A Probabilistic Memetic Framework

Quang Huy Nguyen, Yew-Soon Ong, and Meng Hiot Lim *IEEE Trans. Evol. Comput., Vol. 13, No. 3, June 2009*

Presented by Drew Buck October 12, 2011

Outline

Objective

- What is a memetic algorithm?
- How can it be improved?
- Design of the PrMF and APrMF
- Experiments
- Conclusions

What is a memetic algorithm and how can we improve it?

Optimization

- Optimization is a process for seeking the best solution to a problem from a set of possible solutions.
- Deterministic Methods
 - Steepest Descent, Conjugate Gradient, Quadratic Programming, Linear Approximation...
- Stochastic Methods
 - Simulated Annealing, Tabu Search, Evolutionary Algorithms...

Deterministic Local Strategies

- Deterministic methods are usually efficient at finding local optima.
- They can be sensitive to initial starting conditions.
- They are more likely to stagnate on non-global optima than stochastic algorithms.

Example: Newton's Method (from Wikipedia)

Stochastic Algorithms

- Candidate solutions are drawn from a population.
- Good at solving nonconvex, disjoint, or noisy solution spaces.
- Can take a long time to locate the exact localoptimum within the region of convergence.

Example: Object Set Matching

Memetic Algorithms

- Memetic algorithms are a recent extension of EAs which introduce individual learning as a separate process of local refinement for accelerating search.
- These hybrid algorithms combine the global search strategy of evolution with the local search strategy of deterministic methods.
- Recent studies have demonstrated that MAs converge to high-quality solutions more efficiently than conventional methods.

Two Individual Learning Strategies

- Several hybrid algorithms have been studied which seek to perform individual learning.
- Lamarckian learning
 - Each individual can modify its own genetic code during or after fitness evaluation to improve itself.

Baldwin effect

• The fitness of certain individuals is influenced by a local search without changing the genetic code.

Memetic Algorithm Outline

Procedure: Canonical Memetic Algorithm

Begin

/* Evolution - Stochastic Search Operators */

Initialize: Generate an initial population;

While (Stopping conditions are not satisfied)

Evaluate all individuals in the population.

Select the subset of individuals, Ω_{il} , that should undergo the individual learning procedure.

For each individual in Ω_{il}

/* Individual Learning –Local heuristics or Conventional exact methods */

• Perform individual learning using meme(s) with probability of P_{il} or frequency f_{il} for a t_{il} period.

• Proceed with Lamarckian or Baldwinian learning.

End For

Generate a new population using stochastic search operators.

End while

End

Fig. 1. Outline of a memetic algorithm.

Design Considerations

- What is an appropriate search frequency f_{il} or probability P_{il} for applying local learning to an individual?
- To which subset of the population Ω_{il} should the local learning be applied?
- How long t_{il} should the local learning be run?
 Which local improvement procedure or meme is to be used?

PrMF and APrMF

- Unless one has *a priori* knowledge of a problem, it may be difficult to choose these parameters.
- Poor parameter choices may cause the MA to perform worse than evolution or individual learning alone.
- This paper presents a probabilistic and approximate probabilistic memetic framework (PrMF and APrMF) which governs at runtime whether evolution or individual learning should be favored.

Design of the PrMF and APrMF

Nonlinear Programming

- A target function $f(\mathbf{x})$ to be minimized
- A set of real variables, $\mathbf{x} \in \mathbb{R}^{ndim}$, $\mathbf{x}_{low} \leq \mathbf{x} \leq \mathbf{x}_{up}$
- A set of equality/inequality constraints, $g_w(\mathbf{x})$
- The goal is to locate the global minimum, \mathbf{x}^* such that $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x})$ without violating the imposed constraints.

Types of Points

- The optimization problem is solved if at least one solution \mathbf{x}' satisfies $f(\mathbf{x}') \leq f(\mathbf{x}^*) + \varepsilon$.
- A Type I point satisfies the above inequality.

Fig. 2. Illustrations of type I and type II points.

- A Type II point lies in the basin of attraction containing Type I points.
- $p_1^{(k)}$ or $p_2^{(k)}$ is the probability that an individual in the population at generation k is a Type I or Type II point, respectively.

Probability of Points

$$P_l = 1 - \left(1 - p_2^{(k)}\right)^{f_{il}*n}$$

$$C_{il} = t_{il} \times (f_{il} \times n)$$

$$\Delta_g = \frac{t_{il} \times (f_{il} \times n)}{t_{gs}}$$

$$P_g = 1 - \prod_{i=1}^{\Delta_g} \left(1 - p_1^{(k+i)}\right)^n$$

Probability of finding at least one Type I point as a result of individual learning

Total computational cost of individual learning

Number of generations that one may replace individual learning with evolutionary search for the same computational budget

Probability of having at least one Type I point as a result of stochastic evolution

n = population size $t_{il} =$ computational cost of individual learning $f_{il} =$ frequency of individual learning $t_{gs} =$ computational cost per generation of evolution

Deriving the Upper Bound of t_{il}

Use individual learning if it has a higher probability of reaching a Type I point over stochastic evolution.

$$P_l \ge P_g$$

$$\Leftrightarrow 1 - \left(1 - p_2^{(k)}\right)^{f_{il}*n} \ge 1 - \prod_{i=1}^{\Delta_g} \left(1 - p_1^{(k+i)}\right)^n$$

$$\Leftrightarrow \left(1 - p_2^{(k)}\right)^{f_{il}*n} \le \prod_{i=1}^{\Delta_g} \left(1 - p_1^{(k+i)}\right)^n$$

Assuming that the global search method directs the search toward Type I points

$$\prod_{i=1}^{\Delta_g} \left(1 - p_1^{(k+i)}\right)^n \le (1 - p_1^{(k)})^{n * \Delta_g}$$

Combining the above expressions

$$\left(1 - p_2^{(k)}\right)^{f_{il}*n} \le \prod_{i=1}^{\Delta_g} \left(1 - p_1^{(k+i)}\right)^n \le \left(1 - p_1^{(k)}\right)^{n*\Delta_g}$$
$$\Leftrightarrow \left(1 - p_2^{(k)}\right)^{f_{il}} \le \left(1 - p_1^{(k)}\right)^{\Delta_g}$$

Deriving the Upper Bound of t_{il}

From before

$$\left(1 - p_2^{(k)}\right)^{f_{il}} \le \left(1 - p_1^{(k)}\right)^{\Delta_g}$$

Take the logarithm of both sides

$$f_{il} \ln\left(1 - p_2^{(k)}\right) \le \Delta_g \ln\left(1 - p_1^{(k)}\right)$$
$$\Leftrightarrow f_{il} \ln\left(1 - p_2^{(k)}\right) \le \frac{t_{il} f_{il} n}{t_{gs}} \ln\left(1 - p_1^{(k)}\right)$$
$$\Leftrightarrow \ln\left(1 - p_2^{(k)}\right) \le \frac{t_{il} n}{t_{gs}} \ln\left(1 - p_1^{(k)}\right)$$

Since $\ln(1 - p_1) < 0$, the above expression becomes

$$t_{il} \le \frac{t_{gs}}{n} \frac{\ln\left(1 - p_2^{(k)}\right)}{\ln\left(1 - p_1^{(k)}\right)} \qquad \text{or} \qquad t_{il}^{\text{upper}} = \frac{t_{gs}}{n} \frac{\ln\left(1 - p_2^{(k)}\right)}{\ln\left(1 - p_1^{(k)}\right)}$$

PrMF

Procedure: PrMF

Begin

/* Evolution - Stochastic Search Operators */

Initialize: Generate an initial population;

While (Stopping conditions are not satisfied)

Evaluate all individuals in the population.

For each individual in new population

- /* Individual learning with t_{il} defined by the estimated theoretical upper bound */
 - Estimate the theoretical individual learning intensity bound, $t_{il}^{\text{upper}} = [(t_{gs})/(n)][(\ln(1-p_2^{(k)}))/(\ln(1-p_1^{(k)}))]$
 - Perform individual learning using the specified meme for t_{il}^{upper} evaluations
 - Proceed with Lamarckian or Baldwinian learning

End For

Generate a new population using stochastic search operators.

End while

End

Fig. 3. Outline of probabilistic memetic framework.

Example: Unimodal Sphere Function

All points are in the single basin of attraction.

•
$$p_1^{(k)} < 1$$
 and $p_2^{(k)} = 1$

t^{upper}_{il} approaches
 infinity, implying that
 local search will do
 better than stochastic
 evolutionary operators.

Fig. 4. Unimodal sphere function.

$$t_{il}^{\text{upper}} = \frac{t_{gs}}{n} \frac{\ln\left(1 - p_2^{(k)}\right)}{\ln\left(1 - p_1^{(k)}\right)}$$

Example: Multimodal Step Function

 The set of Type II points is the same as the set of Type I points.

$$p_1^{(k)} = p_2^{(k)}$$
$$t_{il}^{\text{upper}} = \frac{t_{gs}}{n} \le 1$$

 Local search will not contribute to finding the global optimum.

Fig. 5. Multimodal step function.

$$t_{il}^{\text{upper}} = \frac{t_{gs}}{n} \frac{\ln\left(1 - p_2^{(k)}\right)}{\ln\left(1 - p_1^{(k)}\right)}$$

APrMF

- $p_1^{(k)}$ or $p_2^{(k)}$ are not usually known and must be approximated.
- Introduce tracking capabilities on the search history and structure of each chromosome.
- Estimate *individual learning intensity* using search history of the entire population.

 For the first few generations Evaluate all individuals in the population. For each individual x(i) in current population Perform individual learning using the specified meme with tracking capabilities 	
 Initialize: Generate an initial population; For the first few generations Evaluate all individuals in the population. For each individuals (i) in current population Perform individual learning using the specified meme with tracking capabilities t_{il}(i) = t_{il}^{initial} evaluations Proceed with Lamarckian or Baldwinian learning End For Generate a new population using stochastic search operators. 	
 For the first few generations Evaluate all individuals in the population. For each individual x(i) in current population Perform individual learning using the specified meme with tracking capabilities t_{il}(i) = t_{il}^{initial} evaluations Proceed with Lamarckian or Baldwinian learning End For Generate a new population using stochastic search operators. 	
 Evaluate all individuals in the population. For each individual x(i) in current population Perform individual learning using the specified meme with tracking capabilities t_{il}(i) = t_{il}^{initial} evaluations Proceed with Lamarckian or Baldwinian learning End For Generate a new population using stochastic search operators. 	
 For each individual x(i) in current population Perform individual learning using the specified <i>meme with tracking capabilities</i> t_{il}(i) = t_{il}^{initial} evaluations Proceed with Lamarckian or Baldwinian learning End For Generate a new population using stochastic search operators. 	
 Perform individual learning using the specified meme with tracking capabilities t_{il}(i) = t_{il}^{initial} evaluations Proceed with Lamarckian or Baldwinian learning End For Generate a new population using stochastic search operators. 	
$t_{il}(i) = t_{il}^{\text{initial}}$ evaluations • Proceed with Lamarckian or Baldwinian learning End For Generate a new population using stochastic search operators.	
End For Generate a new population using stochastic search operators.	for a maximum of
Generate a new population using stochastic search operators.	
End For	
/* End of Canonical MA */	
While (Stopping conditions are not satisfied)	
Evaluate all individuals in the population	
For each individual $\mathbf{x}(i)$ in new population	
/* Individual learning with adaptive t_{il} set according to upper bound and the expect	ted value */
• Estimate learning intensity upper bound $t_{il}^{\text{upper}}(i)$ and	
expected learning intensity $t_{il}^{\text{expected}}(i)$ for individual $\mathbf{x}(i)$ using	
the Individual Learning Intensity Estimation Scheme outlined in Fig. 7.	
• If $(t_{il}^{\text{expected}}(i) \le t_{il}^{\text{upper}}(i))$ then	
/* increase budget for individual learning */	
• $t_{il}(i) = f(t_{il}^{\text{expected}}(i))$	
• Perform individual learning using the specified meme for $t_{il}(i)$ evaluations	
• Proceed with Lamarckian or Baldwinian learning	
Else	
/* Do not perform any individual learning */	
End If	
End For	
Generate a new population using stochastic search operators.	

End

Individual Learning Intensity Estimation Scheme

Procedure: Individual Learning Intensity Estimation Scheme

Begin

- /* Estimate p_1 and p_2 */
- 1. Identify set Ω , the q nearest chromosomes of x in database Φ .
- 2. Identify set Ω_{trace} , the q learning search traces associated with the q nearest chromosomes.
- 3. Find \mathbf{x}_{best} , the fittest individual in Ω_{trace} , i.e., $\mathbf{x}_{\text{best}} = \arg\min\{f(\mathbf{x})|\mathbf{x} \in \Omega_{trace}\}$.

4. Find $\mathbf{x_1}$, the furthest ε -close point to $\mathbf{x_{best}}$, i.e., $\mathbf{x_1} = \arg \max \{ \|\mathbf{x} - \mathbf{x_{best}}\| | f(\mathbf{x}) \le f(\mathbf{x_{best}}) + \varepsilon \}$

5. Estimate the upper bound for learning intensity,

$$t_{ls}^{\text{upper}} = \frac{t_{gs}}{n} \frac{\ln\left(1 - p_2^{(k)}\right)}{\ln\left(1 - p_1^{(k)}\right)} = \frac{t_{gs}}{n} \frac{\|\mathbf{x} - \mathbf{x}_{\text{best}}\|^{ndim}}{\|\mathbf{x}_1 - \mathbf{x}_{\text{best}}\|^{ndim}}$$

6. Estimate the expected value for learning intensity,

$$t_{il}^{\text{expected}} = average \ length \ of \ the \ search \ traces \ in \ \Omega_{trace}.$$

End

Fig. 7. Outline of individual learning intensity estimation scheme.

Individual Learning Intensity Estimation Scheme

Fig. 8. Illustration of algorithm. (a) Case 1: narrow, deep basin. (b) Case 2: wide, shallow basin.

Case 1:
$$t_{il}^{upper} = \frac{CA}{BA} = 5$$
 Case 2: $t_{il}^{upper} = \frac{CA}{BA} = 2$ $t_{il}^{expected} = 3$

Experiments

Experiments

- Compared APrMF to the canonical MA analyzing the following:
 - Search quality and efficiency
 - Computational cost
 - Robustness
 - Simplicity and ease of implementation

Test Functions and Parameters

TABLE I
MULTIMODAL BENCHMARK FUNCTIONS USED IN THE STUDY (D IS THE NUMBER OF DIMENSIONS)

Benchmark test functions	Range of xi	С	haracteri	istics	Global optimum
	Kange of A	Epi*	Mul*	Disc*	Giobal optimum
$F_{Sphere} = \sum_{i=1}^{D} x_i^2$	[-100, 100] ^D	None	None	None	0.0
$F_{Step} = 6D + \sum_{i=1}^{D} \lfloor x_i \rfloor$	[-5.12, 5.12] ^D	None	None	Medium	0.0
$F_{Griewank} = \sum_{i=1}^{D} \frac{x_i^2}{4000} - \prod_{i=1}^{D} \cos(\frac{x_i}{\sqrt{i}}) + 1$	[-6, 6] ^D	Weak	High	None	0.0
$F_{Ackley} = -20 \exp(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_i^2})$	[-32, 32] ^D	None	Weak	None	0.0
$-\exp(\frac{1}{D}\sum_{i=1}^{D}\cos(2\pi x_i)) + 20$					
$F_{Rastrigin} = \sum_{i=1}^{D} (x_i^2 - 10\cos(2\pi x_i) + 10)$	[-5, 5] ^D	None	High	None	0.0

Four configurations are examined:

- 1. APrMF with *initial* individual learning intensity configured to 100
- 2. APrMF with *initial* individual learning intensity configured to 200
- 3. Canonical MA with *fixed* individual learning intensity of 100
- 4. Canonical MA with *fixed* individual learning intensity of 200

TABLE II PARAMETER SETTING OF APRMF

General parameters	
Global search	GA, DE and ES
Local search	DSCG, DFP and Simplex
Stopping criteria	100 000 evaluations or con- vergence to global optimum
Population size	50
Genetic algorithm parameters	
Encoding scheme	Real-coded
Selection scheme	Roulette wheel
Crossover operator	Two point crossover $p_c = 0.7$
Mutation operator	Gaussian mutation, $p_m = 0.03$
Differential evolution parameters	
Crossover probability	$p_c = 0.9$
ES parameters	
Selection method	$\mu + \lambda, \mu = 50, \lambda = 100$
Mutation operator	Gaussian mutation
Local search parameters	
Initial local search intensity t_{il}^{initial}	100 or 200 evaluations

Sphere and Step Functions

Fig. 9. Search trends of canonical MA (with a fixed individual learning intensity, $t_{il} = 100$) and APrMF (GA-DFP) on the unimodal Sphere function.

Fig. 10. Search trends of canonical MA (with a fixed individual learning intensity, $t_{il} = 100$) and APrMF (GA-DFP) on the Step function.

APrMF with Upward Trends

APrMF1: APrMF with t_{i1}^{initia]}=100 APrMF1: APrMF with t_{i1}^{initia]}=200 Ma1: Canonical MA with t_{i1}=100 Ma1: Canonical MA with t_{i1}=200

APrMF Adapting

Fig. 12. APrMF Adapting the individual learning/global search ratio to its optimal configuration t_{il} [for legends, refer to Fig. 13(d)]. (a) Ackley De-DSCG. (b) Rastrigin ES-Simp. (c) Ackley GA-DSCG. (d) Griewank GA-Simp.

APrMF1: APrMF with t_{il}^{initial}=100 APrMF1: APrMF with t_{il}^{initial}=200 Ma1: Canonical MA with t_{il}=100 Ma1: Canonical MA with t_{il}=200

APrMF with Downward Trends

Fig. 13. APrMF with downward trends in individual learning/global search ratio and t_{i1}. (a) Griewank DE-Simp. (b) Ackley ES-Simp. (c) Griewank ES-Simp (d) Legend for Figs. 11–13.

Benchmark Comparison

TABLE III BENCHMARK FUNCTIONS FOR REAL NUMBER OPTIMIZATION

Func	Benchmark test functions	Range	Characteristics			
Func	benchmark test functions	Kange	Epi*	Mul*	Disc*	
1	$F_{Sphere} = \sum_{i=1}^{D} z_i^2$	[-100, 100] ^D	None	None	None	
2	$F_{Schwefel1.2} = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} z_j \right)^2$	[-100, 100] ^D	High	None	None	
3	$F_{Elliptic} = \sum_{i=1}^{D} \left(10^6 \right)^{\frac{i-1}{D-1}} z_i^2$	[-100, 100] ^D	None	None	None	
4	$F_{Schwefel1.2+Noise} = \left(\sum_{i=1}^{D} \left(\sum_{j=1}^{i} z_j\right)^2\right) * (1 + 0.4 N(0, 1))$	[-100, 100] ^D	High	High	None	
5	$F_{Schwefel2.6} = \max\left\{ A_i x - A_i o \right\} i = 1D$	[-100, 100] ^D	None	None	Medium	
6	$F_{Schwefel2.6} = \max\{ A_ix - A_io \} i = 1D$ $F_{Rosenbrock} = \sum_{i=1}^{D-1} \left(100(z_i^2 - z_{i+1})^2 + (z_i - 1)^2\right)$	[-100, 100] ^D	High	High	None	
7	$F_{Rastrigin} = \sum_{i=1}^{D} \left(z_i^2 - 10\cos(2\pi z_i) + 10 \right)$	[-5.12, 5.12] ^D	None	High	None	
8	$F_{Griewank-R} = \sum_{i=1}^{D} \frac{z_i^2}{4000} - \prod_{i=1}^{D} \cos\left(\frac{z_i}{\sqrt{i}}\right) + 1$	$[-\infty, +\infty]^{D}$	Weak	High	None	
9	$F_{Ackley-R} = -20 \exp\left(-0.2\sqrt{\frac{1}{D}}\sum_{i=1}^{D} z_i^2\right)$	[-32, 32] ^D	High	Weak	None	
	$-\exp\left(\frac{1}{D}\sum_{i=1}^{D}\cos(2\pi z_i)\right) + 20$					
10	$F_{Rastrigin-R} = \sum_{i=1}^{D} (z_i^2 - 10\cos(2\pi z_i) + 10)$	[-5.12, 5.12] ^D	High	High	None	
11	$F_{Weierstrass-R} = \sum_{i=1}^{D} \sum_{k=0}^{k} \sum_{k=0}^{kmax} [a^{k} \cos(2\pi b^{k}(z_{i}+0.5))]) \\ - D \sum_{k=0}^{kmax} [a^{k} \cos(\pi b^{k})]$	[-0.5, 0.5] ^D	High	High	None	
12	$F_{Schwefel2.13} = \sum (A_i - B_i x)^2$	$[-\pi,\pi]^{\mathrm{D}}$	Weak	Weak	None	
	$\begin{aligned} A_i &= \sum_{j=1}^{D} \left(a_{ij} \sin a_j + b_{ij} \cos a_j \right), \\ B_i &= \sum_{j=1}^{D} \left(a_{ij} \sin x_j + b_{ij} \cos x_j \right) \end{aligned}$					
13	$F_{GrieRos} = \sum_{i=1}^{D} F_{Griewank-R} \left(F_{Rosenbrock-R}(z_i, z_{i+1}) \right), z_{D+1} = z_1$	[-5, 5] ^D	High	High	None	
14	$F_{Scaffer} = \sum_{i=1}^{D} (F(z_i, z_{i+1})), z_{D+1} = z_1$	[-100, 100] ^D	Low	High	None	
	$F(x, y) = 0.5 + \frac{\sin^2(\sqrt{x^2 + y^2}) - 0.5}{(1 + 0.001(x^2 + y^2))^2}$					
15	$F_{Hybrid1}$ (see f ₁₆ in [42])	[-5, 5] ^D	High	High	Medium	
16	$F_{Hybrid2}$ (see f ₁₉ in [42])	[-5, 5] ^D	High	High	Medium	

TABLE IV PARAMETERS CONFIGURATION OF APRMF BASED ON GA-DSCG

	10-D functions	30-D functions			
Stopping criteria	100 000 evaluations	300 000 evaluations			
Global search	Genetic algorithm				
Local search	DSCG				
Population size	50				
Encoding scheme	Real-coded				
Selection scheme	Roulette wheel selection				
Crossover operator	One point crossover	$p_c = 0.7$			
Mutation operator	Gaussian mutation p	n = 0.03			
Initial local search intensity t_{ls}^{initial}	100 evaluations	300 evaluations			

TABLE VII Memetic Algorithms or Hybrid EA-Local Search Used in Comparison

Algorithm name	Description				
BLX-GL50	Hybrid Real-Coded Genetic Algorithms [43]				
BLX-MA	Real-coded memetic algorithm with adap- tive local-search probability and local search length [44]				
DMS-L-PSO	Dynamic multi-swarm particle swarm opti- mizer with local search [45]				
EDA	Continuous Estimation of Distribution Algo- rithms [46]				
DEshcSPX	Differential evolution with crossover-based local search [47]				
G-CMAES	Restart CMA Evolution Strategy With Increasing Population Size [48]				

10-D Benchmark Results

TABLE VIII

Success Measure of the Algorithms in Solving the 10-D Benchmark Functions. For Instance, 0.6 (25) on F_{SPHERE} Implies That APRMF Incurred an Average of (0.6*1000) Function Evaluation Calls on 25 Successful Independent Runs. A '-' Entry in the Table Implies That the Respective Algorithm Fails to Converge to the Global Optimum. Bold Italic Also Highlights the Best Search Performance (Based on Pair-wise t-test Between Each Respective Algorithm Pairs)

	F _{Sphere}	F _{Schwefel1.2}	<i>F_{Elliptic}</i>	F _{Rosenbrock}	F _{Griewank-R}	F _{Rastrigin}	F _{Schwefel2.13}
APrMF	0.6(25)	11.0(25)	0.6(25)	10.5(25)	17.6(20)	1.0(25)	31.9(19)
BLX-GL50	19.0(25)	41.04(25)	-	51.8(25)	20.8(9)	20.4(3)	51.59(13)
BLX-MA	12.0(25)	36.96(25)	-	-	-	69.8(18)	-
DMS-L-PSO	12.0(25)	12.0 (25)	11.7(25)	54.7(25)	94.8(4)	35.7(25)	54.1(19)
EDA	10.0(25)	11.0(25)	16.3(23)	68.2(25)	75.9(1)	-	35.2(10)
DEshcSPX	22.9(25)	34.7(25)	89.2(20)	50.2(23)	97.3(21)	89.7(5)	-
G-CMAES	1.61(25)	2.38(25)	6.5(25)	10.8(25)	-	4.67(25)	32.7(19)

TABLE IX

Result of t-test with 95% Confidence Level Comparing Statistical Values for APRMF and Those of the Other Algorithms in Solving the 10-D Benchmark Functions (s+, s-, and \approx Indicate That APrMF Is Significantly Better, Significantly Worse, and Indifferent, Respectively)

	F _{Sphere}	F _{Schwefel1.2}	<i>F_{Elliptic}</i>	F _{Rosenbrock}	F _{Griewank-R}	F _{Rastrigin}	F _{Schwefel2.13}
BLX-GL50	s+	s+	-	s+	s+	s+	s+
BLX-MA	s+	s+	-	-	-	s+	-
DMS-L-PSO	s+	s+	s+	s+	s+	s+	s+
EDA	s+	~	s+	s+	s+	-	s+
DEshcSPX	s+	s+	s+	s+	s+	s+	-
G-CMAES	s+	S—	s+	~	-	s+	\approx

30-D Benchmark Results

TABLE X

SUCCESS MEASURE OF THE ALGORITHMS IN SOLVING THE 30-D BENCHMARK FUNCTIONS. A '-' ENTRY IN THE TABLE IMPLIES THAT THE Respective Algorithm Fails to Converge to the Global Optimum. Bold Italic Also Highlights the Best Search Performance (Based on Pair-Wise t-test Between Each Respective Algorithm Pairs)

	F _{Sphere}	$F_{Schwefel1.2}$	<i>F_{Elliptic}</i>	F _{Griewank-R}	F _{Rastrigin}
APrMF	0.6(25)	87.0(25)	1.0(25)	25.5 (25)	5.9(25)
BLX-GL50	58.05(25)	159.6(25)	-	66.3(25)	-
BLX-MA	32.13(25)	-	-	-	238.8(9)
DMS-L-PSO	5.13(25)	129.6(25)	285.3(21)	57.4(24)	-
EDA	150.1(25)	159.6(25)	219.3(25)	129.93(25)	-
DEshcSPX	89.4(25)	299.3(2)	-	148.1(21)	-
G-CMAES	4.5(25)	13.0(25)	42.7(25)	-	6.1(25)

TABLE XI

Result of t-test With 95% Confidence Level Comparing Statistical Values for APrMF and Those of the Other Algorithms in Solving the 30-D Benchmark Functions (s+, s-, and \approx Indicate That APrMF Is Significantly Better, Significantly Worse, and Indifferent, Respectively)

	F _{Sphere}	$F_{Schwefel1.2}$	<i>F_{Elliptic}</i>	$F_{Griewank-R}$	F _{Rastrigin}
BLX-GL50	s+	s+	-	s+	-
BLX-MA	s+		-	-	s+
DMS-L-PSO	s+	s+	s+	s+	-
EDA	s+	s+	s+	s+	-
DEshcSPX	s+	s+	-	s+	-
G-CMAES	s+	S-	s+	-	

Conclusions

- We can improve the canonical MA by deciding at runtime whether to use evolution or individual learning.
- APrMF outperforms other comparable methods on common benchmark functions.
- APrMF reduces the number of free parameters that must be set by the user.