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 Objective

▪ What is a memetic algorithm?

▪ How can it be improved?

 Design of the PrMF and APrMF

 Experiments

 Conclusions



What is a memetic algorithm and how can we improve it?



 Optimization is a process for seeking the best 
solution to a problem from a set of possible 
solutions.

 Deterministic Methods
▪ Steepest Descent, Conjugate Gradient, Quadratic 

Programming, Linear Approximation…

 Stochastic Methods
▪ Simulated Annealing, Tabu Search, Evolutionary 

Algorithms…



 Deterministic methods 

are usually efficient at 

finding local optima.

 They can be sensitive to 

initial starting conditions.

 They are more likely to 

stagnate on non-global 

optima than stochastic 

algorithms.
Example: Newton’s Method (from Wikipedia)



 Candidate solutions are 

drawn from a population.

 Good at solving non-

convex, disjoint, or noisy 

solution spaces.

 Can take a long time to 

locate the exact local-

optimum within the 

region of convergence. Example: Object Set Matching



 Memetic algorithms are a recent extension of 
EAs which introduce individual learning as a 
separate process of local refinement for 
accelerating search.

 These hybrid algorithms combine the global 
search strategy of evolution with the local search 
strategy of deterministic methods.

 Recent studies have demonstrated that MAs 
converge to high-quality solutions more 
efficiently than conventional methods.



 Several hybrid algorithms have been studied 
which seek to perform individual learning.

 Lamarckian learning

▪ Each individual can modify its own genetic code 
during or after fitness evaluation to improve itself.

 Baldwin effect

▪ The fitness of certain individuals is influenced by a 
local search without changing the genetic code.





 What is an appropriate search frequency fil or 

probability Pil for applying local learning to an 

individual?

 To which subset of the population Ωil should 

the local learning be applied?

 How long til should the local learning be run?

 Which local improvement procedure or meme 

is to be used?



 Unless one has a priori knowledge of a problem, 
it may be difficult to choose these parameters.

 Poor parameter choices may cause the MA to 
perform worse than evolution or individual 
learning alone.

 This paper presents a probabilistic and 
approximate probabilistic memetic framework 
(PrMF and APrMF) which governs at runtime 
whether evolution or individual learning should 
be favored.





 A target function f(x) to be minimized

 A set of real variables,

 A set of equality/inequality constraints, gw(x)

 The goal is to locate the global minimum, x* 

such that x* = argminx f(x) without violating 

the imposed constraints.



 The optimization problem
is solved if at least one
solution x' satisfies
f(x') ≤ f(x*) + ε.

 A Type I point satisfies
the above inequality.

 A Type II point lies in the
basin of attraction containing Type I points.

 p1
(k) or p2

(k) is the probability that an individual in the 
population at generation k is a Type I or Type II point, 
respectively.
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Probability of finding at least one Type I 

point as a result of individual learning

Total computational cost of 

individual learning

Number of generations that one may replace 

individual learning with evolutionary search 

for the same computational budget

Probability of having at least one Type I 

point as a result of stochastic evolution

n = population size

til = computational cost of individual learning

fil = frequency of individual learning

tgs = computational cost per generation of evolution



Use individual learning if it has a higher 

probability of reaching a Type I point over 

stochastic evolution.

Assuming that the global search method 

directs the search toward Type I points

Combining the above expressions



From before

Take the logarithm of both sides

or





 All points are in the 
single basin of 
attraction.

 p1
(k) < 1 and p2

(k) = 1

          approaches 
infinity, implying that 
local search will do 
better than stochastic 
evolutionary operators.



 The set of Type II 
points is the same as 
the set of Type I points.

 p1
(k) = p2

(k) 

                       

 Local search will not 
contribute to finding 
the global optimum.



 p1
(k) or p2

(k) are not 
usually known and 
must be approximated.

 Introduce tracking 
capabilities on the 
search history and 
structure of each 
chromosome.

 Estimate individual 
learning intensity 
using search history of 
the entire population.
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 Compared APrMF to the canonical MA 

analyzing the following:

▪ Search quality and efficiency

▪ Computational cost

▪ Robustness

▪ Simplicity and ease of implementation



Four configurations are examined:

1. APrMF with initial individual learning intensity configured to 100 

2. APrMF with initial individual learning intensity configured to 200

3. Canonical MA with fixed individual learning intensity of 100

4. Canonical MA with fixed individual learning intensity of 200

















 We can improve the canonical MA by 

deciding at runtime whether to use evolution 

or individual learning.

 APrMF outperforms other comparable 

methods on common benchmark functions.

 APrMF reduces the number of free parameters 

that must be set by the user.
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