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Objective

What is a memetic algorithm and how can we improve it?




Optimization

Optimization Is a process for seeking the best
solution to a problem from a set of possible
solutions.

Deterministic Methods

Steepest Descent, Conjugate Gradient, Quadratic
Programming, Linear Approximation...

Stochastic Methods

Simulated Annealing, Tabu Search, Evolutionary
Algorithms...



Deterministic Local Strategies

Deterministic methods
are usually efficient at |
finding local optima. ! Newton-lteration

They can be sensitive to /
Initial starting conditions.

They are more likely to /
stagnate on non-global /| —— Funkion

optima than stochastic
algorithms.

Example: Newton’s Method (from Wikipedia)



Stochastic Algorithms

Candidate solutions are
drawn from a population.

Good at solving non-
convex, disjoint, or noisy
solution spaces.

Can take a long time to
locate the exact local-

optimum within the P N
region of convergence. Example: Object Set Matching




Memetic Algorithms

Memetic algorithms are a recent extension of
EAs which introduce individual learning as a
separate process of local refinement for
accelerating search.

These hybrid algorithms combine the global
search strategy of evolution with the local search
strategy of deterministic methods.

Recent studies have demonstrated that MAs
converge to high-quality solutions more
efficiently than conventional methods.



Two Individual Learning Strategies

Several hybrid algorithms have been studied
which seek to perform individual learning.

LLamarckian learning

Each individual can modify its own genetic code
during or after fitness evaluation to improve itself.

Baldwin effect

The fitness of certain individuals is influenced by a
local search without changing the genetic code.



Memetic Algorithm Outline

Procedure: Canonical Memetic Algorithm
Begin
/* Evolution - Stochastic Search Operators */
Initialize: Generate an initial population;
While (Stopping conditions are not satisfied)
Evaluate all individuals in the population.
Select the subset of individuals, €2;;, that should undergo the individual learning procedure.

For each individual in €

/* Individual Learning —Local heuristics or Conventional exact methods */
e Perform individual learning using meme(s) with probability of P;; or frequency f;; for a t;; period.
e Proceed with Lamarckian or Baldwinian learning.
End For
Generate a new population using stochastic search operators.
End while
End

Fig. 1. Outline of a memetic algorithm.



Design Considerations

What Is an appropriate search frequency f;, or
probability P;, for applying local learning to an
Individual?

To which subset of the population Q; should

the local learning be applied?
How long t;, should the local learning be run?
Which local improvement procedure or meme

IS to be used?



PrMF and APrMF

Unless one has a priori knowledge of a problem,
It may be difficult to choose these parameters.

Poor parameter choices may cause the MA to
perform worse than evolution or individual

learning alone.

This paper presents a probabilistic and
approximate probabilistic memetic framework
(PrMF and APrMF) which governs at runtime
whether evolution or individual learning should

be favored.



Design of the PrMF and APrMF




Nonlinear Programming

A target function f(x) to be minimized
A set of real variables, x € R™" x;,, < x < Xy

A set of equality/inequality constraints, g,,(X)

The goal is to locate the global minimum, X
such that x™ = argmin, f(x) without violating
the imposed constraints.



Types of Points

The optimization problem X\
IS solved If at least one
solution X' satisfies
f(x") <f(X") + «.

Fitness

A Type | point satisfies ]
the above inequality.

C A B D 7

Fig. 2. Illustrations of type I and type II points.

A Type Il point lies in the
basin of attraction containing Type | points.

p,® or p,® is the probability that an individual in the
population at generation k is a Type | or Type 1l point,
respectively.



Probability of Points

Probability of finding at least one Type | P—1_ (1_ (k) )fn*n
point as a result of individual learning I 2
Total computational cost of _
individual learning it = i x(f; xn)
Number of generations that one may replace t x ( fox n)
individual learning with evolutionary search A, = ! !
for the same computational budget tgs
A
Probability of having at least one Type | P —1_ l_g[ (1_ (k+i) )”
point as a result of stochastic evolution g 1

n = population size

t., = computational cost of individual learning

f.,, = frequency of individual learning

t,, = computational cost per generation of evolution



Deriving the Upper Bound of t;

Use individual learning if it has a higher B (k))r;/*n - ﬁ (1 B (k+i)>”
probability of reaching a Type | point over . - *
stochastic evolution.

Assuming that the global search method 1 (1 ~ p(kﬂ))n < (1= Byt
directs the search toward Type | points , ! - !

Combining the above expressions i=I



Deriving the Upper Bound of t;

fil A
From before (1 — pék)) < (1 — p%k)) i

Take the logarithm of both sides fir In ( pék)) < Agln (1 — pfk))
l’- .
& fln ( pék)) zltlen n (1 B Pik))

gs
=2 (1 pék)) < ;m In (1 — pgk))

gs

Since In (1 — p,) < 0, the above expression becomes

I (1 (k )) ( (k))

i < —
=" ®) il . o




PrMF

Procedure: PrMF
Begin
/¥ Evolution - Stochastic Search Operators */
Initialize: Generate an initial population:
While (Stopping conditions are not satisfied)
Evaluate all individuals in the population.

For each individual in new population

/* Individual learning with t;; defined by the estimated theoretical upper bound */

il
- . . . . . ~ upper .
e Perform individual learning using the specified meme for rﬂ”“ evaluations

e Estimate the theoretical individual learning intensity bound, PPl = [(7gs)/(n)][(In (l — pg"}))f(ln (l — p?")))]

e Proceed with Lamarckian or Baldwinian learning
End For
Generate a new population using stochastic search operators.
End while
End

Fig. 3. Outline of probabilistic memetic framework.



Example: Unimodal Sphere Function

10000

All points are in the
single basin of ]
attraction.
pl(k) < 1 and pz(k) — 1 30(?)0-

upper ]{)(Z)(: -

L approaches
infinity, |mply|ng that Fig- 4. Unimodal sphere function.

local search will do

better than stochastic I (1 _ pg«))
evolutionary operators. g = )

100 80 —-60 —40 20 0 20 40 60 &80 100




Example: Multimodal Step Function

The set of Type Il
points Is the same as
the set of Type | points.

0,0 = p,®

oo
tll}pper — & S 1 IO 4 (Ia 8 10 1
F Multimodal step function.
Local search will not
I indi _ (k)
contribute to finding . (1- %)

the global optimum. L =
g p [ n ln (1 . p%k))



APrMF

Procedure: APrMF
Begin
pl(k) Or pz(k) are not /* Start of Canonical MA */
Initialize: Generate an initial population;

usually known and

- Evaluate all individuals in the population.
m USt be ap p rOXI mated . For each individual x(i) in current population

e Perform individual learning using the specified meme with tracking capabilities for a maximum of
1,(0) = rf'!!"““' evaluations

e Proceed with Lamarckian or Baldwinian learning

Introduce tracking

Generate a new population using stochastic search operators.

capabilities on the

/* End of Canonical MA */

SearC h h iStO ry an d While (Stopping conditions are not satisfied)

Evaluate all individuals in the population

Stru Ctu re Of eaCh For each individual x(i) in new population

/¥ Individual learning with adaptive 1, set according to upper bound and the expected value */

C h ro m OSO me . o Estimate learning intensity upper bound ?‘I”FWE' (f) and

expected learning intensity a‘ﬁmt ““(i) for individual x(i) using

the Individual Learning Intensity Estimation Scheme outlined in Fig. 7.
o IF (5P () < (PP (3)) then

EStI m ate I n d IVI d u al /* increase budget for individual learning */

expected

- ' ' )y = f(; (1))
Iearn I ng I nte nS I ty : Pfcrl'orm indlir\'idual learning using the specified meme for f;(i) evaluations
- - e Proceed with Lamarckian or Baldwinian learning
using search history of ~-

- - /* Do not perform any individual learning */
the entire population. oan "
End For

Generate a new population using stochastic search operators.

End while
End

Fig. 6. QOutline of the approximate probabilistic memetic framework.



Individual Learning Intensity

Estimation Scheme

Procedure: Individual Learning Intensity Estimation Scheme
Begin
/* Estimate py and p> */

|. Identify set Q, the ¢ nearest chromosomes of x in database ®.

R

. Identity set € 4ce. the g learning search traces associated with the ¢ nearest chromosomes.

3. Find Xpest. the fittest individual in Qypgee. 1.€., Xpest = argmin{ [ (x)|x € Q,qce}-
X

4. Find xq, the furthest ¢ -close point tO Xpegt, 1.€., X1 = arg max {||X — Xpest || | f(X) < [ (Xpest) + ¢}
X

5. Estimate the upper bound for learning intensity,

- _ oK) _
Illppcr_fgs In (l %) ) . lgs Ix — XhestH”d””
fls - N . . d‘ .
m 1 (l _ pgk)) N ||X1—Xpest || 4™

6. Estimate the expected value for learning intensity,

expected . .
1 ' = average length of the search traces in Qrgee-

End

Fig. 7. Outline of individual learning intensity estimation scheme.



Individual Learning Intensity

Estimation Scheme

.__’\

o vy Local search trace of Xneighborl
: ® @  Local search trace of Xneighbor2
: Xneighbor2
Xneighbor2
XN

: \

Xneighborl N\
E I
Xbest
(a) (b)

Fig. 8. Illustration of algorithm. (a) Case 1: narrow, deep basin. (b) Case 2: wide, shallow basin.

A A expecte
Case 1. t,”P* = % =5 Case 2: t,”P* = % =2 toPeced = 3



Experiments




Experiments

Compared APrMF to the canonical MA
analyzing the following:

Search quality and efficiency
Computational cost

Robustness

Simplicity and ease of implementation



Test Functions and Parameters

TABLE 1

MULTIMODAL BENCHMARK FUNCTIONS USED IN THE STUDY (D IS THE NUMBER OF DIMENSIONS)

TABLE 11
PARAMETER SETTING OF APRMF

General parameters

Global search

GA, DE and ES

Local search

DSCG, DFP and Simplex

Stopping criteria

100000 evaluations or con-
vergence to global optimum

Population size

50

Genetic algorithm parameters

Encoding scheme

Real-coded

Selection scheme

Roulette wheel

Crossover operator

Two point crossover p. = 0.7

Characteristics
Benchmark test functions Range of xi _ : . Global optimum
Epi* | Mul# Disc*
D
Fsphere = > x; [—100, 100]P None None None 0.0
i=1
D
Fstep = 6D + > gl [-5.12,5.12]P | None None Medium 0.0
i=1
D 2 D .
FGriewank = 2. 7000 — L1 €0s(=F) + 1 [—6, 6]P Weak | High None 0.0
i=1 i=1 V!
| D
Fackley = —20 exp(—(l.j\;",—g > x2 [—32,32]P None | Weak None 0.0
: ] i=l
1 D
—explg > cos(2mx;)) + 20
_i=l
D R D
FRastrigin = > (x; — 10cos(Zzx;) + 10) [—5, 5] None High None 0.0
i=

Mutation operator

Gaussian mutation, py = 0.03

Differential evolution parameters

Four configurations are examined:

PN

APrMF with initial individual learning intensity configured to 100
APrMF with initial individual learning intensity configured to 200
Canonical MA with fixed individual learning intensity of 100
Canonical MA with fixed individual learning intensity of 200

Crossover probability

Pe =109

ES parameters

Selection method

u+ A, u=>50,4A=100

Mutation operator

Gaussian mutation

Local search parameters

[nitial local search intensity r;;“"“'

100 or 200 evaluations




Sphere and Step Functions
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APrMF Adapt
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APrMF with Downward Trends
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Benchmark Comparison

TABLE III
BENCHMARK FUNCTIONS FOR REAL NUMBER OPTIMIZATION

Func | Benchmark test functions Range __Characteristics
Epi Mul* Disc*
D,
1 Fsphere = > 7 [—100,100]° | Nome | None None
=1
2 Fschwefell2 = [—100,100]® | High | None | None
i=
D
3 Fitiptic = [—100,100]° | None | None | None
i=1
4 Fsehwefell. 24 Noise = ( :,) ) * (1 +04[N(0, 1)]) [—100, 100]2 High High None
5 Fsehwefeins = max{[A;x — Ajol} i=1.D [—100, 100]2 None | None | Medium
D=1 - N -
6 FRosenbrock = 2, (IOO{:; —ziy1)* 4+ @i - lr] [—100, 100]° | High | High None
i=l1 7
D, . ;
7 Frastrigin = 2. (2 = 10cos2x2;) + 10) [-5.12,5.12]P | None | High | None
=i
=5 1) -
8 FGriewank—R = 2. go05 — 11 cos (%) +1 [—00,+00]” | Weak | High None
i=1 i=l1 el
o,
Acklev—p = —20exp| =02 | & ¥ zF i
9 Facttey—r Dexp| —0 \ b E ! =32, 321 High | Weak None
D
- l"(p(-‘;ly > cos(Qmg; )) +20
"=l
D .
10 Frastrigin-r = 2. (27 — 10cos(2rz;) + 10) [-5.12,5.12]° | High | High None
i=1
] Dk -
n Fweierstrass—R = E “%) la® cos(2a b (z; + 0.5)]) (=05, 050 High | High None
k max
-D ¥ [a* cos(x b*)]
k=0
- Z
12 Fsctuere213 = 2 (4 = Bix) —mal? | Weak | Weak | None
D
A=Y (ajjsinaj +bjjcosaj),
& J J
JIl
B; = % (ajjsinxj + b;jcosx;)
j=1
-~ D - ~ \ z =D . .
13 Forieros = 3. Fariewank—R (FRosenbrock—Rr(Zi, Z141)) Zp+1 =11 [-5,5] High | High None
i=
Fg , =3 (Flzi.z , 2 =z .
14 seaffer = 2 (FGi 2 D) 2ot =21 [-100, 100]° | Low | High | None
smi(v\3+ 2)-0s
Flx,y) =054+ ———~
(140.001 (x24+2))°
15 Friybrigy (see fig in [42]) [-5, 5P High | High | Medium
16 Friybrigz(see fig in [42]) [-5, 5P High | High | Medium

TABLE IV

PARAMETERS CONFIGURATION OF APRMF BASED ON GA-DSCG

10-I) functions 30-D functions

Stopping criteria

100000 evaluations | 300 000 evaluations

Global search

Genetic algorithm

Local search

DSCG

Population size

50

Encoding scheme

Real-coded

Selection scheme

Roulette wheel selection

Crossover operator

One point crossover p. = 0.7

Gaussian mutation pp = 0.03

Mutation operator
Initial local
intensity #;7"

search

100 evaluations 300 evaluations

TABLE VII

MEMETIC ALGORITHMS OR HYBRID EA-LOCAL SEARCH

USED IN COMPARISON

Algorithm name

Description

BLX-GL50

Hybrid Real-Coded Genetic Algorithms [43]

BLX-MA

Real-coded memetic algorithm with adap-
tive local-search probability and local search
length [44]

DMS-L-PSO

Dynamic multi-swarm particle swarm opti-
mizer with local search [45]

EDA Continuous Estimation of Distribution Algo-
rithms [46]

DEshcSPX Differential evolution with crossover-based
local search [47]

G-CMAES Restart  CMA  Evolution  Strategy  With

Increasing Population Size [48]




10-D Benchmark Results

TABLE VIII
SUCCESS MEASURE OF THE ALGORITHMS IN SOLVING THE 10-D BENCHMARK FUNCTIONS. FOR INSTANCE, 0.6 (25) ON Fgpygrg IMPLIES THAT
APRMF INCURRED AN AVERAGE OF (0.6%1000) FUNCTION EVALUATION CALLS ON 25 SUCCESSFUL INDEPENDENT RUNS. A *-’ ENTRY IN THE TABLE
IMPLIES THAT THE RESPECTIVE ALGORITHM FAILS TO CONVERGE TO THE GLOBAL OPTIMUM. BOLD ITALIC ALSO HIGHLIGHTS THE BEST SEARCH

PERFORMANCE (BASED ON PAIR-WISE T-TEST BETWEEN EACH RESPECTIVE ALGORITHM PAIRS)

Fsphere | FSchwefell2 | FEuiptic | FRosenbrock | FGriewank—R | FRastrigin | FSchwefel2.13

APrMF 0.6(25) 11.0(25) 0.6(25) 10.5(25) 17.6(20) 1.0025) 31.9(19)

BLX-GL50 19.0(25) 41.04(25) - 51.8(25) 20.8(9) 20.4(3) 51.59(13)
BLX-MA 12.0(25) 36.96(25) - - 69.8(18) -

DMS-L-PSO 12.0(25) 12.0 (25) 11.7(25) 54.7(25) 94.8(4) 35.7(25) 54.1(19)

EDA 10.0(25) 11.0(25) 16.3(23) 68.2(25) 75.9(1) - 35.2(10)

DEsheSPX 22.9(25) 34.7(25) 89.2(20) 50.2(23) 97.3(21) 89.7(5)
G-CMAES 1.61(25) 2.38(25) 6.5(25) 10.8(25) - 4.67(25) 32.7(19)
TABLE IX

INDIFFERENT, RESPECTIVELY)

RESULT OF T-TEST WITH 95% CONFIDENCE LEVEL COMPARING STATISTICAL VALUES FOR APRMF AND THOSE OF THE OTHER ALGORITHMS IN
SOLVING THE 10-D BENCHMARK FUNCTIONS (S+, S—, AND &2 INDICATE THAT APRMF IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND

FSphcre FS(‘J'.’H)(’f(’” 2 FEHipfi(‘ FRosenbrock FGriewank—R FRmrr:'gin FSChmefdz.lB
BLX-GL50 S+ s+ S+ S+ S+ S+
BLX-MA s+ s+ - - s+ -
DMS-L-PSO s+ s+ s+ s+ s+ s+ s+
EDA s+ 5 S+ s+ S+ - s+
DEsheSPX S+ s+ S+ S+ S+ S+ -
G-CMAES s+ S— s+ = - s+ ~




30-D Benchmark Results

TABLE X
SUCCESS MEASURE OF THE ALGORITHMS IN SOLVING THE 30-D BENCHMARK FUNCTIONS. A *-" ENTRY IN THE TABLE IMPLIES THAT THE
RESPECTIVE ALGORITHM FAILS TO CONVERGE TO THE GLOBAL OPTIMUM. BOLD ITALIC ALSO HIGHLIGHTS THE BEST SEARCH PERFORMANCE
(BASED ON PAIR-WISE T-TEST BETWEEN EACH RESPECTIVE ALGORITHM PAIRS)

FSphcrc FSt’hw{’f&’]Q FEHipn'C FGriewank—R FRasrrigin
APrMF 0.6(25) 87.0(25) 1.0(25) 25.5 (25) 5.9(25)
BLX-GL50 58.05(25) 159.6(25) - 66.3(25) -
BLX-MA 32.13(25) - - - 238.8(9)
DMS-L-PSO 5.13(25) 129.6(25) 285.3(21) 57.4(24) -
EDA 150.1(25) 159.6(25) 219.3(25) 129.93(25) -
DEshcSPX 89.4(25) 299.3(2) - 148.1(21) -
G-CMAES 4.5(25) 13.0025) 42.7(25) - 6.1(25)
TABLE XI

RESULT OF T-TEST WITH 95% CONFIDENCE LEVEL COMPARING STATISTICAL VALUES FOR APRMF AND THOSE OF THE OTHER ALGORITHMS IN
SOLVING THE 30-D BENCHMARK FUNCTIONS (S+. S—, AND = INDICATE THAT APRMF IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND
INDIFFERENT, RESPECTIVELY)

Fsphere | Fschwefetl2 | FEutiptic | FGriewank—R | FRastrigin
BLX-GL50 s+ s+ - S+ R
BLX-MA s+ - ; ot
DMS-L-PSO s+ S+ S+ s+ -
EDA s+ s+ S+ s+ -
DEsheSPX s+ S+ _ ot _
G-CMAES s+ s— o+ R




Conclusions

We can improve the canonical MA by
deciding at runtime whether to use evolution
or individual learning.

APrMF outperforms other comparable
methods on common benchmark functions.

APrMF reduces the number of free parameters
that must be set by the user.
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