
To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

Abstract—This paper presents an approach to the task of lo-

cating a group of buildings based solely on their relative spatial

relationships. This situation can occur in the problem of confla-

tion of a hand or machine drafted map to a satellite image or in

matching of two images taken under different viewing condi-

tions (the correspondence problem). Of importance to us is the

general text-to-sketch problem where a sketch of building loca-

tions must be matched to actual satellite imagery. Information

about the nature of these relative positions is captured by the

histograms of forces. In this paper, we consider a modified ge-

netic algorithm that allows us to search for a specific group of

buildings within a large geospatial database using the histo-

grams of forces in the matching process. A novel mutation op-

erator is introduced to adapt the standard GA to this environ-

ment.

I. INTRODUCTION

N the general problem of text-to-sketch (T2S), a linguistic

description of a location is converted into a pictorial rep-

resentation [1]. A person who is in an unfamiliar place may

describe his location using nearby landmarks and their rela-

tive positions to one another. From these linguistic descrip-

tions, the T2S system in [1] can create an artificial image

which represents the relative locations and sizes of the rec-

ognized landmarks. This sketch can assist in finding the real-

world location of the person. For example, Figure 1 shows a

sketch generated by the T2S system and the corresponding

location in a satellite image. This sketch was created from a

series of linguistic descriptions that take a form similar to: “I

see a long rectangular building on my left and a small L-

shaped building on my right.”

The sketch generated either by the T2S system or by hand

is rarely a completely accurate representation of the actual

environment. Inaccuracies in the sketch and in the segmenta-

tion of the satellite image make comparing the two a chal-

lenging task. A system that can match the generated sketch

to segmented satellite imagery must be tolerant of mistakes

in shape and scale, yet sensitive to relative relationships be-

tween objects. The most accurate feature of a sketch tends to

be the spatial relationships of the objects within, rather than

their specific shapes and sizes. We use the histograms of

forces (HoF) [2] as a means of capturing the relative orienta-

tion and scale between two objects. When a histogram is

created between each pair of objects in a sketch, it provides

Manuscript received May 1, 2010. This work is funded by the U.S. Na-

tional Geospatial-Intelligence Agency NURI grant HM 1582-08-1-0020.

A. R. Buck, J. M. Keller, and M. Skubic are with the Department of

Electrical and Computer Engineering, University of Missouri-Columbia,
MO 65211, USA (e-mail: arb9p4@mail.mizzou.edu; kellerj@missouri.edu;

skubicm@missouri.edu).

a quantitative metric which can be used to match it to a real

location. The similarity of the HoF to a natural human de-

scription, along with its use of relative rather than absolute

relationships, makes it an ideal candidate for comparison of

object configurations.

To solve the problem of comparing the objects in a sketch

to those in a segmented satellite image, we consider the use

of a modified genetic algorithm. Genetic algorithms (GAs)

are often used for searches over a large search space where

an exhaustive search would be impractical [3]. They are a

branch of evolutionary computation which seeks to find a

suitable solution by creating a population of random indi-

viduals and evolving them into better solutions. The classical

GA developed by Holland [4] operated on chromosomes

represented by bitstrings and iteratively applied selection

with simple mutation and crossover operations. Later re-

search adapted the classical GA to a variety of problem do-

mains, including the problem of performing a spatial search.

GAs have been used for matching 2D line segments by Bev-

eridge [5], who explored the benefits of a messy genetic

algorithm and by Rodríguez [6], who used a topological

framework to search spatial configurations. In this paper, we

design a chromosome representation and mutation operator

to take advantage of the spatial knowledge captured by the

histograms of forces to match a set of nearby buildings in a

confined neighborhood.

We begin by reviewing the theory behind the histograms

of forces and genetic algorithms. The HoF GA modification

to the classical GA used in this paper is then explained in

detail. We conclude the paper with an analysis of the per-

formance of the HoF GA on a large database of buildings.

We consider matching sketches both with and without global

A Modified Genetic Algorithm for Matching Building Sets

with the Histograms of Forces

Andrew R. Buck, James M. Keller, Fellow IEEE, Marjorie Skubic, Member IEEE

I

(a) (b)

Fig. 1 An example of the building matching problem. (a) A general sketch of
building shapes and locations shown in red, with additional information such

as parking lots (green) and roads (blue). (b) A real-world location with build-

ings within a large image database that closely match the sketch in (a).

mailto:arb9p4@mail.mizzou.edu
mailto:kellerj@missouri.edu
mailto:skubicm@missouri.edu

To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

transformations, and include an example of matching a

sketch from the T2S system.

II. BACKGROUND

A. Histograms of Forces

Given a pair of crisp, two-dimensional objects A and B,

and a direction θ, we want to know the degree to which A is

in direction θ from B. We define a function 𝐹𝑟
𝐴𝐵(𝜃) that

evaluates the amount of support for which this is true. To

construct 𝐹𝑟
𝐴𝐵(𝜃), we must evaluate the objects A and B first

as sets of points, then line segments, longitudinal sections,

and finally general directions [7]. Given a line 𝛥𝜃(𝑣) as in

Figure 2, we can determine the set of line segments that in-

tersect both objects A and B. For each point M in object A,

we measure the distance 𝑑𝑀𝑁 to a point N in object B. We

can then define a function that evaluates the distance be-

tween two points,

𝜙𝑟(𝑀 − 𝑁) =
1

𝑑𝑀𝑁
𝑟 . (1)

For each pair of line segments I and J, which are contained

within and bounded by A and B respectively, we define a

function which integrates the distances between all possible

pairs of points in I and J,

𝑓𝑟(𝑑𝐼 , 𝑑𝐼𝐽
𝜃 , 𝑑𝐽) = ∫ ∫ 𝜙𝑟(𝑢 − 𝑣)𝑑𝑣 𝑑𝑢

𝑏𝐽
𝜃

𝑎𝐽
𝜃

.
𝑏𝐼

𝜃

𝑎𝐼
𝜃

 (2)

The summation of this function over all possible line seg-

ments contained within and bounded by A and B in a direc-

tion θ gives the force value ℱ𝑟, defined as

ℱ𝑟(𝜃, 𝐴𝜃(𝑣), 𝐵𝜃(𝑣)) = ∑ 𝑓𝑟 (𝑑𝐼𝑖
, 𝑑𝐼𝑖𝐽𝑗

𝜃 , 𝑑𝐽𝑗
) .

𝑖,𝑗
 (3)

Evaluating ℱ𝑟 over the set of parallel lines in a direction θ

gives the force histogram 𝐹𝑟
𝐴𝐵(𝜃):

𝐹𝑟
𝐴𝐵(𝜃) = ∫ ℱ𝑟(𝜃, 𝐴𝜃(𝑣), 𝐵𝜃(𝑣)) 𝑑𝑣

∞

−∞

. (4)

We can evaluate these functions with different values of 𝑟

to capture different information. For example, 𝑟 = 0 gives

constant forces, which represents object independence from

distance, and 𝑟 = 2 gives the gravitational force, which rep-

resents object independence from scale. Figure 3 shows the

histograms of constant and gravitational force between ob-

jects A and B from Figure 2. These histograms represent the

relative position of the two objects in a way that preserves

the direction and relative scale, but does not distinguish be-

tween small variations in shape. This is the primary reason

for choosing the HoF as the representation scheme for the

matching algorithm.

B. Genetic Algorithms

In the domain of evolutionary computation, genetic algo-

rithms model natural evolution by using genotypes. Each

candidate solution is expressed as a chromosome containing

a set of genes, one for each variable to be optimized. A fit-

ness function evaluates how well each chromosome matches

the ideal solution. Evolution occurs through the selection,

crossover, and mutation operators. The selection operator

uses the fitness values to pick a set of chromosomes to sur-

vive through to the next generation. Crossover creates off-

spring chromosomes by combining genetic material from a

set of parents. Mutation randomly alters the genes of a single

chromosome to introduce new genetic material.

The classical GA uses all of these operators on a popula-

tion of chromosomes represented by bitstrings, where each

(a) Handling points (b) Handling segments (c) Handling longitudinal sections (d) Handling directions

Fig. 2 The computation of the histograms of forces for two crisp objects, A and B for a single value θ. Functions are defined which evaluate (a) points:

𝜙𝑟(𝑀 − 𝑁) = 1

𝑑𝑀𝑁
𝑟 , (b) line segments: 𝑓𝑟(𝑑𝐼, 𝑑𝐼𝐽

𝜃 , 𝑑𝐽) = ∫ ∫ 𝜙𝑟(𝑢 − 𝑣)𝑑𝑣 𝑑𝑢
𝑏𝐽

𝜃

𝑎𝐽
𝜃

𝑏𝐼
𝜃

𝑎𝐼
𝜃 , (c) longitudinal sections: (𝜃, 𝐴𝜃(𝑣), 𝐵𝜃(𝑣)) = ∑ 𝑓𝑟 (𝑑𝐼𝑖

, 𝑑𝐼𝑖𝐽𝑗

𝜃 , 𝑑𝐽𝑗
)𝑖,𝑗 , and

(d) directions: 𝐹𝑟
𝐴𝐵(𝜃) = ∫ ℱ𝑟(𝜃, 𝐴𝜃(𝑣), 𝐵𝜃(𝑣)) 𝑑𝑣

∞

−∞
.

Fig. 3 The histograms of constant (dark gray) and gravitational (light gray)

force from object A to B in Figure 2. The concentration of values in the range

0 to 𝝅

𝟐
 implies that B is above and to the right of A.

To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

bit represents a gene. A population of chromosomes is creat-

ed randomly and represents the original generation. The se-

lection operator is used to select a set of chromosomes for

reproduction. This occurs through the mutation and crosso-

ver operations, which are applied to the population with

probabilities mprob and cprob respectively. After creating new

genetic material through these operations, the selection op-

erator selects a new population from the existing set of

chromosomes to serve as the next generation. This cycle of

evolution continues until some stopping condition is met,

typically a maximum number of generations, or an accepta-

ble solution.

III. ALGORITHM

A. Database Representation

In order to match a sketch to a satellite image, we must

define the locations of all the buildings in the search area.

This is done by creating a polygon outline of each building’s

footprint. These coordinates are stored as absolute positions

in a database of polygon features, represented in the coordi-

nate system of the scene. From this information, we calcu-

late the HoF between any two buildings. As the size of the

search area increases, the number of possible building pairs

grows at a rate of 𝑛!. To limit our search space, we only cal-

culate the HoF for the K nearest neighbors of each building.

We can determine the set of nearest neighbors for each

building by calculating the set of polygons with the shortest

Euclidian distance between any two points in both polygons.

The value chosen for K depends on the number and separa-

tion of the buildings that will be matched from sketches.

This value can have a significant impact on the performance

of the algorithm. If the number of nearest neighbors is too

small, it may become impossible to find the set of buildings

that most closely matches an input sketch. Conversely, if

there are too many nearest neighbors, the time required to

compute each new generation becomes a limitation.

Our method defines two sets of buildings: the database set

containing all the buildings in a segmented satellite image,

and the target set containing all the buildings in the sketch to

be matched. The database set can be pre-calculated for each

search area, but the target set will be unique for each input

sketch. Figure 4 shows the database set used in our experi-

ments. Each set assigns an index number to every building

and creates a list of each building’s nearest neighbors. The

HoF are computed for each set and are used by the GA to

perform the matching. No absolute position information is

included in the HoF, only relative information. This means

that matching can be done on a database and target set that

use independent coordinate systems. When a match has been

found, the buildings corresponding to the matched histo-

grams can be determined by their index numbers.

B. Chromosome Representation

As described by Algorithm I, the runtime parameters for

the GA are the polygon outlines of the target set Tpoly, the

population size n, the mutation probability pm, the maximum

number of generations tmax, and the minimum required fit-

ness value to end the search fmin. We first calculate the force

histograms between the polygons in the target set and store

these as the target histograms THoF. Every chromosome in

the GA is a set of potential building indexes, where each

gene represents a building. The force histograms between

the buildings of a chromosome are stored as the chromo-

some’s search set SHoF. The goal of the algorithm is to find a

candidate solution’s search set SHoF that most closely match-

es the target set THoF. The algorithm starts by creating a ran-

dom population of n chromosomes over the search space

with the restriction that each set must be fully connected.

This implies that there is a histogram from each building in

the chromosome to every other building in the chromosome.

If the number of nearest neighbors stored for each building

in the database set is too low, a complete match may not be

possible, and the algorithm will thrash about a suboptimal

solution. Ideally the initial chromosomes will be evenly dis-

tributed over all the buildings in the database. Each chromo-

some, then, represents an argument or search scene. Once a

chromosome is created, we immediately evaluate its fitness.

The fitness of a chromosome can be found by comparing

all of the histograms of its search set SHoF with the histo-

grams of the target set THoF. Prior to comparison, the search

set is rotated to an optimal value, based on the properties of

HoFs [2], [7]. This ensures that the best match can be found,

even if the target set is rotated with respect to what appears

in the search space of the database set. Rotation is performed

by finding the centroids of the histograms in the search set

hS(θ), and the target set hT(θ), which can be approximated as

the value of θ for which h(θ) is largest. The centroid of each

search histogram is compared to the centroid of each target

Fig. 4 Database set used for testing the modified genetic algorithm. The set
contains 2467 buildings from downtown Columbia, MO and the University

of Missouri-Columbia campus.

To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

histogram and the average difference is saved as the best

angle of the chromosome. Each histogram in the search set is

then shifted by the best angle to most closely match the tar-

get set. We define N to be the number of histograms in the

target set, which must equal the number of histograms in the

search set. The rotation process is summarized by equations

5-7.

𝑐(ℎ(𝜃)) = argmax
𝜃

ℎ(𝜃) (5)

𝛼 =
1

𝑁
∑ 𝑐(ℎ𝑇(𝜃)) − 𝑐(ℎ𝑆(𝜃))

ℎ𝑆∈𝑆𝐻𝑜𝐹
 ℎ𝑇∈𝑇𝐻𝑜𝐹

 (6)

ℎ′(𝜃) = ℎ(𝜃 + 𝛼), for all ℎ(𝜃) ∈ 𝑆𝐻𝑜𝐹 (7)

Histograms are compared using their cross-correlation,

which effectively determines the amount that they overlap.

This can be calculated using the formula,

𝜇𝑐(ℎ𝑆, ℎ𝑇) =
∑ ℎ𝑆(𝜃)ℎ𝑇(𝜃)𝜃

√∑ ℎ𝑆
2(𝜃)ℎ𝑇

2 (𝜃)𝜃

. (8)

Here, 𝜇𝑐 is in the range [0, 1] and is the cross-correlation

between histograms hS and hT. The final fitness of the chro-

mosome can be calculated by averaging the cross-

correlations of each histogram pair between the search and

target sets with the formula,

𝑓(𝑥(𝑡)) =
1

𝑁
∑ 𝜇𝑐(ℎ𝑆, ℎ𝑇).

ℎ𝑆∈𝑆𝐻𝑜𝐹
 ℎ𝑇∈𝑇𝐻𝑜𝐹

 (9)

The fitness of a chromosome is in the range [0, 1] where a

fitness of zero implies that there is no evidence to support a

match between this search set and the target set, and a fitness

of one implies a perfect match between the two sets. It

should be noted that the ordering of genes in the chromo-

Algorithm I: Modified Genetic Algorithm

Input: Tpoly: target set, n: population size, pm: muta-
tion probability, tmax: max generations, fmin: min fit-
ness

Evaluate Tpoly to produce target HoF set, THoF;
Add n random chromosomes to population, C(0);

Evaluate the fitness, 𝑓(𝑥(𝑡)) of each individual;

Update set of best individuals and fbest;
t = 0;
while (t < tmax and fbest < fmin) {

for each chromosome in C(t) {
Perform mutation with probability pm {

Select a gene at random;
for each nearest neighbor {

Replace chosen gene with nearest neighbor;
Evaluate the fitness of the chromosome;

}
Replace the chosen gene with the nearest
neighbor that has the highest fitness;

}
Add either child or parent to C(t+1) based on
𝑃(𝑥𝑐(𝑡) 𝑤𝑖𝑛𝑠);

}
if (t mod 100 == 0) {

Add n/10 random chromosomes to C(t);
Select n chromosomes for C(t+1);

}
Update set of best individuals and fbest;
t = t + 1;

}

Output: Set of best individuals and fbest

(a)

(b) (c)

Fig. 5 The process of the novel mutation operator just before convergence (a)

and after convergence (c). The chromosome contains buildings a-e (four

green and one red). The target set contains buildings A-E (four green and one
blue). Building e in red is randomly chosen for replacement. (b) shows the

histograms of forces relating E to buildings A-D. The nearest neighbor

(shown in yellow except for E in blue) that most closely matches these histo-
grams is chosen to replace building e in red. Because this is the last mutation

before convergence, building E is a perfect match. (c) shows the final chro-
mosome, perfectly matched with the target set.

To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

some is important. Two chromosomes with identical genes

but in different orders will not be considered the same solu-

tion by the fitness function.

C. Mutation Operator

We create new chromosomes for the next generation by

applying the mutation operator to the entire population with

a probability equal to pm. Because each chromosome repre-

sents a set of buildings that are close together, the combina-

tion of sets through crossover could result in child chromo-

somes that are not fully connected, so mutation is used ex-

clusively. Our mutation operator begins by randomly select-

ing one of the genes to replace. This gene corresponds to one

of the buildings in the target set. The set of potential re-

placements is the set of buildings which could replace the

chosen gene and maintain full connectivity. The fitness of

the chromosome is evaluated for each potential replacement.

The building that produces the chromosome with the highest

fitness value is considered to be the best “fit” and is chosen

as the new value for the gene. The mutation operator is fur-

ther highlighted in Figure 5.

When a chromosome is mutated, its fitness determines if

it will replace its parent by the formula,

𝑃(𝑥𝑐(𝑡) 𝑤𝑖𝑛𝑠) =
𝑓(𝑥𝑐(𝑡))

𝑓(𝑥𝑐(𝑡)) + 𝑓 (𝑥𝑝(𝑡))
 (10)

where 𝑥𝑐 is the child chromosome, 𝑥𝑝 is the parent chromo-

some, and 𝑓(𝑥𝑖(𝑡)) is the fitness of chromosome 𝑥𝑖. A par-

ent with a lower fitness value than its child is more likely to

be replaced. This helps to prevent a low-fitness child from

replacing a high-fitness parent. After all chromosomes have

had the opportunity to mutate, the generation counter ad-

vances. Every 100 generations, the population size is in-

creased by 10% and a new population is chosen of the origi-

nal size. This allows new genetic material to be added late in

the search process, which keeps chromosomes from getting

trapped in local minima. The algorithm continues until a

chromosome with the minimum required fitness is found or

the generation limit is exceeded.

IV. RESULTS

Our tests were conducted on a dataset of 2467 buildings

from Columbia, MO, shown in Figure 4. We created 100 test

sets with five buildings each, with the restriction that each

building must be one of the 30 nearest neighbors of each

other building in the test set. In the first experiment, we

evaluate the performance of the HoF GA using direct resub-

stitution. Next, we apply a random global transformation to

each test set and reevaluate the algorithm’s performance.

Finally, we look at the matching ability of the HoF GA on an

example sketch created by the T2S system. Tests are per-

formed on a computer running Windows 7 with a Core i7

processor running at 2.93 GHz and 12 GB of RAM.

A. Resubstitution

In our first experiment, we use 100 test sets with five

buildings each and evaluate the average performance of the

HoF GA over 10 runs. The database for these trials uses 30

nearest neighbors. We use population sizes of 50, 100, 250,

500, and 1000 with a maximum of 10,000 generations. The

mutation probability is fixed at 1 and a fitness value of 0.99

is required for convergence. This accounts for rounding er-

rors that may make it impossible to achieve a perfect fitness

value of 1.

To evaluate the performance of the algorithm, we first

compute the average top fitness value per generation, as

shown in Figure 6a. This is done by averaging the top fitness

values within each population for each generation over all

tests for a given population size. Our results show that the

average top fitness value within the population rapidly in-

creases during the first 50 generations and then begins to

level out. By recording the state of the population at each

generation, we can generate animations that show the pro-

gress of the matching algorithm and the fitness of each

chromosome. During these first few generations, the chro-

mosomes select buildings that are in the same general spatial

configuration as those in the input sketch. The remaining

time that the algorithm runs is spent optimizing the selection

of individual buildings to more closely match the target set.

As would be expected, larger population sizes can test more

search arguments, which results in higher top fitness values.

Figure 6b shows the average number of generations re-

quired for convergence. Here, we see that the population size

has a large impact on the number of generations required for

convergence. Larger population sizes tend to converge with

fewer generations, although this benefit can easily be com-

promised by the longer computational time required. While

Figure 6b shows the average generations to convergence,

Table I shows the actual percentage of tests which were able

to find a solution with a fitness of 0.99 within 10,000 gen-

erations. We see again that larger population sizes have

higher convergence rates over this generation limit.

B. Global Transformation

For the second experiment, each test set is given a random

transformation of translation, scale, and rotation. We again

evaluate the average performance of the HoF GA over 10

runs using the same database of buildings of 30 nearest

neighbors with a mutation probability of 1 and population

sizes of 50, 100, 250, 500 and 1000. A fitness value of 0.99

is required within 10,000 generations for convergence.

TABLE I

PERCENT OF TESTS WHICH CONVERGE WITHIN 10,000 GENERATIONS

Population Size Resubstitution Global Transformation

50 55.0% 34.4%

100 70.7% 43.2%
250 84.5% 52.7%

500 90.1% 58.1%

1000 94.8% 60.5%

Convergence is defined as having at least one chromosome in the popula-

tion with a fitness value of 0.99 or greater. Tests using strict resubstitution
have a higher convergence rate than those using global transformations.
Larger population sizes are also shown to improve the convergence rate.

To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

Figure 7a shows the average top fitness values per genera-

tion, which looks very similar to the resubstitution results.

Figure 7b, however, shows that many of the tests required

more generations to converge, and a significant number of

them failed to converge at all within 10,000 generations.

Table I confirms that the percentage of tests which converge

is much lower for the global transformation experiment.

Despite the slow convergence times for global transfor-

mations, the average top fitness values per generation are

only slightly lower than those observed for resubstitution.

This shows that although the perfect match is not found

quickly, the top matches still reflect the spatial configuration

shown in the input sketch. While the histograms of forces

themselves should account for global changes in translation

and scale, a global rotation results in a shifting of the histo-

grams. This is accounted for in the matching algorithm, but

clearly rotation has an impact on the performance of the GA.

The fitness value of 0.99 required for convergence may also

be too strict due to rounding errors accumulated from the

extra rotation required.

C. Practical Example

To test our algorithm with an output sketch from the T2S

system, we use the sketch from Figure 1, which describes

the movement of a person moving north along a road in

downtown Columbia, MO. The sketch was generated auto-

matically from a lengthy text description [1] and consists of

eight buildings with rectangular or L-shaped outlines. The

sketch also contains information about parking lots and

roads which our algorithm does not utilize at this time. Us-

(a) (b)

Fig. 6 (a) Average fitness value per generation for resubstitution. The average top fitness value within the population rapidly increases during the first 50
generations and then begins to level out. Larger population sizes result in higher top fitness values per generation. (b) Average generations to convergence

per test for resubstitution. Generations are limited to 10,000 and convergence is defined by the population having at least one chromosome with a fitness

value of 0.99 or greater. Larger population sizes result in fewer average generations required to reach convergence.

(a) (b)

Fig. 7 (a) Average fitness value per generation for global transformation. The average top fitness values are only slightly lower than those of resubstitution.

Again, larger population sizes result in higher top fitness values. (b) Average generations to convergence per test for global transformation. Generations are
limited to 10,000 and convergence is defined by the population having at least one chromosome with a fitness value of 0.99 or greater. Many tests required

more generations to converge than with resubstitution and a significant number of tests failed to converge at all. Larger population sizes again result in fewer

average generations required to reach convergence.

To appear in Proceedings IEEE Congress on Evolutionary Computation, World Congress on Computational Intelligence, Barcelona, Spain, July, 2010.

ing this sketch required a database with connections to 100

nearest neighbors. Figure 8 shows the top results returned by

the HoF GA using a population size of 50 chromosomes.

Three of the top ten results describe the same location de-

scribed by the input sketch with the top result corresponding

to the actual buildings used. The fitness of the top result is

0.917, which is not a perfect fitness of 1 due to the general-

ized building shapes used in the input sketch. Six of the top

ten results described residential locations that could be elim-

inated from the results with some additional search criteria

such as the original environment of the input sketch. The

result shown in Figure 8c is of particular interest because it

shows the buildings rotated roughly 45° from the input

sketch. Since the original sketch clearly shows a grid-like

road structure, any rotation that is not a multiple of 90° in an

urban setting is unlikely to be correct. Because only the his-

tograms between buildings were compared, the match has a

fitness value of 0.865 despite its unlikely arrangement.

These results show the variety of configurations that can

match a sketch. They all have buildings placed in the proper

relative locations, but their shapes and sizes vary considera-

bly. This shows that the placement of objects in a sketch is

typically a greater factor in finding a good match than exact

building shapes or sizes. Additional search criteria, such as

the parking lots or road infrastructure shown in the sketch,

would likely improve the search results.

V. CONCLUSION

In this paper, we developed a modification to the tradi-

tional GA for the purpose of building matching. This algo-

rithm uses a special mutation operator which applies the

histograms of forces to select an ideal set of buildings. We

tested our algorithm on several sets of buildings using strict

resubstitution and also with a global transformation. We

found that even though a global rotation of the input sketch

can take longer to converge to a single solution, the results

obtained in both cases reflect the spatial locations of the

original buildings more than their specific shapes. This

demonstrates the usefulness of using HoF relations when

comparing spatial relationships. The algorithm’s invariance

to global rotation, however, can lead to matches that defy

common sense, such as rotations of 45° in a grid-like urban

setting. Future work in this area will explore the effect of

imposing additional search criteria such as road networks

and specific object types (parking lots, restaurants, etc.).

VI. REFERENCES

[1] I. Sledge and J. Keller, "Mapping Natural Language to Imagery: Plac-
ing Objects Intelligently," IEEE Proceedings, International Confer-

ence on Fuzzy Systems (FUZZ-IEEE), Jeju Island, Korea, August,

2009, pp. 518-524.
[2] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa, “The Use

of Force Histograms for Affine-Invariant Relative Position Descrip-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 26, pp. 1-18, Jan. 2004.

[3] A. P. Engelbrecht, Computational Intelligence: An introduction, 2nd

ed. Chichester, West Sussex: John Wiley, 2007, pp. 125-176.
[4] J. H. Holland, “Adaptation in Natural and Artificial Systems,” Univer-

sity of Michigan Press, Ann Arbor, 1975.

[5] J. R. Beveridge, “Optimal 2D Model Matching Using a Messy Genet-
ic Algorithm,” Proceedings, American Association for Artificial Intel-

ligence, pp. 677-683, 1998.
[6] M. A. Rodríguez and M. C. Jarur, “A Genetic Algorithm for Search-

ing Spatial Configurations,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 3, June 2005.
[7] P. Matsakis and L. Wendling, “A new way to represent the relative

position between areal objects,” IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, vol. 27, pp. 634–643, 1999.

(a) Fitness: 0.917 (b) Fitness: 0.871 (c) Fitness: 0.865 (d) Fitness: 0.856 (e) Fitness: 0.852

(f) Fitness: 0.850 (g) Fitness: 0.847 (h) Fitness: 0.847 (i) Fitness: 0.846 (j) Fitness: 0.845

Fig. 8 Top ten results returned by the HoF GA given the input sketch in Figure 1. Results (a), (b), and (f) describe the same location described by the input
sketch with result (a) corresponding to the actual buildings used. Note that the fitness value is not perfect due to the generalized building shapes in the input

sketch. Results (d), (e), (g), (h), (i), and (j) all describe residential locations that could be eliminated with additional search criteria. Result (c) shows the

rotation invariance of the algorithm with the buildings described all rotated roughly 45°. Again, additional search criteria such as road networks could elimi-

nate this as a potential result.

