
Histograms are compared using their cross-

correlation, which determines the amount that they

overlap. This can be calculated using the formula:

We evaluate the fitness of a chromosome by

comparing all of the histograms of the search set with

the histograms of the target set. When a

chromosome is mutated, its fitness determines if it will

replace its parent by the formula,

Where xc is the child chromosome, xp is the parent

chromosome, and f(xi(t)) is the fitness of chromosome

xi. A parent with a lower fitness value than its child is

more likely to be replaced. This helps prevent a low-

fitness child from replacing a high-fitness parent. The

algorithm continues until a perfect match is found or

the generation limit is reached.

Abstract

In this project, we develop a technique to search for a

set of buildings in a geospatial database based on

spatial relationships. We use a modified genetic

algorithm to create a population of potential building

sets which evolve toward a best solution. Each

building in the database is spatially related to its

neighbors through the histograms of forces. Our

modification to the mutation operation of the genetic

algorithm allows us to direct candidate solutions

towards the best match using the histograms of

forces.

Background

In [1], Engelbrecht presents an overview of genetic

algorithms (GA), which are modeled after natural

evolution using genotypes. Each candidate solution is

expressed as a chromosome containing a set of

genes, one for each variable to be optimized. A

fitness function evaluates how well each chromosome

matches the ideal solution. Evolution occurs through

the selection, crossover, and mutation operators. The

selection operator uses the fitness values to pick a set

of chromosomes for reproduction or survival to the

next generation. Crossover creates offspring

chromosomes by combining genetic material from a

set of parents. Mutation randomly alters the genes of

a single chromosome to introduce new genetic

material. Traditionally a GA uses all of these

operators on a population of chromosomes

represented by a bitstring, where each bit represents

a gene. In this project, we modify the traditional GA to

work around the limitations of our problem domain.

To understand the details of our modification, we must

first look at how the building database is structured.

Our experiments are run on an area of downtown

Columbia, MO containing 2467 buildings. Each

building is connected to its 30 nearest neighbors by

their histograms of forces (HoF). Given two buildings,

A and B, FAB(θ) is the histogram of forces from A to B

and represents the support for which A is in direction θ

of B [2]. The database does not store any absolute

position data about the buildings, only their relative

directions.

Algorithm

Each chromosome in the GA is a set of potential

buildings. Each building is represented by a gene in

the chromosome. The algorithm starts by creating a

random population of chromosomes over the search

space with the restriction that each set must be fully

connected, meaning that there is a HoF from every

building in the chromosome to every other building in

the chromosome. Ideally these chromosomes will be

evenly distributed over all the buildings in the

database. We create new chromosomes for the next

generation by applying the mutation operator to the

entire population. Because each chromosome

represents a set of buildings that are close together,

the combination of sets through crossover could result

in child chromosomes that are not fully connected, so

mutation is used exclusively. The mutation operator

begins by randomly selecting one of the genes to

replace. This gene corresponds to one of the

buildings in the target set. The histograms relating

this building to all the other buildings in the target set

are stored as the target histograms. The set of

nearest neighbors is the set of buildings which could

replace the chosen gene and maintain full

connectivity. Each nearest neighbor is evaluated

against the target histograms to see how well it would

“fit” into this spot. The building with the best fit is
chosen as the new value for the gene.

A Modified Genetic Algorithm for Matching Building Sets
Andrew Buck, Isaac Sledge, James Keller, and Marjorie Skubic

Computational Intelligence Research Lab – University of Missouri

Percentage of Tests That Converge
Within 100,000 Generations

GA Type
Population

Size
Percent of

Convergence

Random
GA

50 69.4%

100 79.5%

HoF GA

50 96.9%

100 98.0%

150 98.9%

200 99.4%

250 99.6%

Results

To test our modification to the traditional GA, we

compare it to a GA that ignores the HoF relations and

simply mutates a chromosome by replacing a random

building with one of its nearest neighbors. We use

100 test sets of five buildings and evaluate the

average performance of each algorithm over ten runs.

We use population sizes of 50, 100, 150, 200, and

250 for the HoF GA, and population sizes of 50 and

100 for the random GA. We compare the

computational runtime and the number of generations

to convergence with a maximum of 100,000

generations. The HoF GA has a much higher

convergence rate than the random GA and typically

requires roughly ten times fewer generations to

converge. Larger population sizes tend to result in

fewer generations, although there are some

exceptions. The HoF GA also has a faster runtime

than the random GA, but is not dependant on the

population size. This is due to the greater

computational complexity of the larger populations.

Although the HoF GA performs better than the

random GA, both GA types have slower runtimes

when compared against a nondeterministic subgraph

matching algorithm.

Conclusion

In this project, we developed a modification to the

mutation operation of a GA for the purpose of building

matching. This new operator uses the histograms of

forces to select an ideal replacement building.

Although the HoF GA does not perform as well as the

subgraph matching algorithm, it does much better

than a simple random GA. This demonstrates the

usefulness of using HoF relations when comparing

spatial relationships.

Acknowledgements & References

This work is funded by the U.S. National Geospatial-Intelligence

Agency NURI grant HM 1582-08-1-0020.

[1] A. P. Engelbrecht, Computational Intelligence: An introduction,

2nd ed. Chichester, West Sussex: John Wiley, 2007, pp. 125-176.

[2] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa, “The

Use of Force Histograms for Affine-Invariant Relative Position

Description,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 26, pp. 1-18, Jan. 2004.

Figure 3: From left to right, an animation of the HoF GA as a chromosome converges on the target set in green. Each chromosome is represented by five red buildings with a blue overlay around the convex hull.

Figure 1: The process of the mutation operator just before convergence (a) and after (c). The

chromosome contains buildings a-e (four green and one red). The target set contains buildings A-E

(four green and one blue). Building e in red is randomly chosen for replacement. (b) shows the

histograms of forces relating E to buildings A-D. The nearest neighbor (shown in yellow except for

E in blue) that most closely matches these histograms is chosen to replace building e in red.

Because this is the last mutation before convergence, building E in blue is a perfect match. (c)

shows the final chromosome, perfectly matched with the target set.

(a)

(b)

(c)

(a)

(b)

(c)

Figure 2: (a) Average generations to

convergence per test, comparing the

random GA to the HoF GA. The HoF

GA requires fewer generations on

average than the random GA. Larger

Populations result in fewer

generations.

(b) Average runtime per test,

comparing the random GA, HoF GA,

and subgraph matching methods.

The HoF GA executes faster than the

random GA, but not as fast as the

subgraph matching method.

Population size has little effect on the

average runtime.

(c) Percentage of tests that converge

within 100,000 generations. The HoF

GA has higher convergence rates than

the random GA, and large population

sizes have a greater probability of

converging within the generation limit.
0 10 20 30 40 50 60 70 80 90 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Test Number (in order of increasing average runtime)

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Average Runtime per Test
Random GA, HoF GA, and Subgraph Matching

HoF GA: Population Size = 50

HoF GA: Population Size = 100

HoF GA: Population Size = 150

HoF GA: Population Size = 200

HoF GA: Population Size = 250

Random GA: Population Size = 50

Random GA: Population Size = 100

Subgraph Matching

0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

10
4

10
5

Average Generations to Convergence per Test

Random GA vs. HoF GA

Test Number (in order of increasing average generations)

A
v
e

ra
g

e
 G

e
n

e
ra

ti
o

n
s
 t
o

 C
o
n

v
e

rg
e

n
c
e

HoF GA: Population Size = 50

HoF GA: Population Size = 100

HoF GA: Population Size = 150

HoF GA: Population Size = 200

HoF GA: Population Size = 250

Random GA: Population Size = 50

Random GA: Population Size = 100

HoF from E to A

30

210

60

240

90

270

120

300

150

330

180 0

HoF from E to B

30

210

60

240

90

270

120

300

150

330

180 0

HoF from E to C

30

210

60

240

90

270

120

300

150

330

180 0

HoF from E to D

30

210

60

240

90

270

120

300

150

330

180 0

	Slide 1

