝑁).  The VF2 algorithm uses a common shared memory location during the tree 

search, reducing the memory requirement to just Θ(𝑁) in all cases.  This final property 

allows the VF2 algorithm to search for subgraph isomorphisms within very large 

reference graphs containing thousands of nodes.  A summary of the complexities of the 

VF2, VF, and Ullmann’s algorithm is given in Table 2.2. 

 

Table 2.2  Spatial and Time Complexity of Different Graph Matching Algorithms 

 VF2 VF Ullmann’s Algorithm 

Complexity Best Case Worst Case Best Case Worst Case Best Case Worst Case 

Time Θ(𝑁2) Θ(𝑁! 𝑁) Θ(𝑁2) Θ(𝑁! 𝑁) Θ(𝑁3) Θ(𝑁! 𝑁3) 

Spatial (memory) Θ(𝑁) Θ(𝑁) Θ(𝑁2) Θ(𝑁2) Θ(𝑁3) Θ(𝑁3) 
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2.7 Evolutionary Computation 

2.7.1 Genetic Algorithms 

An optimization problem is defined as the task of determining the best possible 

solution to a problem from the set all possible solutions.  Mathematically, it can be 

defined as locating the maximum or minimum value of some function over some domain 

within certain constraints.  This is a broad and often difficult problem, and many 

approaches have been demonstrated to work on some subset of optimization problems.  

The study of biology has introduced evolutionary computation as an approach to 

optimization, leading to the development of the genetic algorithm (GA) by Holland 

[Holland, 1975].  In a GA, as well as most evolutionary techniques, a possible solution to 

an optimization problem is encoded as a chromosome containing a set of genes or 

variables to be optimized.  A population of chromosomes, each representing one possible 

solution, is created using a random initialization method.  Each individual is evaluated by 

a fitness function, which produces a score representing how well it solves the 

optimization problem.  Individuals are selected from the population using a selection 

function and used as the inputs to a crossover function, which combines features from the 

parent solutions and produces new child solutions.  These new individuals may then be 

refined by a mutation function, which introduces random noise in order to explore new 

areas of the search space.  The population of individuals is updated to include the new 

children, which usually involves replacing the parents with their children.  Some form of 

elitism may also be used in selecting the subsequent generation, ensuring that the best-
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scoring individuals survive without modification.  The process of selecting individuals 

and producing new children constitutes one generation, and the search proceeds by 

computing additional generations until some stopping criteria is met.  The choice of 

functions to carry out fitness evaluation, selection, crossover, and mutation is often 

problem specific and depends on the representation scheme being used. 

Genetic algorithms provide a stochastic method for solving a variety of search and 

optimization problems [Goldberg, 1989].  In [Rodriguez & Jarur, 2005] a modified 

genetic algorithm is used for searching spatial configurations using a topological model.  

The algorithm is based on asexual reproduction, allowing a single parent solution to 

create a child.  In contrast to an exhaustive search, the GA allows for a controlled 

computational cost, and can always provide a solution regardless of the problem 

complexity.  However, the solutions of an exhaustive deterministic search are always 

optimal, whereas the GA may produce good, but suboptimal solutions. 

 

2.7.2 Memetic Algorithms 

There are many different variations of the standard genetic algorithm described 

above.  In [Moscato, 1989] the concept of a memetic algorithm is introduced, which is a 

type of hybrid genetic algorithm.  In these methods, a local search strategy is used to 

improve some individuals between generations.  This allows the best individuals to 

continue improving locally, which results in shorter search times.  In [Houck, et al., 

1996] the hybrid GA is described in biological terms using Lamarckian evolution and the 

Baldwin effect.  Lamarckian learning allows individuals to be replaced by their improved 
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versions found as a result of a local search.  These improvements are then preserved 

through to the next generation.  The Baldwin effect allows an individual to be evaluated 

using the fitness of its improved version, but the genetic representation remains 

unchanged.  This is similar to what happens in actual biological systems and ensures that 

diversity is maintained around an optimal point.  The hybrid GA is shown to converge 

more quickly than the standard GA on many problems.  An outline for a generic memetic 

algorithm is shown in Figure 2.6. 

 

Generic Memetic Algorithm 

Initialize: Create initial population of individuals 

While stopping criteria is not met 

 Evaluate all individuals 

 Evolve new population using selection/crossover/mutation 

 Select a subset of individuals for local improvement, Ω𝑖𝑙 

 For each individual in Ω𝑖𝑙 

  Perform local improvement with probability 𝑓𝑖𝑙 for a period 𝑡𝑖𝑙 

  Proceed with Lamarckian or Baldwinian learning 

 End For  

End While 

Figure 2.6  Generic memetic algorithm. 
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3 DESIGN OF THE MATCHING ALGORITHM 

3.1 Problem Overview 

Our goal is to develop an algorithm which can locate a group of objects within a 

geospatial image from an approximate sketch.  The objects can be buildings, parking lots, 

or other landmarks of interest.  Since the objects are disjoint and contain no information 

apart from a label and their spatial properties, we make use of the histograms of forces to 

model the spatial relationships.  This provides a robust framework for capturing the 

relative direction, distance, scale, and to an extent the relative shapes between objects.  

The collection of HoF relationships between all objects in a sketch or scene are modeled 

as an ARG, which allows for efficient matching techniques.  For this study, we chose to 

use hand-segmented imagery to ensure that we have the best possible ground truth.  The 

segmented objects make up the reference set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚}, where each object is 

given a label of either “building” or “parking lot.” 

A sketch of objects 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) can be created in a variety of ways.  If a 

person draws a map of his or her immediate surroundings, the resulting collection of 

labeled objects is a sketch which should match to some real location in the reference 

image (provided that they are standing in the segmented region.)  This process could be 

automated by interpreting a natural language description of a person’s surroundings 

[Sledge & Keller, 2009].  Regardless of how the sketch is generated, the goal of our 

algorithm is to find the mapping function Γ: 𝑆 → ℛ that assigns each object of the sketch 

to an object in the reference set.  Ideally, these will be the same objects that the sketch is 

intended to represent.  Since there are only two different object types in this study, the 
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spatial relationships between objects will be the primary matching features.  The best 

match for a given sketch is the set of objects from the reference set which most closely 

matches the spatial configuration of the objects in the sketch.  Figure 3.1 shows an 

example of a sketch and the corresponding matching location within a segmented satellite 

image. 

 

 

Figure 3.1  Sketch example.  (a) An example of a machine-drafted sketch.  (b) The corresponding match 

within a segmented satellite image.  Buildings are shown in red and parking lots are shown in green. 

 

3.2 Representing Object Sets 

We use an attributed relational graph to model the spatial relations between 

objects in a scene.  Suppose that we have a scene consisting of a set of 2D objects 𝒪 =

{𝑜1, 𝑜2, … , 𝑜𝑛}.  Each object will represent a node in the ARG and the relationships 

between objects will be stored as edges.  A single edge relationship between a pair of 
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objects is defined as 𝑒𝑖𝑗 = (𝑜𝑖, 𝑜𝑗) ∈ 𝒪 × 𝒪.  Depending on the size of 𝒪, we may define 

all inter-object relationships as edges, or only some of the closest and most reasonable 

relationships.  The set of all edges in a scene is defined as 𝐸𝒪 = {𝑒𝑖𝑗 | (𝑜𝑖, 𝑜𝑗) ∈ 𝒪 × 𝒪}.  

Each object is given a label 𝐿𝒪(𝑜𝑖) = 𝑙𝑖 ∈ ℒ where ℒ is the set of all possible labels (e.g. 

“building”, “parking lot”, etc.).  For each edge 𝑒𝑖𝑗 we define the spatial relationship as the 

triple ℎ𝑖𝑗 = (𝐹0

𝑜𝑖𝑜𝑗 , 𝐹2

𝑜𝑖𝑜𝑗 , 𝜑𝑜𝑖𝑜𝑗 ), where 𝐹0

𝑜𝑖𝑜𝑗
 and 𝐹2

𝑜𝑖𝑜𝑗
 are the constant and gravitational 

F-histograms between 𝑜𝑖 and 𝑜𝑗, and 𝜑𝑜𝑖𝑜𝑗  is the main direction.  (The ℎ𝑖𝑗 notation was 

chosen as a mnemonic for “histogram,” as the first two arguments are actually 

histograms.)  The set of all spatial relationships is defined as 𝐻𝒪 = {ℎ𝑖𝑗  | 𝑒𝑖𝑗 ∈ 𝐸𝒪}, 

which implies that there must be a spatial relationship defined for each edge which exists 

in the graph.  The complete ARG representation for the object set 𝒪 is defined as 𝐺𝒪 =

(𝒪, 𝐸𝒪, 𝐿𝒪, 𝐻𝒪).  An example is given in Figure 3.2. 
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Figure 3.2  ARG representation of an object set.  (a) An example of an object set 𝒪 = {𝑜1 , 𝑜2, 𝑜3}  (b) The 

ARG representation of the object set.  (c) Formal definition of 𝐺𝒪 and its attributes. 

 

Obviously since each edge represents a spatial relationship, the order of the 

arguments is important.  “𝐴 is in direction 𝜃 of 𝐵” is not the same as “𝐵 is in direction 𝜃 

of 𝐴.”  The two statements contain largely the same information, however, and they are 
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related by the semantic inverse property of the HoF [Matsakis, et al., 2004], which states 

that 

 𝐹𝑟
𝐵𝐴(𝜃) = 𝐹𝑟

𝐴𝐵(𝜃 + 𝜋). (3.1) 

Since 𝐹𝑟
𝐴𝐵 is a periodic function, this is simply a circular shifting of the histogram bins, 

in which no information is lost.  A complete ARG for a set of 𝑛 objects will have 𝑛 

vertices and 𝑛 × (𝑛 − 1) edges, with a unique edge defined between each ordered pair of 

vertices.  We can reduce the storage requirement of the ARG representation by a factor of 

two if we only calculate edges (𝑜𝑖 , 𝑜𝑗) in which 𝑖 < 𝑗, and use the semantic inverse 

property for all other pairs. 

 

3.3 Comparing F-Histograms 

Toward the goal of developing a similarity measure between two scenes, we 

begin by comparing a single pair of F-histograms.  If two pairs of objects have a similar 

spatial configuration, then they should have similar F-histograms.  Matsakis et al. 

[Matsakis, et al., 2004] investigated several similarity measures for F-histograms: 

 𝜇𝑇(𝑓1, 𝑓2) =
∑ min(𝑓1(𝜃), 𝑓2(𝜃))𝜃

∑ max(𝑓1(𝜃), 𝑓2(𝜃))𝜃

, (3.2) 

 𝜇𝑃(𝑓1, 𝑓2) = 1 −
∑ |𝑓1(𝜃) − 𝑓2(𝜃)|𝜃

∑ |𝑓1(𝜃) + 𝑓2(𝜃)|𝜃
, (3.3) 

 𝜇𝐶(𝑓1, 𝑓2) =
∑ 𝑓1(𝜃)𝑓2(𝜃)𝜃

√∑ 𝑓1
2(𝜃)𝜃 √∑ 𝑓2

2(𝜃)𝜃

. (3.4) 
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Here, 𝜇𝑇 is a Tversky index, 𝜇𝑃 is a Pappis’ measure, and 𝜇𝐶 is the normalized cross-

correlation between two F-histograms,  𝑓1 and 𝑓2.  Also, 𝜃 is a member of the finite set of 

angles for which the F-histograms are computed.  These measures all satisfy the 

following properties. 

 0 ≤ 𝜇(𝑓1, 𝑓2) ≤ 1 (3.5) 

 𝑓1 = 𝑓2 ⇒ 𝜇(𝑓1, 𝑓2) = 1 (3.6) 

 𝜇(𝑓1, 𝑓2) = 𝜇(𝑓2, 𝑓1) (3.7) 

 ∀𝜆 ∈ ℝ+
∗ , 𝜇(𝜆𝑓1, 𝜆𝑓2) = 𝜇(𝑓1, 𝑓2) (3.8) 

In addition, 𝜇𝐶 also satisfies 

 ∀𝜆1 ∈ ℝ+
∗ , ∀𝜆2 ∈ ℝ+

∗ , 𝜇(𝜆1𝑓1, 𝜆2𝑓2) = 𝜇(𝑓1, 𝑓2), (3.9) 

which states that the normalized cross-correlation is invariant to the relative scales of the 

two histograms.  This is important for the task of matching a sketch to a satellite image, 

because the scales at which each are represented may differ by several orders of 

magnitude.  For this reason we use 𝜇𝐶 in the remainder of this work. 

Although the overall scaling of the 𝑦-axis values of the F-histograms do not impact 

the similarity measure, the 𝑥-axis values play a large role.  The F-histograms of each 

object set are all computed with respect to a common reference angle.  If two pairs of 

objects are defined with the same reference angle, then their F-histogram relationships 

can be compared directly.  If, however, they are defined with different reference angles 

(e.g. by rotating one of the pairs) then one F-histogram must be shifted to match the 

other.  We call upon the basic properties of the histograms of forces [Matsakis & 
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Wendling, 1999], [Matsakis, et al., 2004], which state that if a pair of objects (𝐴, 𝐵) is 

rotated counter-clockwise by an angle 𝜑, its F-histogram becomes 

 𝐹𝑟
𝑟𝑜𝑡(𝐴,𝐵)

(θ) = 𝐹𝑟
𝐴𝐵(𝜃 − 𝜑). (3.10) 

This is simply a circular shifting of the histogram bins, which allows us to compare 

spatial relationships defined with any orientation.  Given two pairs of objects, (𝐴, 𝐵) and 

(𝐴′, 𝐵′) defined with reference angles 𝜙 and 𝜙′ respectively, we can compare their 

relative spatial relationships with the general equation 

 

𝜇𝑃𝑎𝑖𝑟(𝐴, 𝐵, 𝜙, 𝐴′, 𝐵′, 𝜙′) = 𝛽𝜇𝐶0 + (1 − 𝛽)𝜇𝐶2,   where 

𝜇𝐶0 = 𝜇𝐶 (𝐹0
𝐴𝐵(𝜃 − 𝜙), 𝐹0

𝐴′𝐵′
(𝜃 − 𝜙′)) , 

𝜇𝐶2 = 𝜇𝐶 (𝐹2
𝐴𝐵(𝜃 − 𝜙), 𝐹2

𝐴′𝐵′
(𝜃 − 𝜙′)). 

(3.11) 

Here 𝛽 is a weighting factor between the histograms of constant and gravitational forces, 

which is typically set at 0.5 to give equal weight to both F-histograms. 

 

3.4 Comparing Object Sets 

Suppose that we are given a sketch of objects 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) and a reference 

set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} in which 𝑚 ≫ 𝑛.  Our goal is to pick a subset of objects from ℛ 

which could match the objects in 𝑆 via the injective function Γ: 𝑆 → ℛ.  This can be 

represented as the candidate set Γ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝑥(𝑖) ∈ ℛ such that Γ(𝑜𝑖) = 𝑥(𝑖).  

Notice that we avoid the general correspondence problem and assume that the order of 

objects in Γ is the same as in 𝑆.  The task of finding Γ is the subject of our evolutionary 

algorithm and will be discussed further in Section 3.6.  We can compare 𝑆 and Γ by 

measuring the average similarity of the spatial relationships between each pair of objects.  
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If we can guarantee that both 𝑆 and Γ are defined with the same orientation, then the 

similarity of the two object sets can be computed as 

 Ψ1(𝑆, Γ) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖, 𝑜𝑗 , 0, 𝑥(𝑖), 𝑥(𝑗), 0)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. (3.12) 

Here both reference angles are defined as 0, implying that no shifting of the histograms is 

necessary.  The complexity of this computation is 𝑂(𝑛2𝜔), where 𝑛 is the number of 

objects in each set and 𝜔 is the number of angles computed for each F-histogram. 

The above expression is valid if both object sets share the same orientation, 

however this is usually not the case.  Maps are not always drawn with the same 

orientation as the ground truth, often out of convenience.  Take, for example, the streets 

of Manhattan, which are commonly drawn on maps as perfectly horizontal and vertical 

lines, yet a satellite image of the city shows that the island is not actually aligned in one 

of the cardinal directions.  In order to compensate for changes in orientation between the 

sketch and the reference database, we rotate all of the F-histograms from the sketch by an 

angle 𝜑⋆ which would give the best overall alignment with the F-histograms from the 

candidate set.  Although the rotation could be applied to either the sketch or the candidate 

set, we choose to rotate the sketch to mimic how one orients a map.   

The angular difference between two pairs of objects (𝐴, 𝐵) and (𝐴′, 𝐵′) is defined 

as the difference between their main directions 𝜑𝐴𝐵 − 𝜑𝐴′𝐵′
.  By considering all of the 

angular differences between each unique pair of objects in 𝑆 and Γ, we create a list 

 𝐷 = {𝑑11, 𝑑12, … , 𝑑𝑖𝑗 , … , 𝑑(𝑛−1)𝑛}, 𝑑𝑖𝑗 = 𝜑𝑜𝑖𝑜𝑗 − 𝜑𝑥(𝑖)𝑥(𝑗) , (3.13) 
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which represents the total mismatch between the orientations of 𝑆 and Γ.  For example, if 

𝐷 contains only 0 values, then 𝑆 and Γ have the same orientation.  The values of 𝐷 are 

shifted into the range [0, 2𝜋) and used to determine the optimal rotation angle 𝜑⋆ that 

will be applied to 𝑆.  The mean and median values of 𝐷 are both reasonable choices for 

𝜑⋆, with the median providing greater stability overall [Buck, et al., 2011].  Because the 

angles are defined on a periodic domain, it may not be possible to define a 2𝜋 range 

which can serve as a linear mapping to compute the median.  Therefore, we pick the 

optimal rotation angle as the angle in 𝐷 which minimizes the angular distance to all other 

angles in 𝐷 using the following expression from [Fisher, 1993]. 

 𝜑⋆ = arg min
𝑑𝑢𝑣∈𝐷

[𝑞(𝑑𝑢𝑣)], 𝑞(𝑑𝑢𝑣) = 𝜋 − ∑ ∑ |𝜋 − |𝑑𝑖𝑗 − 𝑑𝑢𝑣||

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (3.14) 

Here, 𝑞 is a temporary list of the total angular distances evaluated for each angle in 𝐷.  

An example of this process is given in Figure 3.3.  Having found 𝜑⋆, we rotate all of the 

F-histograms from 𝑆 by a uniform angle to obtain an orientation-independent similarity 

measure, 

 Ψ2(𝑆, Γ) =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖, 𝑜𝑗, 𝜑⋆, 𝑥(𝑖), 𝑥(𝑗), 0)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

. (3.15) 

 



37 

 

 

Figure 3.3  Calculation of the optimal rotation angle, 𝜑⋆.  All angles are given in radians measured 

counterclockwise from the 𝑥-axis.  The ground truth object set in (a) is approximated by the simplified 

sketch in (b), which has been rotated counterclockwise about one quarter-turn.  The object correspondences 

between the sketch and ground truth are given, and the main direction between each unique object pair is 

given in (c).  The first two columns of (c) list the individual object pairs, and the main directions calculated 

for the ground truth and sketch are given in the third and fourth columns respectively.  The list of angular 

differences 𝐷 is listed in the fifth column, which is used as the input to equation (3.14) for computing the 

list of angular distances, 𝑞.  The angle which minimizes the angular distance to all other angles in 𝐷 is 

chosen as the optimal rotation angle, 𝜑⋆.  Here, 𝜑⋆ is chosen as an 83° clockwise rotation of the sketch. 
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3.5 Elastic Angles 

As an alternative to rotating all of the F-histograms from one set by the global 

best rotation angle, we can exercise a little more control over the similarity measure by 

rotating each F-histogram individually.  This gives each pair of histograms a tolerance to 

small directional differences.  The orientation of the scene as a whole is still important, so 

we begin by calculating the angular difference list 𝐷 in the same way as before.  This 

gives the best rotation angle for the whole scene, 𝜑⋆.  Rather than rotating all histograms 

of the sketch by this angle, we create normalized F-histograms by rotating each histogram 

of both the sketch and candidate set clockwise by its main direction so that all F-

histograms are centered at 𝜃 = 0.  Comparing normalized F-histograms removes all 

orientation biases, leaving only the shapes and sizes as distinguishing characteristics.  To 

compensate for the loss of directional information, we apply a weighting factor to each 

histogram, defined by a fuzzy membership function 𝜇𝑇𝑟𝑎𝑝(𝜃) shown in Figure 3.4.  The 

angular difference between the original histograms is used as the input to this weighting 

function, allowing only histograms that shared similar orientations to be considered with 

full weight and all others to have less weight. 

 

 

Figure 3.4  The trapezoidal weighting function used for elastic angles. 
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The overall similarity measure is defined as 

 
Ψ3(𝑆, Γ) =

2

𝑛(𝑛 − 1)
∑ ∑ 𝜇𝑇𝑟𝑎𝑝(𝜑⋆ − 𝑑𝑖𝑗) × 𝜇𝐸𝑙𝑎𝑠𝑡𝑖𝑐

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

, where 

𝜇𝐸𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜇𝑃𝑎𝑖𝑟(𝑜𝑖 , 𝑜𝑗, 𝜑𝑜𝑖𝑜𝑗 , 𝑥(𝑖), 𝑥(𝑗), 𝜑𝑥(𝑖)𝑥(𝑗)) 

(3.16) 

The elastic angle method allows for small imperfections between two object sets.  

F-histograms which would not otherwise be perfectly aligned are normalized and 

considered with full weight.  This tends to result in higher similarity values overall 

[Buck, et al., 2011], but allows for the small discrepancies between object sets that tend 

to arise when working with real data.  Figure 3.5 shows an example which highlights the 

differences between the elastic and non-elastic methods for evaluating object set 

similarity. 
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Figure 3.5  Comparison of elastic and non-elastic methods.  (a) Ground truth image.  (b) The sketch is a 

simplification of (a) with object 𝐷 significantly misplaced.  (c) shows the computation of the non-elastic 

similarity, where the numbers to the left of each histogram represent the individual cross-correlation values.  

For clarity, only the histogram of constant forces is shown, although both the constant and gravitational F-

histograms are used in computing the final similarity.  (d) and (e) show the computation of the elastic 

fitness.  (d) is the weighting function 𝜇𝑇𝑟𝑎𝑝(𝜃) and (e) shows the normalized histograms, where the 

numbers to the right of each histogram represent the weighted cross-correlation values. 
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3.6 Overview of the Evolutionary Algorithm 

The similarity measures defined above offer a way to compare two object sets 

based on their spatial relationships.  This allows us to develop an algorithm to search a 

segmented satellite image for a group of objects which most closely matches an input 

sketch.  Given a sketch 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛), and a reference set ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} in 

which 𝑚 ≫ 𝑛, we begin by constructing the attributed relational graphs 𝐺ℛ and 𝐺𝑆. For 

the sketch 𝑆, 𝐺𝑆 is completely defined with a vertex for each object and the full set of 

𝑛 × (𝑛 − 1) edges.  When constructing 𝐺ℛ, we create a vertex for each object, but only 

define some of the spatial relationships as edges.  Typically, ℛ contains many objects 

spread over a large area.  Since the sketch represents only a small spatial region, we 

restrict the set of outgoing spatial relationships for each object in ℛ to its 𝐾 nearest 

neighbors.  This prunes the search space considerably, eliminating edges between objects 

which are not nearby.  In [Bloch, et al., 2006], several techniques for measuring the 

degree to which an object is between two others were investigated.  Object pairs which 

are too far apart, or have too many objects between themselves can also be excluded from 

the edge list.  These parameters must be chosen carefully ahead of time to ensure that the 

subset of ℛ which we would like to see matched with 𝑆 remains fully connected, so that 

there is an edge relationship between each pair of objects.  Requiring 𝑆 and the 

corresponding subset of ℛ to be complete graphs allows us to treat this as a subgraph 

isomorphism problem rather than a subgraph homomorphism problem.  Our experiments 

use a reference set of 2814 objects with a maximum of 50 neighbor connectivity, shown 

in Figure 3.6, which highlights 𝐺ℛ and the subgraph which matches 𝐺𝑆, the ARG 

representation of the sketch given in Figure 3.1. 
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Figure 3.6  ARG representation of the search space.  (a) 𝐺ℛ, the ARG representation of the reference set 

used in our experiments containing 2814 objects.  The graph is superimposed over the reference set with 

the edges displayed in white.  Buildings are shown in red and parking lots are shown in green.  (b) 𝐺𝑆, the 

ARG representation of the sketch from Figure 3.1, highlighted as a subgraph of 𝐺ℛ. 
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Due to the potentially enormous search space, we have chosen to use an 

evolutionary algorithm to match the sketch to the reference database, as it is visually 

intuitive and can be scaled to many different problem sizes.  An individual solution, or 

chromosome, is a function Γ: 𝑆 → ℛ, represented as Γ = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝑥(𝑖) ∈ ℛ 

such that Γ(𝑜𝑖) = 𝑥(𝑖).  This vector represents the objects of the reference set which could 

potentially correspond to the sketch.  We must take care when constructing Γ to ensure 

that no objects are duplicated and that they are all fully connected to one another.  The 

labels of the sketch objects must also match the labels of the corresponding chromosome 

objects such that 𝐿𝑆(𝑜𝑖) = 𝐿ℛ(𝑥(𝑖)) for 1 ≤ 𝑖 ≤ 𝑛.   

The search algorithm (Figure 3.7) begins by generating a population of 𝜂 random 

individuals 𝑃(0) = (Γ1, Γ2, … , Γ𝜂).  Each random individual solution is chosen by first 

finding the most unique label of the sketch and picking a random object from the 

reference set with the same label.  This object becomes the seed of the chromosome, and 

the remaining objects are chosen randomly from the nearest neighbors of this seed such 

that the labels match the objects of the sketch.  Closer neighbors have a higher likelihood 

of being chosen in order to keep the individual chromosome spatially compact.  If none 

of the seed’s nearest neighbors can satisfy the label requirements of the sketch, a new 

seed is chosen in a different location. 
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Procedure: Evolutionary Spatial Matching Algorithm 

Input:  ℛ and 𝑆 

 Constants: 𝜂, 𝜏, 𝜌 

Initialize: Set 𝑡 = 0 and create initial population of individuals: 𝑃(0) = (Γ1, Γ2, … , Γ𝜂) 

While stopping criteria is not met 

 𝑃(𝑡+1) = 𝑃(𝑡)  

 𝑡 = 𝑡 + 1 

 If 𝑡 is a multiple of 𝜏 

  Replace the lowest scoring fraction 𝜌 of 𝑃(𝑡) with new random individuals 

 Else 

  For each individual Γ𝑃 ∈ 𝑃(𝑡) 

   Generate list of children through mutation: 𝒞 = mutate(Γ𝑃) 

   Select most fit child: Γ𝐶 = arg max
Γ∈𝒞

𝜓(Γ) 

   If 𝜓(Γ𝐶) > 𝜓(Γ𝑃) 

    Replace Γ𝑃 with Γ𝐶 

   End If 

  End For 

 End If 

End While 

Output: Top scoring individuals in 𝑃(𝑡) 

Figure 3.7  Outline of the evolutionary spatial matching algorithm. 

 

After the initial population has been created, we calculate the fitness of each 

individual as 𝜓(Γ) = Ψ(𝒮, Γ) (equation (3.16)) where Γ ∈ 𝑃(0).  During each 

generational cycle of the algorithm, we perform a local improvement in the form of a 

mutation operator on each individual chromosome in the population.  The mutation 

operators described below each take a single parent solution Γ𝑃 as input and return a list 

of possible child solutions, 𝒞 = {Γ1, Γ2, … Γ𝑧}.  We pick the child with the highest fitness 

Γ𝐶 = arg max
Γ∈𝒞

𝜓(Γ) and compare against the parent, Γ𝑃.  Whichever has the higher fitness 

survives to the next generation, ensuring that we always have the best solution in the 

local search space.  Since the individuals are less likely to improve after a certain number 

of generations, and to increase the diversity of the search, we replace the lower scoring 

fraction 𝜌 of the population with new random individuals every 𝜏 generations.  This 
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allows us to continue searching new areas of the search space, while preserving the best 

solutions found thus far.  The search process continues until some stopping criteria is 

met, usually a fitness threshold or a maximum number of generations. 

 

3.7 Mutation Operators 

Mutation operators traditionally play the role of maintaining genetic diversity 

within a population and are often paired with crossover operators to create each 

succeeding generation.  However, crossover operators do not fit well with our 

representation scheme, since we require each individual mapping to be a fully connected 

subgraph.  Combining objects from two separate solutions would likely result in a 

spatially disjoint child, which should be avoided.  The mutation operators must then play 

the role of improving a single solution using a local search strategy.  In this way, we can 

consider our algorithm to be a type of memetic algorithm, using an evolutionary global 

framework with a separate local improvement operator for each individual.  In the 

following sections, four mutation operators for improving the spatial configuration of an 

individual solution to match a target sketch are introduced and an example of their 

application is provided. 

 

3.7.1 Single-Object Replacement 

The single-object replacement (SOR) mutation is based on the work presented in 

[Buck, et al., 2010] and [Buck, et al., 2011].  In this strategy, a single object from the 

parent is replaced by one of its nearest neighbors.  Given a parent mapping function Γ𝑃 =
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(𝑥(1), 𝑥(2), … , 𝑥(𝑛)), we cycle through each object 𝑥(𝑖) ∈ Γ𝑃 and replace it with one of its 

nearest neighbors.  Previous versions of this algorithm randomly picked only a single 

object for replacement; however we found that by testing all parent objects for 

replacement we could improve the matching rate with only a small amount of additional 

overhead.  This strategy of choosing all possible initializations carries over into the set 

reconstruction mutation methods as well.  Let 𝒳 be the set of nearest neighbors for 𝑥(𝑖), 

such that any object 𝑥⋆ ∈ 𝒳 could replace 𝑥(𝑖) in Γ𝑃 and still maintain full connectivity.  

For each neighbor object 𝑥⋆, we build a mapping function Γ′ which is identical to 

Γ𝑃 except that 𝑥(𝑖) has been replaced by 𝑥⋆.  The function with the highest fitness is added 

to the list of children, 𝒞. 

Initial experiments with the SOR mutation operator [Buck, et al., 2010], [Buck, et 

al., 2011] revealed that the algorithm often has difficulty finding the ideal match in a 

region.  Because each chromosome is an ordered set, an individual solution can contain 

all of the objects of the ideal match, but not in the right order.  Successive mutations on 

these solutions will often stall out as objects are swapped with neighboring objects to 

allow for different orderings of the chromosome.  We therefore consider multiple 

different permutations of the parent solution before applying the SOR mutation, which 

produces a larger set of children, but decreases the amount of stalling performed by 

individuals.  Clearly, evaluating all possible permutations would result in a large 

computational overhead, so we typically use only a small number of randomly chosen 

permutations.  This offers a balance between performing an exhaustive search for each 

mutation and maintaining a degree of randomness which helps prevent premature 
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convergence.  The complete SOR mutation method is outlined in Figure 3.8.  Given that 

the complexity of each fitness evaluation is 𝑂(𝑛2𝜔), the SOR mutation has a complexity 

of 𝑂(𝑝𝑛3𝜔𝐾), where 𝑝 is the number of permutations considered, 𝑛 is the number of 

objects in the sketch set, 𝜔 is the number of angles in each F-histogram, and 𝐾 is the 

maximum number of nearest neighbor connections used in the reference set ARG. 

 

Procedure: Single-Object Replacement Mutation 

Input:  Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) 

 Constant: 𝑝 

Initialize: 𝒞 = ∅ 

Add Γ𝑃 to list of permutations, 𝒫 

Add 𝑝 random permutations of  Γ𝑃 to 𝒫 

For Each Γ ∈ 𝒫 

 For 𝑖 = 1 to 𝑛 

  Γ′ = Γ 

  Get the set of nearest neighbors 𝒳 ⊆ ℛ  of the object 𝑥(𝑖) 

  𝜓𝑏𝑒𝑠𝑡 = 0 

  For Each 𝑥⋆ ∈ 𝒳 

   Replace a single object: Γ′(𝑖) = 𝑥⋆ 

   Evaluate the fitness: 𝜓(Γ′) = Ψ(𝑆, Γ′) 

   If 𝜓(Γ′) > 𝜓𝑏𝑒𝑠𝑡 Then 

    𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆ 

   End If 

  End For 

  Replace with best object: Γ′(𝑖) = 𝑥𝑏𝑒𝑠𝑡 

  Add to list of children: 𝒞 = 𝒞 ∪ Γ′ 

 End For 

End For 

Output: 𝒞 

Figure 3.8  Outline of the single-object replacement mutation algorithm. 

 

3.7.2 One-Seed Set Reconstruction 

The set reconstruction methods are based on the idea that the best possible 

solution can be reconstructed from a small starting seed of just one or two objects.  Given 
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sketch set 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛), we define a partial sketch 𝑆′ = (𝑜(1)
′ , 𝑜(2)

′ , … , 𝑜(𝑡)
′ ) ⊂ 𝑆 

which only contains some of the original objects.  Likewise, we define a partial mapping 

function Γ′: 𝑆′ → ℛ with partial fitness 𝜓(Γ′) = Ψ(𝑆′, Γ′), which only considers the 

specified subset of sketch objects.  The idea behind the one-seed mutation method is to 

start with a single object 𝑆′ = (𝑜(1)
′ ) ⊂ 𝑆 and add objects one at a time until we use all of 

the objects in the sketch.  The overall outline of the one-seed set reconstruction method is 

shown in Figure 3.9.  Given a parent mapping function Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), we 

cycle through each object 𝑥(𝑖) ∈ Γ𝑃 and use it as the seed object for a partial sketch.  We 

then consider all possible mappings of the seed object onto an object from the parent, and 

create a partial solution Γ′ for each one.  For each partial solution, we randomly pick an 

unassigned sketch object 𝑜𝑢 ∈ 𝑆 − 𝑜(1)
′  and find the set of nearest neighbors 𝒳 ⊆ ℛ to 

which 𝑜𝑢 could be assigned while maintaining full connectivity.  As with the SOR 

mutation, we create a set of temporary partial mapping functions, each with 𝑜𝑢 assigned 

to a different neighbor object 𝑥⋆ ∈ 𝒳.  The neighbor that produces the greatest partial 

fitness is added to the partial sketch 𝑆′.  We continue to map the unassigned sketch 

objects of 𝑆 to the best neighbor objects in this greedy manner until 𝑆′ = 𝑆.  Once we 

have a complete mapping function, we add it to the list of children, 𝒞. 
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Procedure: One-Seed Set Reconstruction Mutation 

Input:  Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where each 𝑥(𝑖) ∈ ℛ 

Initialize: 𝒞 = ∅ 

Initialize list of index locations: 𝐼 = {1, 2, … , 𝑛} 

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝐿𝑆(𝑜𝑖) = 𝐿ℛ(𝑥(𝑗)) 

 Clear Γ′ 

 Create the partial ordered sketch: 𝑆′ = (𝑜𝑖) 

 Update remaining index locations: 𝐼′ = 𝐼 − 𝑖 
 Define Γ′(𝑜𝑖) = 𝑥(𝑗) 

 Get the set of nearest neighbors 𝒳 ⊆ ℛ of the object 𝑥(𝑗) 

 While |𝐼′| > 0 

  Pick an index 𝑘 ∈ 𝐼′ randomly 

  Add 𝑜𝑘 to the end of the partially ordered sketch: 𝑆′ = (… , 𝑜𝑘) 

  𝜓𝑏𝑒𝑠𝑡 = 0 

  For Each 𝑥⋆ ∈ 𝒳 

   Define Γ′(𝑜𝑘) = 𝑥⋆ 

   Evaluate the partial fitness: 𝜓(Γ′) = Ψ(𝑆′, Γ′) 

   If 𝜓(Γ′) > 𝜓𝑏𝑒𝑠𝑡 Then 

    𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆ 

   End If 

  End For 

  Define Γ′(𝑜𝑘) = 𝑥𝑏𝑒𝑠𝑡 

  Remove this index location: 𝐼′ = 𝐼′ − 𝑘 

  Update 𝒳 as the nearest neighbors of the image of Γ′ 

 End While 

 Add Γ′ to list of children: 𝒞 = 𝒞 ∪ Γ′ 

End For 

Output: 𝒞 

Figure 3.9  Outline of the one-seed set reconstruction mutation algorithm. 

 

The one-seed set reconstruction mutation solves many of the problems faced by 

the SOR mutation operator.  Individuals rarely stall over a valid match without 

converging to a locally optimal solution.  Different orderings of buildings becomes less 

of an issue since the entire mapping function must be reconstructed.  The one-seed 

mutation also tends to converge faster than the SOR mutation since more of the solution 

is being replaced, although this can cause individuals to become trapped in sub-optimal 

local solutions.  The complexity of the one-seed method can be derived as 𝑂(𝑛5𝜔𝐾), 
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which is greater than the SOR method, assuming that only a few permutations are 

considered.  Because of the exponential term on 𝑛, this method is limited to relatively 

small sketch sizes; our experiments use sketches of five objects.  The greater complexity 

of the one-seed method is compensated by the faster convergence rate, which will be 

shown in Chapter 4. 

Given that we always try to recover the best alignment between the sketch and 

each chromosome, each partial solution may be oriented differently from its previous 

version.  As the set reconstruction methods add additional objects, the resulting 

orientation of each partial solution becomes increasingly more difficult to change.  When 

there are only two objects, the partial solution is allowed to rotate to whichever angle best 

matches the corresponding objects of the sketch, essentially relying only on the shape of 

the F-histograms to evaluate the fitness.  This means that the second object of the partial 

solution defines the initial orientation, and the remaining objects must conform to this 

orientation. 

 

3.7.3 Two-Seed Set Reconstruction 

The two-seed set reconstruction mutation method is almost identical to the one-

seed method with the exception that we use two seed objects instead of just one.  By 

using two seeds, we define an edge relationship between two objects, which determines 

the individual’s initial orientation.  This allows a single mutation to explore many 

different possible orientations, but incurs a significant computational overhead.  For a 

parent mapping function Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)), we cycle through each pair of objects 
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(𝑥(𝑖), 𝑥(𝑗)) ∈ Γ𝑃 × Γ𝑃 and use them as the seed objects for a partial sketch.  We then 

consider all possible mappings of the seed objects onto a pair of objects from the parent, 

and create a partial solution, Γ′ for each one.  This results in a complexity of 𝑂(𝑛7𝜔𝐾), 

significantly greater than any of the other methods, but with the advantage of searching 

many more possible mappings.  Again, the high complexity restricts this method to small 

sketch sizes.  Unlike the one-seed method, the two-seed mutation provides the option to 

check individual edges for compatibility.  Although we don’t make use of this property in 

our experiments, one could conceive of a representation in which edges are compared 

directly.  This could greatly reduce the number of possible mappings and the overall 

complexity of the two-seed method.  The remainder of the algorithm is the same as the 

one-seed method and is given in Figure 3.10. 

 



52 

 

Procedure: Two-Seed Set Reconstruction Mutation 

Input:  Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where each 𝑥(𝑖) ∈ ℛ 

Initialize: 𝒞 = ∅ 

Initialize list of index locations: 𝐼 = {1, 2, … , 𝑛} 

For Each (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝑖 ≠ 𝑗 

 For Each (𝑘, 𝑙) ∈ 𝐼 × 𝐼 such that 𝑘 ≠ 𝑙 

  If 𝐿𝑆(𝑜𝑖) ≠ 𝐿ℛ(𝑥(𝑘)) Or 𝐿𝑆(𝑜𝑗) ≠ 𝐿ℛ(𝑥(𝑙)) Then 

   Continue 

  End If 

  Clear Γ′ 

  Create the partial ordered sketch: 𝑆′ = (𝑜𝑖, 𝑜𝑗) 

  Update remaining index locations: 𝐼′ = 𝐼 − {𝑖, 𝑗} 

  Define Γ′(𝑜𝑖) = 𝑥(𝑘) and Γ′(𝑜𝑗) = 𝑥(𝑙) 

  Get the set of nearest neighbors 𝒳 ⊆ ℛ of the image of Γ′ 

  While |𝐼′| > 0 

   Pick an index 𝑚 ∈ 𝐼′ randomly 

   Add 𝑜𝑚 to the end of the partially ordered sketch: 𝑆′ = (… , 𝑜𝑚) 

   𝜓𝑏𝑒𝑠𝑡 = 0 

   For Each 𝑥⋆ ∈ 𝒳 

    Define Γ′(𝑜𝑚) = 𝑥⋆ 

    Evaluate the partial fitness: 𝜓 (Γ′) = Ψ(𝑆′, Γ′) 

    If 𝜓(Γ′) > 𝜓𝑏𝑒𝑠𝑡 Then 

     𝑥𝑏𝑒𝑠𝑡 = 𝑥⋆ 

    End If 

   End For 

   Define Γ′(𝑜𝑚) = 𝑥𝑏𝑒𝑠𝑡 

   Remove this index location: 𝐼′ = 𝐼′ − 𝑚 

   Update 𝒳 as the nearest neighbors of the image of Γ′ 

  End While 

  Add Γ′ to list of children: 𝒞 = 𝒞 ∪ Γ′ 

 End For 

End For 

Output: 𝒞 

Figure 3.10  Outline of the two-seed set reconstruction mutation algorithm. 

 

3.7.4 VF2 Subgraph Isomorphism 

Since the sketch and reference database are both stored as attributed relational 

graphs, it makes sense to use existing graph matching techniques to solve the subgraph 

isomorphism problem.  The entire evolutionary algorithm could in fact be replaced by a 
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general algorithm for locating subgraph isomorphisms; however the feasibility of this 

approach decreases as the size of the search space grows very large.  Instead, we use a 

graph matching algorithm as a local improvement operator in the form of a mutation.  

This allows the size of the graph-based search to remain bounded while the evolutionary 

algorithm handles the overall global search. 

The VF2 algorithm developed by Cordella et al. [Cordella, et al., 2004] is well 

suited for use as a local search mutation operator.  It can handle large graphs and 

evaluates isomorphisms based on node and edge compatibility.  The input to the 

algorithm is a pair of graphs, 𝐺𝑁𝑁 and 𝐺𝑆.  Given a parent mapping function Γ𝑃 =

(𝑥(1), 𝑥(2), … , 𝑥(𝑛)), 𝐺𝑁𝑁 is a subgraph of 𝐺ℛ containing the objects in Γ𝑃 and the 𝑁 

nearest objects to the objects in Γ𝑃.  𝐺𝑆 is the ARG of the sketch being matched.  

Additionally, we must define node and edge compatibility functions.  The VF2 algorithm 

works by performing a tree search in which all possible mappings from 𝐺𝑁𝑁 onto 𝐺𝑆 are 

constructed one node at a time.  The addition of new nodes to the mapping function is 

governed by a set of feasibility rules, which require that new nodes and the edges they 

induce are compatible with each other.  If a node or an induced edge is incompatible, that 

search path is discarded and a new path is considered. 

Fundamentally, the VF2 graph matching algorithm is similar to the set 

reconstruction methods described above.  A small partial mapping is grown one object at 

a time until a complete matching is defined.  In the set reconstruction methods, the object 

which produces the best partial mapping fitness is added to the mapping function, 

whereas in the VF2 algorithm, any object which satisfies the compatibility criteria is 

considered for inclusion.  For the VF2-based mutation, any object which produces a 
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partial mapping function with a partial fitness greater than a given threshold satisfies the 

compatibility criteria.  It should be noted that computation of the partial fitness is 

dependent on the entire partial sketch, not just the new object and the induced edges.  

This is because the addition of a new object can change the overall orientation of the 

sketch, which can have a significant impact on the sketch fitness. 

The VF2 algorithm is guaranteed to find all compatible subgraphs, provided that 

the compatibility of each new node is dependent only on itself and the edges it induces.  

When this is the case, there are 𝑛! ways to build a matching subgraph of 𝑛 nodes.  To 

prevent redundancy, the graph nodes are given arbitrary index values and only nodes with 

index values greater than any of the nodes already present in the partial map are 

considered.  This ensures that each possible subgraph can be reached, but only in one 

order.  In the case of sketch matching, the compatibility of new nodes is dependent on the 

existing partial map, which means that the order in which objects are added can influence 

the partial fitness values at each stage.  If the addition of an object lowers the partial 

fitness value below the given threshold, the search path will be discarded, even if the 

addition of another object would raise the partial fitness above the threshold.  The VF2 

algorithm was not designed to handle such cases, so the compatibility functions must be 

changed to accept a copy of the entire partial solution in addition to the two nodes being 

compared.  We can minimize the risk of missing a compatible subgraph by randomizing 

the index order of the nearest neighbor graph and repeating the search with multiple 

fitness thresholds.  If a compatible subgraph is not found using a high initial threshold, 

the search is repeated with a new random index order and a lower fitness threshold.  

Eventually the threshold will be low enough that at least one compatible subgraph is 
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found.  The results of the graph matching algorithm are returned as child solutions.  The 

entire VF2 subgraph isomorphism mutation method is given in Figure 3.11. 

 

Procedure: VF2 Subgraph Isomorphism Mutation 

Input:  Sketch: 𝑆 = (𝑜1, 𝑜2, … , 𝑜𝑛) 

 Reference set: ℛ = {𝑥1, 𝑥2, … , 𝑥𝑚} 

 Parent: Γ𝑃 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) where each 𝑥(𝑖) ∈ ℛ 

 Constants: 𝜓min, 𝛿, 𝑁 

Initialize: 𝒞 = ∅ 

Construct the graph 𝐺𝑆 from the sketch 𝑆 

While 𝒞 = ∅ 

 Get the set of 𝑁 nearest neighbors 𝒳 ⊆ ℛ of the parent Γ𝑃 

 Shuffle the order of 𝒳 

 Construct the graph 𝐺𝑁𝑁 from 𝒳 

 Run the VF2 algorithm on 𝐺𝑁𝑁 and 𝐺𝑆 using fitness threshold 𝜓min 

 Add the results to 𝒞 

 Let 𝜓min = 𝜓min − 𝛿 

End While 

Output: 𝒞 

Figure 3.11  Outline of the VF2 subgraph isomorphism mutation algorithm. 

 

3.7.5 Mutation Example 

We now present an example which demonstrates each mutation process as a 

chromosome converges to the ideal solution.  Figure 3.12a shows an example search 

space containing 11 buildings shown in red, and 3 parking lots shown in green, which 

form the reference set.  The reference set ARG is computed with an edge between every 

pair of objects.  The sketch in Figure 3.12b is a simplified representation of the five 

objects in the lower-left of the reference set, rotated one quarter-turn.  Our goal is to 

recover the mapping function Γ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) from a random initialization. 
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Figure 3.12  Reference set and sketch used in the mutation example.  (a) The ground truth used as the 

reference set.  (b) The sketch to be matched. 

 

Suppose that after initializing the algorithm, the population consists of the four 

individuals given in Figure 3.13. 

 

Penultimate Population 

Γ1 = (𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11) 

Γ2 = (𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7) 

Γ3 = (𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8) 

Γ4 = (𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2) 

 

Figure 3.13  Penultimate population of the mutation example. 

 

Notice that because the third object in the sketch is a parking lot, all of the chromosomes 

must also have a parking lot as the third object.  A different mutation operator will be 



57 

 

applied to each chromosome in this example to demonstrate how each one converges to 

the ideal solution. 

The SOR mutation is applied to Γ1 = (𝑥12, 𝑥10, 𝑥9, 𝑥4, 𝑥11), with the main events 

which lead to convergence shown in Figure 3.14.  First, several permutations of Γ1 are 

chosen, of which Γ′ = (𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10) is the specific permutation which could 

potentially match the sketch.  Only a single object is incorrect, and as we cycle through 

each object to test for replacement, we find that replacing 𝑥4 with 𝑥7 produces a child 

chromosome with very high fitness, which is returned as the child. 

 

SOR Mutation on Γ1 

Permute Γ′ = (𝑥4, 𝑥12, 𝑥9, 𝑥11, 𝑥10)  

Pick a single object 𝑐𝑖 = 𝑥4  

Get list of possible replacements 𝒳 = {𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥13, 𝑥14}  

Find best replacement 𝑥𝑏𝑒𝑠𝑡 = 𝑥7  

Replace 𝑐𝑖 with 𝑥𝑏𝑒𝑠𝑡 Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10)  

  

Figure 3.14  Example of the SOR mutation method. 

 

The one-seed mutation is applied to Γ2 = (𝑥2, 𝑥5, 𝑥1, 𝑥4, 𝑥7) with the main events 

leading to convergence shown in Figure 3.15.  Each object in the sketch is evaluated as 

the seed object, and when 𝑜1 is assigned to the chromosome object 𝑥7, the remaining 

objects can be assigned one at a time such that the ideal solution is recovered.  Similarly, 

the two-seed mutation is applied to Γ3 = (𝑥11, 𝑥6, 𝑥3, 𝑥7, 𝑥8) in Figure 3.16.  Note that in 

this case, two sketch objects must already be assigned to the ideal reference objects in 

order for a complete convergence to occur in a single mutation.  This occurs in this 
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example when 𝑜1 is assigned to 𝑥7 and 𝑜4 is assigned to 𝑥11, allowing the ideal solution 

to be formed by adding the remaining objects one at a time. 

 

One-Seed Mutation on Γ2 

Pick the seed object Γ′(𝑜1) = 𝑥7  

Get list of neighbor objects 𝒳 = {𝑥1, … , 𝑥6, 𝑥8, … , 𝑥14}  

Pick next sketch object randomly 𝑜𝑘 = 𝑜4  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥11  

Update chromosome Γ′(𝑜4) = 𝑥11  

Pick next sketch object randomly 𝑜𝑘 = 𝑜5  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10  

Update chromosome Γ′(𝑜5) = 𝑥10  

Pick next sketch object randomly 𝑜𝑘 = 𝑜3  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9  

Update chromosome Γ′(𝑜3) = 𝑥9  

Pick next sketch object randomly 𝑜𝑘 = 𝑜2  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12  

Update chromosome Γ′(𝑜2) = 𝑥12  

Return child Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10)  

  

Figure 3.15  Example of the one-seed set reconstruction mutation method. 
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Two-Seed Mutation on Γ3 

Pick the two seed objects Γ′(𝑜1) = 𝑥7 and Γ′(𝑜4) = 𝑥11 

Get list of neighbor objects 𝒳 = {𝑥1, … , 𝑥6, 𝑥8, … , 𝑥10, 𝑥12, … , 𝑥14}  

Pick next sketch object randomly 𝑜𝑘 = 𝑜3  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥9  

Update chromosome Γ′(𝑜3) = 𝑥9  

Pick next sketch object randomly 𝑜𝑘 = 𝑜2  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥12  

Update chromosome Γ′(𝑜2) = 𝑥12  

Pick next sketch object randomly 𝑜𝑘 = 𝑜5  

Find best match for this object 𝑥𝑏𝑒𝑠𝑡 = 𝑥10  

Update chromosome Γ′(𝑜5) = 𝑥10  

Return child Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10)  

  

Figure 3.16  Example of the two-seed set reconstruction mutation method. 

 

The VF2 subgraph isomorphism mutation is applied to Γ4 = (𝑥4, 𝑥5, 𝑥3, 𝑥6, 𝑥2) 

with the main events listed in Figure 3.17.  First, the graph of the sketch is built, which 

can be saved for use in later mutations.  The neighbor objects of the parent are then 

shuffled and used to create the neighbor graph.  These graphs are used as the input to the 

VF2 algorithm, which returns all subgraphs of the neighbor graph which match the sketch 

graph above a given threshold.  Of these, the ideal solution is returned as the best child.  

Notice that unlike the previous methods, the parent does not need to contain any of the 

objects found in the child, allowing the VF2 algorithm to have the largest local search 

space. 
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VF2 Subgraph Isomorphism Mutation on Γ4 

Build the sketch graph 𝐺𝑆 = (𝒪, 𝐸𝒪 , 𝐿𝒪, 𝐻𝒪)  

Get list of neighbor objects 𝒳 = {𝑥1, 𝑥2 … , 𝑥14}  

Shuffle the order 𝒳 = shuffle(𝒳)  

Build the nearest neighbor graph 𝐺𝑁𝑁 = (𝒳, 𝐸𝒳 , 𝐿𝒳 , 𝐻𝒳)  

Run VF2 algorithm 𝒞 = match(𝐺𝑁𝑁, 𝐺𝑆)  

Return best child Γ′ = (𝑥7, 𝑥12, 𝑥9, 𝑥11, 𝑥10) ∈ 𝒞  

  

Figure 3.17  Example of the VF2 subgraph isomorphism mutation method. 
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4 EXPERIMENTS AND RESULTS 

4.1 Experiment Setup 

To verify its applicability on real data, the evolutionary algorithm developed in 

Chapter 3 is tested with a ground truth satellite image of Columbia, MO.  The image was 

hand segmented into a reference set ℛ of 2467 buildings and 378 parking lots, shown in 

Figure 4.1.  The reference set contains several different types of regions including some 

urban, suburban, and rural areas arranged in both structured road grids and less structured 

residential areas.  The reference ARG 𝐺ℛ (Figure 3.6) was built by calculating the HoF 

relationships between each object and its 50 nearest neighbors, provided that the two 

objects are within 500 pixels of each other and do not contain more than five other 

objects in between.  The latter two restrictions further reduce the overall size of the 

search space by removing relationships that are unlikely to match to locally confined 

sketches.  The F-histograms were calculated using a 2 degree interval, which provides 

enough information to distinguish most spatial configurations.  All of the calculations 

required to build 𝐺ℛ were performed a priori, leaving only the input sketch ARG to be 

computed for each search. 
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Figure 4.1  The reference set ℛ used in the experiments.  The set contains 2467 buildings shown in red and 

347 parking lots shown in green from downtown Columbia, MO and the University of Missouri campus. 

 

The experiments are divided into two categories, based on the type of sketch 

being matched.  The first is a simple resubstitution search, in which the sketch is taken 

directly from the reference database, without modification.  This serves to show that the 

algorithm can search the large reference set for an exact copy of the sketch.  Examples of 

resubstitution sketches are given in Figure 4.2.  The resubstitution sketches for the 

experiments are randomly generated and each contains a set number of objects, which 

can be either buildings or parking lots.  They are generated by first selecting a single seed 

object at random from the reference set.  All of the connected neighbor objects of this 

seed are sorted by distance and used to create the rest of the sketch.  Each remaining 

object is chosen from the list of neighbors, with the closest object having a 50% chance 

of being picked, the second having a 25% chance, the third having a 12.5% chance, etc.  
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This ensures that the sketch is relatively compact, while still allowing for random 

variation.  Each pair of objects in the sketch must have a relationship defined in 𝐺ℛ to 

ensure full connectivity.  If a suitable set of objects cannot be found for a given seed, a 

new seed is randomly chosen. 

 

 

Figure 4.2  Examples of resubstitution sketches.  (a) Original ground truth.  (b) Resubstitution sketch. 

 

The second experiment type uses simplified sketches.  These are resubstitution 

sketches that have been simplified by reducing each object to its bounding box and 
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applying a random rotation to the entire sketch.  When two objects’ bounding boxes 

intersect, one object overwrites part of the other.  The object with the most common label 

in the reference set overwrites the other, which for our experiments allows buildings to be 

completely surrounded by parking lots.  If the two objects have the same label, the one 

with the greater extent (ratio of original area to bounding box area) overwrites the other.  

If through the simplification process an object is completely overwritten, a new 

resubstitution sketch is chosen to be simplified.  These simplified sketches show how the 

algorithm can handle the imperfections and misalignments of actual hand-drafted 

sketches and yet provide the ability to accurately score the results.  Examples of 

simplified sketches are given in Figure 4.3. 
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Figure 4.3  Examples of simplified sketches.  (a) Original ground truth.  (b) Simplified sketch. 

 

4.2 Comparison of the Mutation Methods 

The first experiment performed compares the four different mutation operators 

using both resubstitution and simplified sketches.  For each type of sketch, 100 random 

test sets were created, each containing five objects.  They may contain any combination 

of buildings and parking lots, and are guaranteed to be a complete subgraph of 𝐺ℛ.  For 

each test set, the search algorithm is run 30 times using each mutation operator.  This 

results in 3000 searches for each type of mutation.  The specific algorithm parameters are 
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chosen to reflect the differences between each mutation operator and are summarized in 

Table 4.1.  The SOR mutation method uses a population size of 𝜂 = 50 individuals with 

a replacement rate of 𝜏 = 50 generations and 𝜌 = 50%.  Additionally, the SOR mutation 

method evaluates five different permutations of the parent chromosome with each 

mutation operation.  The set reconstruction methods use the same population size as the 

SOR method, but with a more aggressive replacement rate of 𝜏 = 10 generations and 𝜌 =

80%.  These parameters were chosen after some initial experimentation, which indicated 

that the set reconstruction methods would often converge to locally optimal solutions 

much faster than the SOR method, often within only a few generations.  The aggressive 

replacement strategy allows new solutions to compete against older stalled individuals 

more often, improving the overall rate of convergence.  The lower replacement frequency 

of the SOR mutation method provides more time for individuals to perform a local 

search, since this method makes smaller incremental changes than the set reconstruction 

methods.  The VF2 subgraph isomorphism mutation method uses a much smaller 

population size of 𝜂 = 10 with a replacement rate of 𝜏 = 2 generations and 𝜌 = 80%.  

Because the VF2 algorithm locates all matching subgraphs in a local neighborhood, there 

is no need to repeat the mutation multiple times in the same area.  After each generation, 

only the top two individuals are retained.  The rest of the population is replaced with new 

random individuals.  The VF2 method uses a neighborhood size of 50 objects and an 

initial fitness threshold of 𝜓min = 0.95.  This threshold is decremented by 𝛿 = 0.05 after 

each local search that returns no children. 
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Table 4.1  Mutation Method Comparison Search Parameters 

Mutation 

Method 

Population 

Size (𝜂) 

Replacement 

Frequency (𝜏) 

Replacement 

Percent (𝜌) 

SOR 50 50 Generations 50% 

1-Seed 50 10 Generations 80% 

2-Seed 50 10 Generations 80% 

VF2 10 2 Generations 80% 

 

For each search, we use the elastic angle object set comparison method with a 

maximum search time of 1000 generations.  In an application setting, a minimum fitness 

threshold would be an appropriate termination criterion, which continues searching until 

at least one individual in the population has a fitness value greater than or equal to the 

threshold.  However, this could terminate before the ideal match is found if the threshold 

is poorly chosen or if the ideal match does not have the highest fitness value.  We 

therefore terminate the search only after at least one individual in the population is found 

to be identical to the correct ground truth match, or after the maximum number of 

generations has been reached, in order to measure the actual search time required to find 

the ideal match. 

 

4.2.1 Resubstitution 

The results of the mutation comparison experiment using resubstitution sketches 

are shown in Table 4.2, and Figure 4.4.  This experiment clearly shows that the SOR 

mutation method simply cannot perform as well as the set reconstruction methods or the 

VF2 algorithm.  It only finds the ideal match 51.9% of the time and takes much more 

time to run that any of the other methods.  This is largely because of the small 

incremental changes that are made with each mutation.  As was shown in [Buck, et al., 
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2010], the SOR mutation method requires a large population size and a high generation 

limit.  In that study, the SOR mutation method was used with population sizes ranging up 

to 1000 individuals and with a 10,000 generation limit.  With these parameters, the SOR 

mutation was able to find the ideal match 94.8% of the time, however at the cost of 

greatly increased runtime. 

The set reconstruction methods make much more drastic changes than the SOR 

method during each mutation step, allowing them to converge more quickly and also 

escape local minima with less effort.  The one-seed mutation method performed well, 

finding the ideal match every time and requiring the fewest generations of all the 

methods.  The two-seed mutation method found the ideal match for almost all of the tests, 

but took significantly longer to converge.  This is to be expected due to the additional 

computational overhead of using a second seed.  It should also be noted that for all of the 

methods except the SOR mutation, the average number of generations and runtime is 

greater than the median value, implying that a majority of the test sketches were easy to 

find, with only a few difficult ones. 

The best method for the resubstitution experiments is the VF2 subgraph 

isomorphism mutation method.  Like the one-seed method, the VF2 method found all of 

the test sets in the reference database, and with the fastest runtime of any of the mutation 

methods.  The deterministic nature of the VF2 algorithm allows it to search a local 

neighborhood only one time before moving on to a new location.  This proves to be a 

very efficient strategy, requiring fewer redundant calculations than the set reconstruction 

or SOR mutation methods. 
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Figure 4.4 graphs the results of the resubstitution experiments.  In Figure 4.4 (a) 

and (b), the maximum and mean population fitness values are plotted for each generation, 

averaged over all of the tests.  Figure 4.4a shows that the top fitness values increase very 

quickly and then level off, implying that reasonable, though perhaps not ideal, solutions 

can be found very quickly using any of the mutation methods.  Figure 4.4b gives the 

average fitness value of the population, showing the drops which occur at regular 

intervals corresponding to the replacement rates of the algorithms.  The SOR method can 

be seen to have the slowest improvement rate of any of the methods, which explains its 

low score.  In Figure 4.4 (c) and (d), the average number of generations and runtime for 

each method is plotted for each test.  Since the mutation methods each use different 

parameters, the runtime is a more reliable comparison criteria than the number of 

generations, which can be misleading.  The VF2 algorithm performed the best for almost 

all the tests, and the SOR mutation method did the worst. 

 

Table 4.2  Mutation Method Comparison with Resubstitution Sketches Results 

Mutation 

Method 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

SOR 51.9% 652 931 2594 2865 

1-Seed 100% 14 5 159 44 

2-Seed 99.4% 36 12 1703 494 

VF2 100% 17 9 40 14 
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Figure 4.4  Results of the resubstitution experiments.  (a) Top fitness value per generation.  (b) Average 

fitness value per generation.  (c) Average generations to convergence per test.  (d) Average runtime to 

convergence per test. 

 

Figure 4.5 shows two examples of the resubstitution experiment.  In both 

examples, a set of five objects is chosen from the reference set for use as the ground 

truth.  These objects are copied directly into the sketch and used for matching with each 

of the three mutation methods.  The top five results found over all runs of each set are 

listed with their respective fitness values.  The top match for each experiment is the ideal 

recovered match and the remaining results all share a similar spatial configuration.  For 
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example, the second-best result of the first set in Figure 4.5 could match the sketch via a 

180° rotation.  The building which is completely surrounded by a parking lot in the 

sketch is surrounded on three sides in the second-best match and nearly all four sides in 

the fourth-best match.  The second example set in Figure 4.5 produced very high scoring 

results, which could each match the sketch with a rotation. 

 

 

Figure 4.5  Examples of top matches for the resubstitution sketches.  Buildings are shown in red and 

parking lots are shown in green.  In both examples, the top match is the correct mapping to the ground truth 

set, and the remaining high scoring matches all share similar spatial configurations. 

 

4.2.2 Simplified Sketches 

The results of the mutation comparison experiment using simplified sketches are 

given in Table 4.3 and Figure 4.6.  Again, the SOR mutation method performed rather 

poorly, and all of the methods had lower convergence rates and longer search times with 

the simplified sketches than with the resubstitution sketches.  This can be attributed to the 

more complex search that occurs when the sketch does not perfectly match the ground 

truth.  The one-seed method found the highest number of ideal matches, although the 

VF2 algorithm had the fastest average runtime.  An interesting result is the particularly 
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long runtime of the two-seed set reconstruction mutation.  The two-seed method 

converged to the correct match slightly less often than the one-seed method, which 

implies that the greater complexity of the two-seed method is unjustified.  Although the 

two-seed method considers all possible edge assignments, the single starting seed of the 

one-seed method appears to be sufficient for matching even the simplified sketch 

configurations.  Arguably, the added flexibility of the elastic angle object set comparison 

method allows the one-seed method to handle arbitrary orientations of the sketch sets.  

However, not all of the test sets were easy to find.  The significant difference between the 

mean and median number of generations and the total runtime of the set reconstruction 

methods shows that they both have difficulty finding the ideal match for a small portion 

of the test sets.  This is also shown by the sudden rise in runtime and generations to 

convergence for the last few tests in Figure 4.6c and Figure 4.6d. 

 

Table 4.3  Mutation Method Comparison with Simplified Sketches Results 

Mutation 

Method 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

SOR 49.1% 681 1000 3127 3710 

1-Seed 97.0% 60 12 539 103 

2-Seed 96.5% 81 21 6404 1231 

VF2 94.0% 81 11 216 19 
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Figure 4.6  Results of the experiments with simplified sketches.  (a) Top fitness value per generation.  (b) 

Average fitness value per generation.  (c) Average generations to convergence per test.  (d) Average 

runtime to convergence per test. 

 

Figure 4.7 shows two examples of experiments with simplified sketches.  The 

ground truth sets are chosen in the same way as the resubstitution experiments, and each 

sketch is created by simplifying and rotating the objects.  The sketches are then matched 

back onto the reference set using each of the mutation operators.  The top five results 

found for each sketch are listed along with their corresponding fitness values.  In the first 

example, the top match is the ideal mapping to the ground truth, and the remaining high-



74 

 

scoring results all share a similar spatial configuration.  The orientation of the set with 

respect to the sketch has little impact on the fitness value.  The second example shows a 

set which did not converge to the ideal match, although all of the top-scoring results have 

a similar spatial configuration with the sketch.  The ideal match for this configuration has 

a fitness of 0.976 due to the simplification process, which is lower than the fitness of the 

results shown.  This indicates that although the search was unable to meet our criteria of 

finding the actual ground truth location, it was able to provide several alternate locations 

with high fitness. 

 

 

Figure 4.7  Examples of top matches for the simplified sketches.  Buildings are shown in red and parking 

lots are shown in green.  The top match is the correct mapping to the ground truth set in the first example, 

whereas the ideal match is not one of the top scoring matches for the second example.  All of the top 

matches for each example share a similar spatial configuration. 

 

4.3 Impact of Sketch Size 

The results of the first experiment show that the best mutation methods are the 

one-seed set reconstruction method and the VF2 subgraph isomorphism method.  Both of 

these had very high convergence rates and relatively short runtimes.  The second 
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experiment investigates the impact of the number of objects in the sketch using these two 

mutation methods.  For sketch sizes of 4, 6, 8, 10, and 12 objects, 100 resubstitution and 

100 simplified sketches are created from the Columbia reference database.  Each sketch 

is matched using both the one-seed and VF2 mutation operators 10 times apiece.  

Altogether, this results in 1000 searches with each mutation operator for each sketch size.  

The algorithm parameters are identical to the first experiment, with the exception of a 

100 generation limit rather than 1000 generations.  This is done to limit the total search 

time for particularly large sketches.  Again, the elastic angle method is employed and the 

search stops if the ideal match is found.  

 

4.3.1 Resubstitution 

The results of the sketch size experiment using resubstitution sketches are given 

in Table 4.4.  The table shows some interesting trends, some of which are expected, while 

others are not.  In general, both mutation methods had high convergence rates for sketch 

sizes less than 10 objects, and performed worse for larger sketches.  The one-seed method 

had slightly higher convergence rates for all but the smallest sketch size of 4 objects.  The 

search times increase exponentially as the sketch size increases.  For 8 objects or fewer, 

the VF2 method ran the quickest, however for more than 8 objects, the one-seed method 

was faster.  There is a significant disparity between the runtimes and convergence rates of 

the two mutation methods for 12 objects, implying that the one-seed mutation method is 

better suited for handling large sketch sizes. 
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Table 4.4  Sketch Size Comparison with Resubstitution Sketches Results 

Mutation 

Method 

Number of 

Objects in Sketch 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

1-Seed 

4 95.1% 22 11 89 40 

6 98.5% 12 3 207 40 

8 99.6% 9 2 494 83 

10 94.8% 13 2 1258 150 

12 86.2% 20 2 3304 502 

VF2 

4 98.7% 16 9 26 10 

6 96.6% 19 11 81 24 

8 98.1% 19 11 189 62 

10 90.8% 26 13 1777 563 

12 76.5% 39 23 4986 2617 

 

Figure 4.8 shows how the fitness values of the population change over time for 

each sketch size.  The trends are very similar to the mutation comparison experiment, 

where the top fitness value rises very quickly and then levels off.  Large sketch sizes 

result in lower fitness values overall, and a greater disparity between the two mutation 

methods.  The one-seed method consistently has the same or higher fitness values than 

the VF2 method for all sketch sizes.  Figure 4.9 shows the impact of sketch size on search 

time and generations required for convergence.  The graphs show that larger sketches 

take longer to converge and require more generations.  The largest sketch sizes of 10 and 

12 objects had some tests which failed to converge at all.  Apart from these few tests, the 

number of generations required for the VF2 algorithm increased as the sketch size 

increased, whereas the number of generations for the one-seed actually decreased.  This 

shows that the one-seed method is particularly well suited for handling large sketch sizes, 

whereas the VF2 method does better for small sketches.  This is reflected in the search 

times, where the VF2 method performs faster for all but the largest sketches. 
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Figure 4.8  Impact of sketch size on fitness values for resubstitution sketches. 
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Figure 4.9  Impact of sketch size on convergence time for resubstitution sketches. 
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4.3.2 Simplified Sketches 

The results of the sketch size experiments using simplified sketches are given in 

Table 4.5.  Recall that the sketches for each sketch size are generated independently for 

both the resubstitution and simplified cases, so one should be careful when comparing the 

two cases directly.  Overall, the trends for the simplified sketches are similar to the 

resubstitution sketch results, but more prominent.  The convergence rates are lower 

across the board, which should be expected due to the simplification process.  An 

interesting trend that was less visible with resubstitution sketches shows that very small 

sketches can be difficult to match.  For sketches with only 4 objects, both the one-seed 

and the VF2 mutation methods found about 80% of the test sketches.  While not as good 

as the resubstitution sketches, this is still a fairly high recall rate and could still produce 

results valuable to a human analyst.  The lower convergence rates for small sketches may 

be because there are many configurations which could potentially match just 4 objects.  

Likewise, this might explain why there is an increase in convergence rates for very large 

sketches with 12 objects.  There are fewer object configurations in the reference database 

which have compatible labels and are fully connected for large sketches, which reduces 

the size of the search space. 
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Table 4.5  Sketch Size Comparison with Simplified Sketches Results 

Mutation 

Method 

Number of 

Objects in Sketch 

Percent 

Found 

Average 

Generations 

Median 

Generations 

Average 

Time (s) 

Median 

Time (s) 

1-Seed 

4 80.6% 36 18 151 60 

6 95.6% 16 5 318 84 

8 93.4% 18 5 771 194 

10 81.7% 28 7 2171 693 

12 87.2% 20 3 4317 874 

VF2 

4 80.4% 32 15 97 18 

6 94.3% 22 11 143 48 

8 86.0% 31 17 744 206 

10 69.2% 43 23 5927 1308 

12 78.8% 38 20 11009 3506 

 

Figure 4.10 again shows the effect of sketch size on the population fitness values 

over time.  The graphs are very similar to the resubstitution results in Figure 4.8 with 

lower fitness values in general for larger sketches and the one-seed method 

outperforming the VF2 in terms of population fitness.  Figure 4.11 shows how the 

simplified sketches performed in terms of runtime and generations required to converge.  

The trends are similar to the resubstitution experiments in Figure 4.9, but requiring more 

time and generations, as verified by Table 4.5.  A greater percentage of sketches failed to 

converge, as indicated by the large jumps in the average generation plots toward the last 

few tests for each sketch size.  This is likely due to the rough simplification, which may 

make it difficult to ever recover the original ground truth location.  The one-seed method 

again requires fewer generations, but takes more time for all but the largest sketch sizes.  

From these results, we can conclude that an ideal sketch size contains about 6 objects.  

With this size sketch, the VF2 mutation method provides the fastest search, although the 

one-seed method may produce higher scoring results.  As the sketch size increases, the 

one-seed mutation method is preferable as the VF2 method quickly becomes intractable.  
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One possible strategy for matching a large sketch would be to break it into smaller sub-

sketches and match each of these individually.  However, this brings additional problems 

such as determining the best sub-sketches to use and how to recombine them into a 

complete solution. 
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Figure 4.10  Impact of sketch size on fitness values for simplified sketches. 
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Figure 4.11  Impact of sketch size on convergence time for simplified sketches  
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4.4 Real-World Example 

As a final example of the usefulness of the matching framework we have 

developed, consider the following example.  The sketch in Figure 4.12 was hand-drafted 

to indicate a particular region of the Columbia reference image.  The sketch was used as 

the input to the matching algorithm using the one-seed mutation method, a population 

size of 50 individuals, and a 10 generation limit.  These parameters limit the search time 

to an amount reasonable to a human analyst.  The top 10 matches found after 10 

generations are shown in Figure 4.13.  The top result is, in fact, the location that the 

sketch is intended to represent, rotated 90 degrees.  The remaining results all share a 

similar configuration, with seven buildings and a parking lot.  Some of the results are 

rotated to odd angles, but if the underlying road network and individual building 

orientations are ignored, one could imagine that the sketch might be matched to these 

results. 

The invariance to rotation and the individual object shapes is one of the key 

characteristics of this matching algorithm.  Significant simplifications have been made to 

both the size and shape of the sketch objects, yet the algorithm is still able to find the 

ideal matching location using relative directional spatial relationships.  One future 

challenge for this work will be to incorporate road networks and other object features to 

help guide the search and ensure that the results make sense. 
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Figure 4.12  Hand-drafted example sketch. 

 

 

Figure 4.13  Top 10 matching locations of the real-world example sketch. 
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5 CONCLUSION 

Spatial relationships play an important role in describing scene configurations.  A 

sketch can be described solely in terms of the spatial relationships between objects and 

still contain enough information to locate a matching copy within a large geospatial 

database.  The evolutionary framework we have developed performs this search and 

provides many adjustable parameters to satisfy specific problem constraints.  Each of the 

mutation operators provides a different search strategy which affects the performance of 

the algorithm.  It was determined through experimentation that the one-seed set 

reconstruction method and the VF2 subgraph isomorphism hybrid method provide the 

fastest and most reliable searches.  The VF2 method is optimized for small sketch sizes, 

whereas the one-seed method performs better for large sketches.  Both methods have very 

high convergence rates and will yield high-scoring matches very quickly, even if the ideal 

match cannot be found. 

The matching algorithm sits at the end of the T2S pipeline, allowing sketches 

which are created from linguistic descriptions to be matched onto actual ground truth 

satellite imagery.  This has many applications in the geospatial intelligence community, 

such as locating a person from just a linguistic description of his or her surroundings.  

Future work in this area may incorporate additional reasoning abilities to be able to infer 

a person’s intent or future location. 

The evolutionary framework of the matching algorithm suggests that it will be 

able to scale up to reference databases several orders of magnitude larger than the one 

used for these experiments.  At these scales, it may be helpful to include additional 
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matching criteria beyond simple spatial relationships.  In urban and suburban 

environments, road networks can provide a useful constraint for allowable match 

locations, and additional labels can help to quickly limit the search space.  For example, 

sketches containing more descriptive labels such as, “restaurant”, “church”, or “house” 

could restrict searches to certain areas. 

It seems advisable to continue the use of fuzzy methods in designing future search 

algorithms.  The inherent ambiguity of building a sketch from linguistic descriptions and 

matching it to a real-world location requires techniques which can handle uncertainty.  As 

additional features are added as search criteria, a fuzzy aggregation operator can be used 

to determine a single matching score.  Although the methods here are presented 

specifically for the case of matching geospatial objects, they could be applied to any 

problem in which a specific spatial configuration is to be found from within a much 

larger database of objects. 
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