
Histograms are compared using their cross-

correlation, which determines the amount that they 

overlap.  This can be calculated using the formula:

We evaluate the fitness of a chromosome by 

comparing all of the histograms of the search set with 

the histograms of the target set.  When a 

chromosome is mutated, its fitness determines if it will 

replace its parent by the formula,

Where xc is the child chromosome, xp is the parent 

chromosome, and f(xi(t)) is the fitness of chromosome 

xi.  A parent with a lower fitness value than its child is 

more likely to be replaced.  This helps prevent a low-

fitness child from replacing a high-fitness parent.  The 

algorithm continues until a perfect match is found or 

the generation limit is reached.

Abstract

In this project, we develop a technique to search for a 

set of buildings in a geospatial database based on 

spatial relationships.  We use a modified genetic 

algorithm to create a population of potential building 

sets which evolve toward a best solution.  Each 

building in the database is spatially related to its 

neighbors through the histograms of forces.  Our 

modification to the mutation operation of the genetic 

algorithm allows us to direct candidate solutions 

towards the best match using the histograms of 

forces.  

Background

In [1], Engelbrecht presents an overview of genetic 

algorithms (GA), which are modeled after natural 

evolution using genotypes.  Each candidate solution is 

expressed as a chromosome containing a set of 

genes, one for each variable to be optimized.  A 

fitness function evaluates how well each chromosome 

matches the ideal solution.  Evolution occurs through 

the selection, crossover, and mutation operators.  The 

selection operator uses the fitness values to pick a set 

of chromosomes for reproduction or survival to the 

next generation.  Crossover creates offspring 

chromosomes by combining genetic material from a 

set of parents.  Mutation randomly alters the genes of 

a single chromosome to introduce new genetic 

material.  Traditionally a GA uses all of these 

operators on a population of chromosomes 

represented by a bitstring, where each bit represents 

a gene.  In this project, we modify the traditional GA to 

work around the limitations of our problem domain.  

To understand the details of our modification, we must 

first look at how the building database is structured.  

Our experiments are run on an area of downtown 

Columbia, MO containing 2467 buildings.  Each 

building is connected to its 30 nearest neighbors by 

their histograms of forces (HoF).  Given two buildings, 

A and B, FAB(θ) is the histogram of forces from A to B 

and represents the support for which A is in direction θ 

of B [2].  The database does not store any absolute 

position data about the buildings, only their relative 

directions.

Algorithm

Each chromosome in the GA is a set of potential 

buildings.  Each building is represented by a gene in 

the chromosome.  The algorithm starts by creating a 

random population of chromosomes over the search 

space with the restriction that each set must be fully 

connected, meaning that there is a HoF from every 

building in the chromosome to every other building in 

the chromosome.  Ideally these chromosomes will be 

evenly distributed over all the buildings in the 

database.  We create new chromosomes for the next 

generation by applying the mutation operator to the 

entire population.  Because each chromosome 

represents a set of buildings that are close together, 

the combination of sets through crossover could result 

in child chromosomes that are not fully connected, so 

mutation is used exclusively.  The mutation operator 

begins by randomly selecting one of the genes to 

replace.  This gene corresponds to one of the 

buildings in the target set.  The histograms relating 

this building to all the other buildings in the target set 

are stored as the target histograms.  The set of 

nearest neighbors is the set of buildings which could 

replace the chosen gene and maintain full 

connectivity.  Each nearest neighbor is evaluated 

against the target histograms to see how well it would 

“fit” into this spot.  The building with the best fit is 
chosen as the new value for the gene.
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Percentage of Tests That Converge 
Within 100,000 Generations

GA Type
Population 

Size
Percent of 

Convergence

Random 
GA

50 69.4%

100 79.5%

HoF GA

50 96.9%

100 98.0%

150 98.9%

200 99.4%

250 99.6%

Results

To test our modification to the traditional GA, we 

compare it to a GA that ignores the HoF relations and 

simply mutates a chromosome by replacing a random 

building with one of its nearest neighbors.  We use 

100 test sets of five buildings and evaluate the 

average performance of each algorithm over ten runs.  

We use population sizes of 50, 100, 150, 200, and 

250 for the HoF GA, and population sizes of 50 and 

100 for the random GA.  We compare the 

computational runtime and the number of generations 

to convergence with a maximum of 100,000 

generations.  The HoF GA has a much higher 

convergence rate than the random GA and typically 

requires roughly ten times fewer generations to 

converge.  Larger population sizes tend to result in 

fewer generations, although there are some 

exceptions.  The HoF GA also has a faster runtime 

than the random GA, but is not dependant on the 

population size.  This is due to the greater 

computational complexity of the larger populations.  

Although the HoF GA performs better than the 

random GA, both GA types have slower runtimes 

when compared against a nondeterministic subgraph 

matching algorithm.

Conclusion

In this project, we developed a modification to the 

mutation operation of a GA for the purpose of building 

matching.  This new operator uses the histograms of 

forces to select an ideal replacement building.  

Although the HoF GA does not perform as well as the 

subgraph matching algorithm, it does much better 

than a simple random GA.  This demonstrates the 

usefulness of using HoF relations when comparing 

spatial relationships.
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Figure 3: From left to right, an animation of the HoF GA as a chromosome converges on the target set in green.  Each chromosome is represented by five red buildings with a blue overlay around the convex hull.

Figure 1: The process of the mutation operator just before convergence (a) and after (c).  The 

chromosome contains buildings a-e (four green and one red).  The target set contains buildings A-E 

(four green and one blue).  Building e in red is randomly chosen for replacement.  (b) shows the 

histograms of forces relating E to buildings A-D.  The nearest neighbor (shown in yellow except for 

E in blue) that most closely matches these histograms is chosen to replace building e in red.  

Because this is the last mutation before convergence, building E in blue is a perfect match.  (c) 

shows the final chromosome, perfectly matched with the target set.
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Figure 2: (a) Average generations to 

convergence per test, comparing the 

random GA to the HoF GA.  The HoF 

GA requires fewer generations on 

average than the random GA.  Larger 

Populations result in fewer 

generations.

(b) Average runtime per test, 

comparing the random GA, HoF GA, 

and subgraph matching methods.  

The HoF GA executes faster than the 

random GA, but not as fast as the 

subgraph matching method.  

Population size has little effect on the 

average runtime.

(c) Percentage of tests that converge 

within 100,000 generations.  The HoF 

GA has higher convergence rates than 

the random GA, and large population 

sizes have a greater probability of 

converging within the generation limit.
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