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Abstract—In this paper, we present an improved evolutionary 

method for the task of locating a group of buildings based solely 

on their relative spatial relationships. This problem arises in the 

general text-to-sketch problem of conflating a hand or machine 

drafted sketch of building locations to a satellite image. We use 

the histograms of forces to capture the relative position infor-

mation between buildings and develop a method to compare 

building sets. This represents an extension to our previous work, 

allowing for larger placement perturbations and changes in 

orientation. 

Keywords-object set matching; histograms of forces; text-to-

sketch; evolutionary algorithm 

I.  INTRODUCTION 

Consider the problem of locating a group of buildings in a 

satellite image given an approximate description of their 

spatial relationships. This occurs in the general problem of 

text-to-sketch (T2S), in which a linguistic description is used 

to generate an approximate sketch of building and object 

locations [1]. This sketch can be matched to a real-world 

location by searching within a segmented satellite image for a 

set of buildings whose relative positions match those of the 

sketch. Our problem can be extended to any situation in which 

we wish to find a specific spatial configuration of objects 

within a large search area. 

We use the histograms of forces (HoF) [2], [3] to model the 

spatial relationships between objects for their descriptive 

power and predictable response to affine transformations. For 

the T2S problem, the histograms of forces are particularly 

useful, as they can provide a model of uncertainty as a fuzzy 

descriptor. We rarely have a completely accurate representa-

tion of the set of objects we are trying to match, so our model 

must be tolerant of slight variations in sketches. 

 In [4], the matching problem is solved using an evolution-

ary method in which the search space is covered with a 

population of potential matches which evolve over time into 

better matches. A novel mutation operator is used to guide 

candidate solutions toward the optimal match. The algorithm 

showed promising results for cases of direct resubstitution, but 

did not perform well when presented with object sets that had 

been rotated. We address many of the limitations of this 

approach in this paper and show that the histograms of forces 

allow us to match object sets that have undergone some basic 

transformation. 

II. EVALUATING SPATIAL RELATIONS 

The core of our problem lies in our representation of the 

spatial relationships between objects. The histograms of forces 

between two objects are a powerful measure of their spatial 

relationship as they incorporate direction, distance, and scale 

into a single framework. By utilizing the HoF relationships 

between all objects in a set, we can develop a method to 

compare two sets of objects. 

A. Histograms of Forces 

The spatial relationship between two objects, A and B, can 

be represented by the force histogram, Fr
AB. Here, we assume 

that A and B are crisp, two-dimensional objects in ℝ2 with 

positive finite area. The function Fr
AB(θ) evaluates the amount 

of support for the proposition, “A is in direction θ of B.” We 

refer to object A as the argument and object B as the referent. 

The force histogram provides a measure of the scalar resultant 

of elementary forces exerted by the points of A on those of B 

in a given direction, θ (Figure 1). We can evaluate the forces 

between objects as an inverse ratio of 𝑑𝑟 where d represents 

the distance between corresponding points in A and B, and r is 

used to extract different features. Of particular interest to us 

are the F0 and F2 histograms which represent the histograms of 

constant and gravitational force respectively. The F0 histogram 

is independent of the distance between objects, while the F2 

histogram is independent of scale. Details regarding the 

computation and properties of the histograms of forces can be 

found in [2] and [3]. 

B. Comparing Histograms 

We now turn to the problem of evaluating the similarity 

between two pairs of spatial relationships. Given two pairs of 

objects, (A, B) and (A', B'), we can define the force histograms, 

Fr
AB(θ) and Fr

A'B'(θ), where r = 0 is the histogram of constant 

force and r = 2 is the histogram of gravitational force. If the 
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two pairs of objects have a similar spatial configuration, their 

histograms should be similar whereas if the configurations are 

different, the histograms will reflect this difference. We can 

determine a similarity measure between two histograms by 

computing their cross-correlation, 

 𝜇𝐶(𝐹1, 𝐹2) =
∑ 𝐹1(𝜃)𝐹2(𝜃)𝜃

√∑ 𝐹1
2(𝜃)𝜃 √∑ 𝐹2

2(𝜃)𝜃

. (1) 

We choose the cross-correlation as our evaluation tool for its 

invariance to the scale of the histograms [3]. 

When applied to the raw histograms, this similarity measure 

does not account for changes in orientation between the pairs 

(A, B) and (A', B'). Due to the rotational invariance of the 

histograms of forces, if pair (A, B) is rotated counter-

clockwise by an angle, φ, its force histogram becomes 

 𝐹𝑟
𝑟𝑜𝑡(𝐴)𝑟𝑜𝑡(𝐵)(𝜃) = 𝐹𝑟

𝐴𝐵(𝜃 − 𝜑) (2) 

Following the approach in [3], we can use this property to 

normalize the histograms prior to comparison such that  

 𝐹𝑟
𝐴𝐵̅̅ ̅̅ ̅(𝜃) = 𝑚−1𝐹𝑟

𝐴𝐵(𝜃 + 𝑐), (3) 

where m is the mean value of Fr
AB and c is the centroid. These 

normalized histograms always have a mean value of 1 and a 

centroid of 0°. Computing the mean value is straightforward 

(and not actually necessary if we use the cross-correlation). 

Calculating the centroid, however, requires that we treat the 

histogram as a periodic function with a period of 360°. This 

can be evaluated by treating each histogram value as a vector 

in polar coordinates and computing the average of the sum of 

the vectors [5]. Since our histograms are derived from 

linguistic descriptions, it makes sense to calculate the centroid 

value, c, for a pair of histograms, F0
AB and F2

AB, as the centroid 

of the main direction histogram, 

 𝑎𝐴𝐵(𝜃) = max{𝑎0
𝐴𝐵(𝜃), 𝑚𝑖𝑛{𝑎2

𝐴𝐵(𝜃), 𝑏0
𝐴𝐵(𝜃)}}. (4) 

Here, 𝑎𝑟
𝐴𝐵(𝜃) is the degree of truth for the proposition, “A is in 

direction θ of B,” according to Fr
AB and 𝑏𝑟

𝐴𝐵(𝜃)  is the 

maximum degree of truth that can reasonably be attached to 

this proposition. The calculation of 𝑎𝑟
𝐴𝐵  and 𝑏𝑟

𝐴𝐵  requires the 

decomposition of Fr
AB into effective, contradictory and 

compensatory forces which Matsakis et al. describe in detail in 

[6]. While the original definition has the intent of measuring 

𝑎𝐴𝐵  in only the four cardinal directions, we evaluate 𝑎𝐴𝐵  for 

each value of θ in the histograms. For many cases, this step 

would seem unnecessary. However, in situations where the 

centroids of the F0 and F2 histograms differ greatly, the main 

direction histogram provides an interpretation that gives a 

common centroid for both the constant and gravitational forces 

(Figure 2). This is important because the two forces represent 

the same pair of objects and should therefore be rotated 

equally when normalizing. 

C. Comparing Sets of Histograms 

We now extend the comparison of a single pair of objects to 

the comparison of two sets of N objects. While the following 

comparison method can be used in multiple contexts, we use 

the framework of comparing a chromosome of potential 

buildings to a sketch in order to guide our discussion. Let us 

define two sets of objects: the sketch, 𝒮 = {o1, o2, …, oN}, and 

the chromosome, 𝒞 = {c1, c2, …, cN}. Our goal is to assess the 

degree to which the objects of the chromosome match those of 

the sketch. We define the force histogram set between two 

objects as the pair of constant and gravitational force histo-

 

A 

B 
θ 

Fig. 1 The elementary forces exerted by the points of A on those of B, 

used to calculate Fr
AB(θ). Each one pulls B in direction θ. 

A 

B 

(a) 

(b) 

0° 

90° 

180° 

-90° 

Fig. 2 The main direction histogram between the pair of objects in (a) 

utilizes both the histogram of constant force, F0
AB, and the histogram of 

gravitational force, F2
AB. In this configuration, the F0

AB and F2
AB 

histograms (b) have different centroids. The main direction histogram, 

aAB, provides a linguistic interpretation of the support for the statement, 
“A is in direction θ of B.” 



grams, ℱ𝐴𝐵 = {𝐹0
𝐴𝐵 ,  𝐹2

𝐴𝐵} . The set of all force histogram 

relationships for the sketch is then, 

 
ℋ𝑆 = {ℱ𝑜𝑖𝑜𝑗  | (𝑜𝑖 , 𝑜𝑗) ∈ 𝒮 × 𝒮 | 𝑖 < 𝑗} 

= {ℎ1
𝑆, ℎ2

𝑆 , … , ℎ𝑀
𝑆 }, 

(5) 

and similarly for the chromosome, 

 
ℋ𝐶 = {ℱ𝑐𝑖𝑐𝑗  | (𝑐𝑖 , 𝑐𝑗) ∈ 𝒞 × 𝒞 | 𝑖 < 𝑗} 

= {ℎ1
𝐶 , ℎ2

𝐶 , … , ℎ𝑀
𝐶 }. 

(6) 

Here, we have used hi
C and hi

S to represent the force histogram 

set between a single pair of objects and made use of the 

semantic inverse between objects, which states that 

 𝐹𝑟
𝐵𝐴(𝜃) = 𝐹𝑟

𝐴𝐵(𝜃 + 180°), (7) 

allowing us to consider only one histogram set for each pair 

[2]. 

Our strategy will be to compute the similarity between each 

pair, hi
C and hi

S, for all i and take the average similarity 

between pairs as the overall similarity (or fitness value in the 

case of an evolutionary algorithm) of the two object sets. This 

assumes that we have already solved the assignment problem 

and are considering only a single mapping of 𝒮 onto 𝒞. A 

more robust comparison method might iterate over several 

permutations to find the best ordering of 𝒮 and 𝒞. 

An additional feature of a set of more than two objects is 

the set of relative angles between objects. This information is 

lost if the histogram set for each pair is normalized inde-

pendently. We wish to retain this information by rotating one 

set of histograms to the angle which best matches the other set. 

Although either set could be rotated, we choose to rotate the 

histograms of the sketch in our notation, mimicking how a 

map is rotated to match the topography of the real world. To 

find the optimal angle, we compute the difference in main 

direction for each pair of histograms, 

(a) (b) 

(c) (d) 

A 

B 

C 
D 

E 

(a) (b) 

Fig. 3 Calculating the difference in main direction for a histogram set. 

The sketch in (b) is a simplification of the building set in (a), rotated 

counterclockwise 30°, and with object B moved to the lower-left of the 
sketch. (c) shows the histogram set for the ground truth, while (d) shows 

the histogram set for the sketch. The angular difference in main direction 

(measured in degrees) for each histogram pair is listed along the left-hand 
side of the ground truth. Together, these values constitute the set of angle 

differences, D. 

Fig. 4  Differences between calculating the optimal rotation angle for 

the histogram sets in Figure 3 using the mean (a) and the median (b) of 

the set of angle differences, D. The mean angle of D is -18°, while the 
median angle is 30°. Shifting the histograms of the sketch (blue) by -18° 

gives a very poor alignment, while shifting by 30° gives a perfect 

alignment for six of the histograms. The numbers along the sides of the 
histograms represent the cross-correlation between the ground truth 

histograms and those of the sketch. The total fitness is average of the 

cross-correlations, which is 0.08 for the mean angle rotation and 0.60 for 

the median angle rotation. 



 
𝐷 = {𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(ℎ𝑖

𝑆) − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(ℎ𝑖
𝐶) |1 ≤ 𝑖 ≤ 𝑀} 

= {𝑑1, 𝑑2, … , 𝑑𝑀} 
(8) 

where 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(ℱ𝐴𝐵)  is the centroid of the main direction 

histogram, aAB. D represents the set of angle differences 

between the histograms of the sketch and the chromosome. 

Figure 3 shows an example where a sketch representing an 

actual location has been simplified, rotated, and drawn with 

one building in the wrong position. Such misrepresentations 

can easily occur when constructing a sketch from a linguistic 

description. The optimal rotation angle can be found from this 

set by selecting either the mean or median of the angles in D. 

Choosing the median angle gives more stable results (Figure 

4), as it becomes less likely that a small number of poor 

histograms will influence an otherwise perfect set of matches. 

Calculating the mean and median again requires that we 

treat D as a set of periodic values. We could use polar vector 

summation to find the mean, however this requires the use of 

trigonometric functions which significantly slow the runtime 

performance of the algorithm when many calculations must be 

made. We can instead treat these values as linear, so long as 

we shift the values to an appropriate range that does not cross 

the periodic boundary. We assume for the purposes of this 

paper that no object completely surrounds another object and 

that such a shift is possible. Calculating the median value 

requires only that we evaluate each element of D to find the 

value which minimizes the expression from [5], 

 𝑚(𝜃) = 180° − ∑|180° − |𝑑𝑖 − 𝜃||

𝑀

𝑖=1

. (9) 

Having found the best rotation angle, θBest, we can rotate the 

histograms of the sketch to match those of the chromosome. 

The overall similarity then becomes 

  𝜇(ℋ𝑆, ℋ𝐶) =
1

𝑀
∑ 𝑓[ℎ𝑖

𝑆(𝜃 − 𝜃𝐵𝑒𝑠𝑡), ℎ𝑖
𝐶(𝜃), 𝛽]

𝑀

𝑖=1

 (10) 

 
𝑓(ℱ 𝐴𝐵 , ℱ 𝐴′𝐵′

, 𝛽) = 𝛽𝜇𝐶(𝐹0
𝐴𝐵 ,  𝐹0

𝐴′𝐵′
) 

+(1 − 𝛽)𝜇𝐶(𝐹2
𝐴𝐵 ,  𝐹2

𝐴′𝐵′
) 

(11) 

where β is from the range [0, 1] and represents the weighting 

between the histograms of constant and gravitational force. A 

value of 1 represents a complete bias toward the histogram of 

constant force, where a value of 0.5 is an equal weighting. 

D. Elastic Angles 

As an alternative to rotating each histogram of the sketch by 

the global best rotation angle, we can exercise a little more 

control over the match quality by rotating each histogram 

individually. We do this by first computing the best rotation 

angle as before, and then computing the overall similarity 

using the normalized histograms. We add a weighting term, 

S(θ), to ensure that only histograms which are close to the 

optimal rotation angle of the sketch are used in computing the 

average. S(θ) takes the form of a trapezoid centered at 0° and 

maps the range [-180°, 180°] into [0, 1] (Figure 5). The overall 

similarity is then 

𝑆(𝜃) 

𝜃 

1 

0 −180° 180° −45° 
 

 

−22.5° 
 

 

45° 
 

22.5° 
 

Fig. 5 The weighting function, S(θ), used as a filter to assign high 

fitness values only to histograms with small differences in main direction.  

(a) (b) 

(c) (d) (e) 

A B 

C 

D 
E 

A B 

C 

D 

E 

Fig. 6 Comparison of the elastic and non-elastic methods for evaluating 

fitness. The object set in (a) is taken from the ground truth of a real world 
location. The sketch in (b) is a simplification of (a) with object D 

significantly misplaced. (c) shows the computation of the non-elastic 

fitness, where the numbers to the left of each histogram represent the 
individual cross-correlation values. (d) and (e) show the computation of 

the elastic fitness. (d) is the weighting function S(θ), and (e) shows the 

normalized histograms, where the numbers to the right of each histogram 

represent the weighted cross-correlation values. 



𝜇𝐸𝑙𝑎𝑠𝑡𝑖𝑐(ℋ𝑆 , ℋ𝐶 ) =
1

𝑀
∑ 𝑓(ℎ𝑖

𝑆̅̅ ̅, ℎ𝑖
𝐶̅̅ ̅, 𝛽)𝑆(𝜃𝐵𝑒𝑠𝑡 − 𝑑𝑖).

𝑀

𝑖=1

 (12) 

Figure 6 shows an example which compares both elastic and 

non-elastic fitness methods for a situation in which a building 

in the simplified sketch is misplaced. The elastic method is 

able to give somewhat higher fitness values, but as we shall 

see in the experiments section, this method tends to give 

universally higher fitness values, which may or may not be 

desirable. 

III. AN EVOLUTIONARY ALGORITHM 

Armed now with the tools to compare object sets using 

relative spatial locations, we develop our modified algorithm 

to match a sketch of building locations to a segmented satellite 

image. We build upon the evolutionary algorithm described in 

[4] with a few significant modifications. The general structure 

of the technique is described in Algorithm I. 

A. Database Representation 

The input to the algorithm is a sketch containing N objects, 

𝒮 = {o1, o2, …, oN}. We define the objects of the sketch to be 

the goal set, where each object, oi, is defined as a polygon in 

ℝ2 with positive finite area. We restrict our discussion here to 

sketches with no overlapping objects. Our search area is a map 

consisting of a set of L reference objects, ℛ = {𝑥1,  𝑥2, … , 𝑥𝐿}, 

which must each satisfy the restrictions of the goal objects. 

Each reference object is linked to its k nearest neighbors by a 

set of force histograms, and the histograms between all linked 

reference objects are collectively gathered into a set of 

relationships, 

 ℋ𝑅 = {ℱ𝑥𝑖𝑥𝑗  | (𝑥𝑖 ,  𝑥𝑗) ∈ ℛ × ℛ} (13) 

where xj is one of the k nearest neighbors of xi. Each chromo-

some represents a set of objects, 𝒞 = {𝑐1,  𝑐2 , … 𝑐𝑁} ⊂ ℛ 

which could potentially match the goal set, 𝒮, such that 𝑐𝑖 = 𝑜𝑖 

for 1 ≤ 𝑖 ≤ 𝑁 . To satisfy the requirements of our matching 

method, we require that each chromosome be fully connected, 

meaning that ℱ𝑐𝑖𝑐𝑗 ∈ ℋ𝑅  for all pairs (ci, cj). 

B. Search Process 

The search process is initialized by randomly choosing an 

initial population of chromosomes from the set of reference 

objects, and ensuring that each chromosome is fully connect-

ed. The fitness of each chromosome is evaluated by finding 

the similarity of its histograms with those of the sketch using 

the method described in Section II. At each generational cycle 

of the algorithm, we mutate each chromosome as in [4], by 

randomly choosing a building and replacing it with the 

building that best replaces it. The fitness of the child chromo-

some, 𝒞C, determines if it will replace its parent, 𝒞P, by the 

formula, 

 𝑃(𝒞𝐶  𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠 𝒞𝑃) =
𝜇(𝒞𝐶)

𝜇(𝒞𝐶) +  𝜇(𝒞𝑃)
 (14) 

where μ(𝒞) is the fitness of chromosome 𝒞. This replacement 

method ensures that either the parent or child chromosome 

will survive to the next generation, and allows each potential 

solution the opportunity to evolve over time without being 

dropped from the population for having a fitness value which 

is too low. At regular intervals during the search process, new 

random chromosomes are added to the population, replacing 

the lowest scoring individuals. This keeps the algorithm from 

getting stuck in local minima, and forces it to search in new 

Algorithm I: Evolutionary Matching Algorithm 

 Input: ℋ𝑅  and ℋ𝑆 

 

 Create an initial population of chromosomes, P 

 Set generation counter t = 0 

 while stopping criteria is not met 

  for each chromosome, 𝒞P, in P 

   Mutate 𝒞P  and create 𝒞C 

   Replace 𝒞P with 𝒞C according to (14) 

  end 

 

  if t is a multiple of tRepopulate 

   Replace the least fit members of P with new  

  random chromosomes 

  end 

  

  t = t + 1 

 end 

 

 Output: Top chromosomes in P 

 

Fig. 7  The reference set, ℛ, used for our experiments. The set contains 

2467 buildings from downtown Columbia, MO and the University of 

Missouri campus. 



locations. Searching continues until a suitable match is found 

or some other stopping criterion is met, such as a maximum 

number of generations. 

IV. EXPERIMENTS 

Our experiments were conducted using a reference set of 

buildings from Columbia, MO, shown in Figure 7. We 

calculate a histogram relationship between each building and 

its 50 nearest neighbors using a 2° interval for each histogram. 

We first examine the usefulness of using elastic angles for the 

fitness calculation. We then evaluate several test sketches 

using two different versions of the algorithm. 

A. Testing Elastic Angles 

When discussing the calculation of the elastic angles in 

Section II, we made note of the fact that the elastic angle 

method tends to produce higher fitness values. The graph in 

Figure 8a shows the elastic and non-elastic fitness values of 

the sketch in Figure 6a as object D is moved 100 pixels in a 

downward direction. With no displacement, both methods give 

a fitness of 1. As the building is moved, both fitness values 

decrease, with the elastic fitness remaining higher than the 

non-elastic fitness. The elastic fitness plot appears less smooth 

because in our implementation the best angle must be a 

multiple of 2°. This allows us to rotate histograms quickly by 

changing the indexing. A more accurate method could 

interpolate values between histogram bins, but at the cost of 

greater computation time. 

If our goal is to evaluate the fitness of a single object set, 

the elastic angles provide a way to increase this value. 

However, if we are trying to locate the best match among 

many possible candidates we notice that the elastic angle 

method will increase the fitness value of all matches, making a 

very high fitness value less unique. To test this, we compare 

the sketch in Figure 6a to 10,000 randomly generated object 

sets and construct histograms of the computed fitness values 

using both the elastic and non-elastic methods (Figure 8b). 

The histograms show that the average fitness value is low in 

both cases, but distributed somewhat higher for the elastic 

angle method. This means that for a given fitness threshold, 

more matches will likely be returned. 

B. Testing the Evolutionary Algorithm 

We have made several improvements to the algorithm 

originally proposed in [4]. They are: 

 

• Both histograms of constant and gravitational force can 

be used in calculating fitness values. 

 

• The alignment of histograms is performed by calculat-

ing the centroid of the main direction histogram rather 

than taking the maximum value. 

 

• The calculation of the best rotation angle is performed 

using the median of the angle differences rather than 

the mean. 

 

• We have the option of computing the final fitness value 

using elastic angles. 

 

To test these improvements, we created 100 random sketch-

es from our reference set with five buildings each. The 

sketches were chosen from actual building locations and 

(a) 

(b) 

Fig. 8  Comparison of the elastic and non-elastic angle methods. (a) 
shows the  difference between the elastic and non-elastic fitness as 

building “D” from the sketch in Figure 6a is shifted downward. (b) shows 

the histograms generated by comparing the sketch in Figure 6a to 10,000 
randomly generated object sets using both the elastic and non-elastic 

methods. 

TABLE I 

 
Evolutionary Algorithm Parameters 

Old Method New Method 

Max Generations 10,000 10,000 

Population Size 493 493 

Replacement  
Frequency 

100 Generations 50 Generations 

Percent of  

Replacement 
10% 50% 

Histogram Bias, β 1 0.5 

Rotation Method Mean Angle Median Angle 

Elastic Angles Non-Elastic Elastic 

 



simplified such that each building was represented by its 

bounding box. Each sketch was then rotated to a random angle 

to give an arbitrary orientation. We ran our algorithm on each 

sketch using two different sets of parameters, defined in Table 

I. For each sketch, we take the average of 30 trials using each 

configuration. 

The two methods are intended to model the old matching 

algorithm defined in [4] and the new method given in this 

paper. We chose to use 20% of the total buildings in the 

reference set as the population size and set the generation limit 

to 10,000. We then ran the algorithm until we found a 

chromosome that contains the same buildings used to generate 

the sketch. In a practical setting, we would not know these 

buildings beforehand. Our stopping criteria could use a fitness 

threshold, however we then risk never finding the match if the 

threshold is set too high. A qualitative analysis would be 

required to determine when a good solution is found. Since we 

are mainly interested in the algorithm’s ability to find the real 

location where the sketch originated, we use the building 

comparison criteria to end our search. We note the average 

number of generations required to find the correct match, if 

the correct match is found at all. 

Table II shows the matching results for the old and new 

methods. The new method using the median angle rotation and 

elastic angles had a higher matching rate, and required fewer 

average generations. Figure 9 shows a plot of the average 

number of generations required to find the correct match for 

each test. The new method had fewer average generations for 

most test cases. This suggests that while both methods can 

give good results, the new method presented in this paper is 

more stable under varying conditions. Since the goal is to 

convert linguistic descriptions to sketches and then match to a 

geospatial database, there is a considerable likelihood that 

some of the linguistic descriptions are wrong (the building “to 

my right” was actually to the left), the parsing can give 

inaccurate spatial locations, or there are missing or incomplete 

descriptions; all making the matching process much harder. 

The modified approach ameliorates some of these problems. 

As the search process proceeds, the average fitness values 

of the chromosomes in the population increases. Figure 10 

shows the maximum and average fitness values of the 

population for both the old and new methods, averaged over 

all of the trials. The new method has significantly higher 

fitness values due to the use of elastic angles. The mean fitness 

values of the population drop every time new chromosomes 

are added. The new method repopulates 50% of the population 

every 50 generations, while the old method replaces 10% 

every 100 generations. This more aggressive approach to 

repopulation ensures that the algorithm always searches new 

locations without becoming stuck in local minima. 

The values we found for the old method are much higher 

than those reported in [4]. Upon further analysis, we discov-

ered that the calculation of the mean angle in [4] failed to 

account for the periodicity of the histograms. Additionally, 

histograms were aligned by their maximum values as opposed 

to their centroids or main direction. The convergence statistics 

also are based on a fitness threshold instead of determining if 

the algorithm actually found a correct match. These issues 

have been addressed by the method presented in this paper. 

TABLE II 

 
Matching Results 

Old Method New Method 

Percent of tests which 

found correct match 
89.4% 95.1% 

Average Generations 3001 2104 

 

Fig. 9  The average number of generations required for the algorithm to 

find the correct match for both the old and new method. The new method 

required fewer average generations in most cases. 

Fig. 10  The population fitness values for each generation, averaged over 
all of the trials. The new method (blue) has significantly higher fitness 

values due to the use of elastic angles. The mean values of the population 

drop every 50 generations for the new method and every 100 generations 
for the old method as new chromosomes are added. 



V. CONCLUSION 

In this paper, we improved upon a method for comparing 

object sets using their relative spatial relationships. We found 

that the histograms of forces are a powerful analytical tool for 

representing the relationship between a single pair of objects. 

We used a set of histogram relationships to model a set of 

multiple objects and evaluated different approaches for 

comparing them. The median angle rotation gives stability to 

the search algorithm, while elastic angles can be used to 

increase the overall fitness values. We found that the histo-

grams themselves allow for small variations in the object sets 

and can be used without the additional framework of the 

elastic angles if required. 

The task of matching groups of buildings is a specific 

application of object set matching in general, and there are still 

many improvements to be made. Additional features such as 

object labels and road networks will improve matching by 

pruning the search space. We also only currently consider a 

single mapping between object sets. Future work in this area 

will explore multiple possible mappings between object sets, 

as well as other search methods such as subgraph isomorphism 

techniques. 
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