On the Ternary Spatial Relation "Between"

Isabelle Bloch, Olivier Colliot, and Roberto M. Cesar, Jr. IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 36, No. 2, April 2006

Our Goal

- We are interested in answering two questions:
- What is the region of space located between two objects A_{1} and A_{2} ?
- To what degree is B between A_{1} and A_{2} ?

Fig. 1. Is the object B between A_{1} and A_{2}, and to which degree?

Outline

- Existing Definitions
- Convex Hull
- Morphological Dilations
- Visibility
- Satisfaction Measure
- Properties
- Examples

Existing Definitions

- Merriam-Webster Dictionary defines between as "In the time, space, or interval that separates."
- Some crisp approaches:
- A point is between two objects if it belongs to a segment with endpoints in each of the objects.

Existing Definitions

- Another crisp approach:
- Using bounding spheres, B is between A_{1} and A_{2} if it intersects the line between the centroids of A_{1} and A_{2}.

Fig. 3. Sphere B is between spheres A_{1} and A_{2} [11].

Fig. 1. Is the object B between A_{1} and A_{2}, and to which degree?

Existing Definitions

- Fuzzy approaches:
- For all $a_{1} \in A_{1}, a_{2} \in A_{2}, b \in B$ calculate the angle θ at b between the segments $\left[b, a_{1}\right]$ and $\left[b, a_{2}\right]$. Define a function $\mu_{\text {between }}(\theta)$ to measure the degree to which b is between a_{1} and a_{2}.

Fig. 4. Illustration of the function $\mu_{\text {between }}(\theta)$ proposed in [12] (α is a parameter expressing the tolerance in the idea of between).

Fig. 5. Example where the definition of [12] hardly corresponds to intuition (Θ corresponds to the average angle and is significantly smaller that π, while B would be intuitively considered completely between A_{1} and A_{2}).

Existing Definitions

- Using the histograms of forces:
- The spatial relationship between two objects can be modeled with force histograms, which give a degree of support for the statement, "A is in direction θ from B."

(a)

(b)

(c)

Fig. 6. Force histograms. Physical interpretation and examples. (a) $\varphi^{\mathrm{AB}}(\theta)$ is the scalar resultant of elementary forces (black arrows). Each one tends to move B in direction θ. (b) The histogram of constant forces associated with (A, B) is one possible representation of the position of A relative to B. (c) The histogram of gravitational forces associated with (A, B) is another possible representation.

Existing Definitions

From P. Matsakis and S. Andréfouët, "The Fuzzy Line Between Among and Surround," in Proc. IEEE FUZZ, 2002, pp. 1596-1601.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 6. Degree to which H^{α} describes a "between" situation.
(a) $b^{\alpha}(A, B)=1$. (b) $b^{\alpha}(A, B)=1$. (c) $b^{\alpha}(A, B) \approx 0.4$.
(d) $b^{\alpha}(A, B)=0$. (e) $b^{\alpha}(A, B) \approx 0.5$. (f) $b^{\alpha}(A, B) \approx 0.8$.

$$
\begin{aligned}
& q=2 \Rightarrow b^{\alpha}(A, B)=\min \left(1, k \frac{z_{2}}{z_{1}}, k^{\prime} \frac{y_{1}}{\pi}, k^{\prime} \frac{y_{2}}{\pi}\right) \\
& q>2 \Rightarrow b^{\alpha}(A, B)=\min \left(1, k \frac{z_{2}}{z_{1}}, k^{\prime} \frac{y_{1}}{\pi}, k^{\prime} \frac{y_{2}}{\pi}, \max \left(0,1-k^{\prime \prime} \frac{z_{3}}{z_{2}}\right)\right)
\end{aligned}
$$

Existing Definitions

- Limitations of this approach:
- Considers the union of objects, rather than their individual areas.

Fig. 6. Illustration of the definition of [13]. (a) A case of ambiguity: $A=A_{1} \cup A_{2} \cup A_{3}$ and B are considered to satisfy the relation according to this definition, while B is between A_{2} and A_{3}, but not between A_{1} and A_{2}. (b) A case with a nonvisible concavity where, again, the relation is satisfied according to this definition with a nonzero degree.

Convex Hull

- For any set X, its complement X^{C}, and its convex hull $\mathrm{CH}(\mathrm{X})$, we define the region of space between objects A_{1} and A_{2} as $\beta\left(A_{1}, A_{2}\right)$.
$\beta_{C H}\left(A_{1}, A_{2}\right)=C H\left(A_{1} \cup A_{2}\right) \cap A_{1}^{C} \cap A_{2}^{C}=C H\left(A_{1} \cup A_{2}\right) \backslash\left(A_{1} \cup A_{2}\right)$

Fig. 9. Definition from convex hull: The dashed area corresponds to $\beta\left(A_{1}, A_{2}\right)$. (Color version available online at http://ieeexplore.ieee.org.)

Convex Hull

- Components of $\beta\left(A_{1}, A_{2}\right)$ which are not adjacent to both A_{1} and A_{2} should be suppressed.
- However, this leads to a continuity problem:

(a)

(b)

Fig. 10. Continuity problem: A_{2} can be deformed continuously from situation (a) to situation (b), but the region between A_{1} and A_{2} does not vary continuously. (Color version available online at http://ieeexplore.ieee.org.)

Convex Hull

- Extension to the fuzzy case:

$$
\beta_{C H}\left(A_{1}, A_{2}\right)=C H\left(\mu_{A_{1}} \cup \mu_{A_{2}}\right) \cap c\left(\mu_{A_{1}}\right) \cap c\left(\mu_{A_{2}}\right)
$$

- Recommended to chose a t-norm that satisfies the law of excluded middle, such as Lukasiewicz' t-norm $\forall(a, b) \in[0,1], t(a, b)=\max (0, a+b-1)$.

$\beta\left(A_{1}, A_{2}\right)$
norm min

$\beta\left(A_{1}, A_{2}\right)$
Lukasiewicz' norm
Fig. 11. Computing $\beta\left(A_{1}, A_{2}\right)$ from the convex hull of the union of fuzzy objects A_{1} and A_{2} with the minimum t-norm (thick blue line on the left) and with Lukasiewicz' t-norm (thick green line on the right). When using the min, triangles appear on the left and on the right, which are unwanted since they can hardly be considered being between A_{1} and A_{2}. This phenomenon does not occur with Lukasiewicz' t-norm. (Color version available online at http://ieeexplore.ieee.org.)

Non-connected Objects

- If A_{1} can be decomposed into connected components $\bigcup_{i} A_{1}^{i}$ we can define the region between A_{1} and A_{2} as $\beta\left(A_{1}, A_{2}\right)=\beta\left(\bigcup_{i} A_{1}^{i}, A_{2}\right)=\bigcup_{i} \beta\left(A_{1}^{i}, A_{2}\right)$ and similarly if both objects are non-connected.
- This is better than using $\mathrm{CH}\left(A_{1}, A_{2}\right)$ directly

Fig. 12. Region C belongs to $C H\left(A_{1} \cup A_{2}\right)$, but not to $C H\left(A_{1}^{1} \cup A_{2}\right) \cup$ $C H\left(A_{1}^{2} \cup A_{2}\right)$, while an object in C would not be considered between $A_{1}=$ $A_{1}^{1} \cup A_{1}^{2}$ and A_{2}. (Color version available online at http://ieeexplore.ieee.org.)

Morphological Dilations

- Definition based on Dilation and Separation:

" Find a "seed" for $\beta\left(A_{l}, A_{2}\right)$ by dilating both objects until they meet and dilating the resulting intersection. $\beta_{\text {Dit }}\left(A_{1}, A_{2}\right)=D^{n}\left[D^{n}\left(A_{1}\right) \cap D^{n}\left(A_{2}\right)\right] \cap A_{1}^{c} \cap A_{2}^{c}$ where D^{n} denotes a dilation by a disk of radius n.

(a)

(b)

Fig. 13. Dilation of the intersection of the dilations of A_{1} and A_{2} by a size equal to their half minimum distance. The obtained region for β may exclude some parts belonging to the convex hull of (dashed straight lines) $A_{1} \cup A_{2}$ (a) in some cases, or (b) may be too extended. (Color version available online at http://ieeexplore.ieee.org.)

Morphological Dilations

- Using watersheds and SKIZ (skeleton by influence zones):
- Reconstruction of $\beta\left(A_{1}, A_{2}\right)$ by geodesic dilation.

$$
\begin{aligned}
\beta_{\text {sep }}\left(A_{1}, A_{2}\right) & =D_{C H^{\prime}\left(A_{1} \cup A_{2}\right)}^{\infty}(W S) \\
& =D_{C H^{\prime}\left(A_{1} \cup A_{2}\right)}^{\infty}(S K I Z)
\end{aligned}
$$

Fig. 14. Definition based on watershed or SKIZ (thick line) in a case where the definition based on simple dilation leads only to the disk limited by the dashed line. (Color version available online at http://ieeexplore.ieee.org.)

Where $C H^{\prime}\left(A_{1} \cup A_{2}\right)=\operatorname{CH}\left(A_{1} \cup A_{2}\right) \backslash\left(A_{1} \cup A_{2}\right)$ from which connected components of the convex hull not adjacent to both sets are suppressed.

Fig. 15. Definition based on watershed (red line), applied on the white objects and providing the grey area. (Color version available online at http://ieeexplore.ieee.org.)

Morphological Dilations

- Removing non-visible cavities
- We could use the convex hulls of A_{1} and A_{2} independently, but this approach cannot handle imbricated objects.

Fig. 16. Working on the convex hulls of the objects does not provide a satisfactory result in the case of imbricated objects: The between area is very reduced (two small parts in red on the left only). (Color version available online at http://ieeexplore.ieee.org.)

Morphological Dilations

- Fuzzy Directional Dilations:
- Compute the main direction α between A_{1} and A_{2} as the average or maximum value of the histogram of angles.

$$
h_{\left(A_{1}, A_{2}\right)}(\theta)=\left\{\left(a_{1}, a_{2}\right), a_{1} \in A_{1}, a_{2} \in A_{2}, \angle\left(\overrightarrow{a_{1} a_{2}}, \overrightarrow{u_{x}}\right)=\theta\right\} \quad H_{\left(A_{1}, A_{2}\right)}(\theta)=\frac{h_{\left(A_{1}, A_{2}\right)}(\theta)}{\max _{\theta \cdot} \cdot h_{\left(A_{1}, A_{2}\right)}\left(\theta^{\prime}\right)}
$$

- Let D_{α} denote a dilation in direction α using a fuzzy structuring element, v.

$$
D_{v}(\mu)(x)=\sup t[\mu(y), v(x-y)]
$$

Fig. 17. Example of fuzzy structuring element defined around the horizontal axis.

Morphological Dilations

- Given a fuzzy structuring element in the main direction from A_{1} to A_{2}, we can define the area between A_{1} and A_{2} as

$$
\beta_{\alpha}\left(A_{1}, A_{2}\right)=D_{\alpha}\left(A_{1}\right) \cap D_{\pi+\alpha}\left(A_{2}\right) \cap A_{1}^{C} \cap A_{2}^{C}
$$

- We can consider multiple values for the main direction by defining β as

$$
\beta\left(A_{1}, A_{2}\right)=\bigcup_{\alpha} \beta_{\alpha}\left(A_{1}, A_{2}\right)=\bigcup_{\alpha}\left(\beta_{\alpha} \cup \beta_{\alpha+\pi}\right)
$$

Morphological Dilations

Or use the histogram of angles directly as the fuzzy structuring element.

$$
\begin{aligned}
& v_{1}(r, \theta)=H_{\left(A_{1}, A_{2}\right)}(\theta) \\
& v_{2}(r, \theta)=H_{\left(A_{1}, A_{2}\right)}(\theta+\pi)=v_{1}(r, \theta+\pi)
\end{aligned}
$$

$$
\beta_{F D i l 1}\left(A_{1}, A_{2}\right)=D_{v_{2}}\left(A_{1}\right) \cap D_{v_{1}}\left(A_{2}\right) \cap A_{1}^{C} \cap A_{2}^{C}
$$

Fig. 18. Definition based on dilation by a structuring element derived from the angle histogram (15). Objects A_{1} and A_{2} are displayed in red, and the membership values to $\beta\left(A_{1}, A_{2}\right)$ vary from (white) 0 to (black) 1. The angle histogram is shown on the right. (Color version available online at http://ieeexplore.ieee.org.)

Morphological Dilations

- Alternate definition which removes concavities which are not facing each other

$$
\begin{gathered}
\beta_{F D i l 2}\left(A_{1}, A_{2}\right)=\left[D_{v_{1}}\left(A_{1}\right) \cup D_{v_{1}}\left(A_{2}\right)\right] \\
\cap\left[D_{v_{2}}\left(A_{1}\right) \cup D_{v_{2}}\left(A_{2}\right)\right] \\
\beta_{\text {FDil3 }}\left(A_{1}, A_{2}\right)=D_{v_{2}}\left(A_{1}\right) \cap D_{v_{1}}\left(A_{2}\right) \cap A_{1}^{C} \cap A_{2}^{C} \\
\cap\left[D_{v_{1}}\left(A_{1}\right) \cap D_{v_{1}}\left(A_{2}\right)\right]^{c} \\
\cap\left[D_{v_{2}}\left(A_{1}\right) \cap D_{v_{2}}\left(A_{2}\right)\right]^{c}
\end{gathered}
$$

Visibility

- Admissible segments:
- A segment $\left[x_{1}, x_{2}\right]$ with x_{1} in A_{1} and x_{2} in A_{2} is admissible if it is contained in $A_{1}^{C} \cap A_{2}^{C}$.
- $\beta_{\text {Adm }}\left(A_{1}, A_{2}\right)$ is defined as the union of all admissible segments.

Visibility

- Fuzzy visibility:
- Consider a point P and the segments $\left[a_{1}, P\right]$ and $\left[P, a_{2}\right]$ where a_{1} and a_{2} come from A_{1} and A_{2} respectively.
- For each P, find the angle closest to π between any two admissible segments included in $A_{1}^{C} \cap A_{2}^{C}$
$\theta_{\min }(P)=\min \left\{|\pi-\theta|, \theta=\angle\left(\left[a_{1}, P\right],\left[P, a_{2}\right]\right)\right\}$ where $\left[a_{l}, P\right]$ and $\left[P, a_{2}\right]$ are semiadmissible segments
$\beta_{\text {FVisib }}\left(A_{1}, A_{2}\right)(P)=f\left(\theta_{\text {min }}(P)\right)$
where $f:[0, \pi] \rightarrow[0,1]$ is a decreasing function

Fig. 21. Illustration of the fuzzy visibility concept. For point P_{1} (and any point in the area bounded by the dashed lines), we have $\theta_{\min }\left(P_{1}\right)=0$ and, therefore, $\beta\left(P_{1}\right)=1$, while, for point P_{2}, it is not possible to find two collinear semi-admissible segments from A_{1} (respectively, A_{2}) to P_{2}; thus, $\theta_{\min }\left(P_{2}\right)>$ 0 and $\beta\left(P_{2}\right)<1$, expressing that P_{2} is not completely between A_{1} and A_{2}. (Color version available online at http://ieeexplore.ieee.org.)

Visibility

- Extension to fuzzy objects:
- Compute the fuzzy inclusion of each segment and intersect with the best angle as before.

$$
\begin{gathered}
\mu_{\text {incl }}\left(\left[a_{1}, a_{2}\right]\right)=\inf _{y \in\left[a_{1}, a_{2}\right]} \min \left[1-\mu_{A_{1}}(y), 1-\mu_{A_{2}}(y)\right] \\
\beta_{F V \text { isib }}\left(A_{1}, A_{2}\right)(P)=\max \left\{\begin{array}{l}
{\left[\begin{array}{l}
f(|\theta-\pi|), a_{1} \in \operatorname{Supp}\left(A_{1}\right), a_{2} \in \operatorname{Supp}\left(A_{2}\right) \\
\mu_{\text {incl }}\left(\left[a_{1}, P\right]\right), \mu_{\text {incl }}\left(\left[P, a_{2}\right]\right) \\
\theta=\angle\left(\left[a_{1}, P\right],\left[P, a_{2}\right]\right)
\end{array}\right]}
\end{array}\right\}
\end{gathered}
$$

Extended Objects

- Objects with different spatial extensions:
- If A_{2} has infinite or near-infinite size with respect to $A_{l \prime}$ approximate A_{2} by a segment u and dilate A_{1} in a direction orthogonal to u, limited to the closest half plane.

Fig. 22. Illustration of the definition of region β in the case of an extended object (myopic vision). In the areas indicated by $\beta>0$, the relation is satisfied to some degree between 0 and 1 . They can be more or less spread, depending on the structuring element, i.e., on the semantics of the relation. (Color version available online at http://ieeexplore.ieee.org.)

Extended Objects

- Adding a visibility constraint

- Conjunctively combine projection with admissible segments. Optionally consider only segments orthogonal to u.

Fig. 23. Example with a concavity in A_{1} not visible from A_{2} (region X) and an extended object A_{2} having concavities not visible from $A_{1}(Y)$. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 24. Region $\beta_{\text {Adm }}$ between the two objects on the left, computed by directional fuzzy dilatation, and restricted to the union of admissible segments. The main direction \vec{u} of the extended object is computed locally in a region close to the other object. This is achieved by thresholding a distance map between both objects. The fuzzy structuring element has membership values equal to 1 in the direction orthogonal to \vec{u} and decreasing degrees when going away of this direction. Region β can be more or less spread, depending on the structuring element. (Color version available online at http://ieeexplore.ieee.org.)

Satisfaction Measure

- Once $\beta\left(A_{1}, A_{2}\right)$ has been determined, we want to know the overlap between β and B.
- Normalized Intersection:

$$
S_{1}(B, \beta)=\frac{|B \cap \beta|}{|B|}
$$

- Other possible measures:

$$
\begin{aligned}
& S_{2}(B, \beta)=1-\sup \left\{\mu_{B}(x) / \beta(x)=0\right\} \\
& S_{3}(B, \beta)=\inf _{x} \min \left(1-\mu_{B}(x)+\beta(x), 1\right)
\end{aligned}
$$

Satisfaction Measure

- Degree of Inclusion:

$$
N(B, \beta)=\inf _{x} T\left[\beta(x), 1-\mu_{B}(x)\right]
$$

- Degree of Intersection:

$$
\Pi(B, \beta)=\sup t\left[\beta(x), \mu_{B}(x)\right]
$$

- Length of this interval gives information on the ambiguity of the relation.

Satisfaction Measure

- If B is extended, we might want to know if B passes through β.
- Let $R=\operatorname{Supp}(\beta) \backslash \operatorname{Core}(\beta)$
- R will have two connected components, R_{1} and R_{2}.
- Degree to which B passes through β should be high if B goes at least from a point in R_{l} to a point in R_{2}.

Satisfaction Measure

$$
M_{1}(B, \beta)=\min \left[\sup _{x \in R_{1}}\left(B \bigcap \beta^{C}\right)(x), \sup _{x \in R_{2}}\left(B \bigcap \beta^{C}\right)(x)\right]
$$

$$
M_{2}(B, \beta)=\min \left[\sup _{x \in R_{1}}\left(B \bigcap \operatorname{Core}(\beta)^{C}\right)(x), \sup _{x \in R_{2}}\left(B \bigcap \operatorname{Core}(\beta)^{C}\right)(x)\right]
$$

Fig. 25. Example of computation of the degree of satisfaction of the relation in the case of an extended object B (in a 1-D space). Using (29), the obtained value is μ_{1}, which can be considered a pessimistic evaluation. Using (30), the obtained value is equal to 1 , which may better fit the intuitive expectation. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 26. Three cases where the degree to which B is between A_{1} and A_{2} may vary, depending on the context and on the definition. (Color version available online at http://ieeexplore.ieee.org.)

Properties

TABLE I
Summary of the Proposed Definitions and the Cases Where They Apply in a Satisfactory Way

Types of objects \rightarrow Definitions \downarrow	Convex	Facing concavities	Complex shape	Fuzzy	Extended
Convex hull $\beta_{C H}$	Y	Y	N	Y	N
Dilation $\beta_{D i l}$	N	N	N	N	N
Separation by watersheds or SKIZ $\beta_{\text {sep }}$	Y	Y	N	N	N
Fuzzy directional dilation $\beta_{\text {Fdil1 }}$	Y	Y	N	Y	N
Fuzzy directional dilation $\beta_{F D i l 2}$	Y	Y	N	Y	N
Fuzzy directional dilation $\beta_{\text {FDil3 }}$	Y	Y	Y	Y	N
Admissible segments $\beta_{A d m}$	Y	Y	Y	Y	N
Fuzzy visibility $\beta_{\text {Adm }}$	Y	Y	Y	Y	N
Myopic vision	Y	Y	N	Y	Y
Myopic vision + visibility	Y	Y	Y	Y	Y

Examples

- Anatomical descriptions of brain structures

Fig. 27. Few brain structures (a 2-D slice extracted from a 3-D atlas). (Color version available online at http://ieeexplore.ieee.org.)

TABLE II
Few Results Obtained With the Method of Convex Hull (1), Fuzzy Directional Dilation
[Using (17)] (2), Admissible Segments (3), and With the Fuzzy Visibility Approach (4)

A_{1}	A_{2}	B	$\frac{\|\beta \cap B\|}{\|B\|}(1)$	$\frac{\|\beta \cap B\|}{\|B\|}(2)$	$\frac{\|\beta \cap B\|}{\|B\|}(3)$	$\frac{\|\beta \cap B\|}{\|B\|}(4)$	$[N, \Pi](1)$	$[N, \Pi](4)$
CN	LN	IC	0.85	0.84	0.84	0.94	$[0,1]$	$[0.2,1]$
LV	CG	CC	1.00	0.93	1.00	1.00	$[1,1]$	$[1,1]$
IFG	SFG	MFG	0.78	0.92	0.76	0.95	$[0,1]$	$[0.7,1]$
CG	CN	CC	0.88	0.90	0.88	0.97	$[0,1]$	$[0.6,1]$
CG	CN	LV	0.47	0.63	0.47	0.79	$[0,1]$	$[0,1]$
IFG	SFG	IC	0.00	0.02	0.00	0.16	$[0,0]$	$[0,0.6]$
IFG	SFG	LN	0.00	0.00	0.00	0.04	$[0,0]$	$[0,0.3]$

Examples

Fig. 28. (a) Angle histogram of objects A_{1} and A_{2} [superior and inferior frontal gyri, displayed in red and blue in (c))]. (b) Corresponding structuring element ν_{1} (ν_{2} is its symmetric with respect to the origin). (c) Definition based on fuzzy dilation [with (15)]. Membership values to $\beta\left(A_{1}, A_{2}\right)$ vary from (white) 0 to (black) 1 . The contours of the median frontal gyrus are superimposed in green. (d) Definition based on fuzzy dilation, with (17). (e) Convex hull approach. (f) Definition using the admissible segments. (g) Fuzzy visibility approach. (Color version available online at http://ieeexplore.ieee.org.)

Examples

Fig. 29. Coronal slice of a CT image in the thoracic area.

Fig. 30. Contours of β_{Adm} representing the region between the lungs, superimposed on an axial slice and on a coronal slice. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 31. Fuzzy region $\beta_{\text {FDil3 }}$ between the lungs, superimposed on an axial slice and on a coronal slice of the segmented lungs. The contours of the heart and aorta are superimposed too. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 32. Fuzzy region $\beta_{\text {FAdm }}$ between the lungs, obtained with the method of semi-admissible segments (fuzzy visibility), superimposed on an axial slice and on a coronal slice of the segmented lungs. (Color version available online at http://ieeexplore.ieee.org.)

Conclusion

- Possible to represent the complex spatial relationship, "between," using mathematical morphology and visibility.
- Many definitions exist, each with individual strengths and weaknesses.
- Pick the representation most appropriate for the application.

